Properties

Label 230.4.a.h
Level $230$
Weight $4$
Character orbit 230.a
Self dual yes
Analytic conductor $13.570$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [230,4,Mod(1,230)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(230, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("230.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 230 = 2 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 230.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.5704393013\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 68x^{2} - 111x + 342 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + (\beta_1 - 1) q^{3} + 4 q^{4} - 5 q^{5} + ( - 2 \beta_1 + 2) q^{6} + (\beta_{2} + 2 \beta_1) q^{7} - 8 q^{8} + (\beta_{3} + 8) q^{9} + 10 q^{10} + ( - \beta_{3} - \beta_{2} + \beta_1 - 10) q^{11}+ \cdots + (4 \beta_{3} + 17 \beta_{2} + \cdots - 662) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{2} - 4 q^{3} + 16 q^{4} - 20 q^{5} + 8 q^{6} - q^{7} - 32 q^{8} + 32 q^{9} + 40 q^{10} - 39 q^{11} - 16 q^{12} - 20 q^{13} + 2 q^{14} + 20 q^{15} + 64 q^{16} - 23 q^{17} - 64 q^{18} + 53 q^{19}+ \cdots - 2665 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 68x^{2} - 111x + 342 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 3\nu^{2} - 50\nu + 18 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - 2\nu - 34 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 2\beta _1 + 34 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{3} + 3\beta_{2} + 56\beta _1 + 84 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−6.57209
−3.74869
1.58997
8.73081
−2.00000 −7.57209 4.00000 −5.00000 15.1442 −35.4229 −8.00000 30.3365 10.0000
1.2 −2.00000 −4.74869 4.00000 −5.00000 9.49738 29.3684 −8.00000 −4.44993 10.0000
1.3 −2.00000 0.589969 4.00000 −5.00000 −1.17994 −18.5077 −8.00000 −26.6519 10.0000
1.4 −2.00000 7.73081 4.00000 −5.00000 −15.4616 23.5622 −8.00000 32.7654 10.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 230.4.a.h 4
3.b odd 2 1 2070.4.a.bj 4
4.b odd 2 1 1840.4.a.m 4
5.b even 2 1 1150.4.a.p 4
5.c odd 4 2 1150.4.b.n 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
230.4.a.h 4 1.a even 1 1 trivial
1150.4.a.p 4 5.b even 2 1
1150.4.b.n 8 5.c odd 4 2
1840.4.a.m 4 4.b odd 2 1
2070.4.a.bj 4 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 4T_{3}^{3} - 62T_{3}^{2} - 243T_{3} + 164 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(230))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 4 T^{3} + \cdots + 164 \) Copy content Toggle raw display
$5$ \( (T + 5)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + T^{3} + \cdots + 453664 \) Copy content Toggle raw display
$11$ \( T^{4} + 39 T^{3} + \cdots - 977536 \) Copy content Toggle raw display
$13$ \( T^{4} + 20 T^{3} + \cdots + 3059002 \) Copy content Toggle raw display
$17$ \( T^{4} + 23 T^{3} + \cdots + 1048184 \) Copy content Toggle raw display
$19$ \( T^{4} - 53 T^{3} + \cdots - 78336 \) Copy content Toggle raw display
$23$ \( (T + 23)^{4} \) Copy content Toggle raw display
$29$ \( T^{4} - 161 T^{3} + \cdots + 1597064 \) Copy content Toggle raw display
$31$ \( T^{4} - 388 T^{3} + \cdots - 397027152 \) Copy content Toggle raw display
$37$ \( T^{4} - 466 T^{3} + \cdots - 7921024 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 1506099394 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 5392023552 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 1306137888 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 3236491568 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 11673423616 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 42772329400 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 10308616192 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 274201266224 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 4754107544 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 145785325568 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 178673654272 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 969417760000 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 658266694276 \) Copy content Toggle raw display
show more
show less