Properties

Label 230.4.a.g
Level $230$
Weight $4$
Character orbit 230.a
Self dual yes
Analytic conductor $13.570$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [230,4,Mod(1,230)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(230, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("230.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 230 = 2 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 230.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.5704393013\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.318165.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 45x + 60 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} - \beta_1 q^{3} + 4 q^{4} + 5 q^{5} + 2 \beta_1 q^{6} + ( - \beta_{2} + 3 \beta_1 + 1) q^{7} - 8 q^{8} + (\beta_{2} - \beta_1 + 4) q^{9} - 10 q^{10} + ( - 2 \beta_{2} - 5 \beta_1 + 10) q^{11}+ \cdots + (27 \beta_{2} - 123 \beta_1 - 567) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 6 q^{2} - q^{3} + 12 q^{4} + 15 q^{5} + 2 q^{6} + 7 q^{7} - 24 q^{8} + 10 q^{9} - 30 q^{10} + 27 q^{11} - 4 q^{12} + 75 q^{13} - 14 q^{14} - 5 q^{15} + 48 q^{16} + 127 q^{17} - 20 q^{18} - 185 q^{19}+ \cdots - 1851 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 45x + 60 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + \nu - 31 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - \beta _1 + 31 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
6.50182
1.34735
−6.84916
−2.00000 −6.50182 4.00000 5.00000 13.0036 2.73001 −8.00000 15.2736 −10.0000
1.2 −2.00000 −1.34735 4.00000 5.00000 2.69469 32.8794 −8.00000 −25.1847 −10.0000
1.3 −2.00000 6.84916 4.00000 5.00000 −13.6983 −28.6094 −8.00000 19.9110 −10.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 230.4.a.g 3
3.b odd 2 1 2070.4.a.ba 3
4.b odd 2 1 1840.4.a.j 3
5.b even 2 1 1150.4.a.m 3
5.c odd 4 2 1150.4.b.l 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
230.4.a.g 3 1.a even 1 1 trivial
1150.4.a.m 3 5.b even 2 1
1150.4.b.l 6 5.c odd 4 2
1840.4.a.j 3 4.b odd 2 1
2070.4.a.ba 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} + T_{3}^{2} - 45T_{3} - 60 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(230))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + T^{2} + \cdots - 60 \) Copy content Toggle raw display
$5$ \( (T - 5)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 7 T^{2} + \cdots + 2568 \) Copy content Toggle raw display
$11$ \( T^{3} - 27 T^{2} + \cdots + 89388 \) Copy content Toggle raw display
$13$ \( T^{3} - 75 T^{2} + \cdots + 275238 \) Copy content Toggle raw display
$17$ \( T^{3} - 127 T^{2} + \cdots + 96550 \) Copy content Toggle raw display
$19$ \( T^{3} + 185 T^{2} + \cdots + 37596 \) Copy content Toggle raw display
$23$ \( (T - 23)^{3} \) Copy content Toggle raw display
$29$ \( T^{3} - 344 T^{2} + \cdots + 291288 \) Copy content Toggle raw display
$31$ \( T^{3} - 397 T^{2} + \cdots + 1547080 \) Copy content Toggle raw display
$37$ \( T^{3} - 978 T^{2} + \cdots - 33005536 \) Copy content Toggle raw display
$41$ \( T^{3} + 575 T^{2} + \cdots - 50953878 \) Copy content Toggle raw display
$43$ \( T^{3} - 812 T^{2} + \cdots + 10161920 \) Copy content Toggle raw display
$47$ \( T^{3} + 270 T^{2} + \cdots + 3184000 \) Copy content Toggle raw display
$53$ \( T^{3} - 510 T^{2} + \cdots + 89503704 \) Copy content Toggle raw display
$59$ \( T^{3} - 142 T^{2} + \cdots - 9906704 \) Copy content Toggle raw display
$61$ \( T^{3} + 49 T^{2} + \cdots - 23572158 \) Copy content Toggle raw display
$67$ \( T^{3} - 1616 T^{2} + \cdots - 111600960 \) Copy content Toggle raw display
$71$ \( T^{3} + 471 T^{2} + \cdots - 75603760 \) Copy content Toggle raw display
$73$ \( T^{3} + 780 T^{2} + \cdots - 672863896 \) Copy content Toggle raw display
$79$ \( T^{3} + 860 T^{2} + \cdots - 8296704 \) Copy content Toggle raw display
$83$ \( T^{3} + 288 T^{2} + \cdots - 106176592 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 1109897568 \) Copy content Toggle raw display
$97$ \( T^{3} - 1321 T^{2} + \cdots + 689377182 \) Copy content Toggle raw display
show more
show less