Properties

Label 230.4.a.f
Level $230$
Weight $4$
Character orbit 230.a
Self dual yes
Analytic conductor $13.570$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [230,4,Mod(1,230)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(230, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("230.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 230 = 2 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 230.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.5704393013\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{73}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{73})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + ( - \beta - 1) q^{3} + 4 q^{4} + 5 q^{5} + (2 \beta + 2) q^{6} + ( - \beta - 8) q^{7} - 8 q^{8} + (3 \beta - 8) q^{9} - 10 q^{10} + (10 \beta + 4) q^{11} + ( - 4 \beta - 4) q^{12} + (9 \beta - 9) q^{13}+ \cdots + ( - 38 \beta + 508) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} - 3 q^{3} + 8 q^{4} + 10 q^{5} + 6 q^{6} - 17 q^{7} - 16 q^{8} - 13 q^{9} - 20 q^{10} + 18 q^{11} - 12 q^{12} - 9 q^{13} + 34 q^{14} - 15 q^{15} + 32 q^{16} - 79 q^{17} + 26 q^{18} + 34 q^{19}+ \cdots + 978 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4.77200
−3.77200
−2.00000 −5.77200 4.00000 5.00000 11.5440 −12.7720 −8.00000 6.31601 −10.0000
1.2 −2.00000 2.77200 4.00000 5.00000 −5.54400 −4.22800 −8.00000 −19.3160 −10.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 230.4.a.f 2
3.b odd 2 1 2070.4.a.s 2
4.b odd 2 1 1840.4.a.i 2
5.b even 2 1 1150.4.a.l 2
5.c odd 4 2 1150.4.b.k 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
230.4.a.f 2 1.a even 1 1 trivial
1150.4.a.l 2 5.b even 2 1
1150.4.b.k 4 5.c odd 4 2
1840.4.a.i 2 4.b odd 2 1
2070.4.a.s 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 3T_{3} - 16 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(230))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 3T - 16 \) Copy content Toggle raw display
$5$ \( (T - 5)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 17T + 54 \) Copy content Toggle raw display
$11$ \( T^{2} - 18T - 1744 \) Copy content Toggle raw display
$13$ \( T^{2} + 9T - 1458 \) Copy content Toggle raw display
$17$ \( T^{2} + 79T - 648 \) Copy content Toggle raw display
$19$ \( T^{2} - 34T - 1536 \) Copy content Toggle raw display
$23$ \( (T + 23)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 112T + 3063 \) Copy content Toggle raw display
$31$ \( T^{2} + 92T - 10221 \) Copy content Toggle raw display
$37$ \( T^{2} + 491T + 59376 \) Copy content Toggle raw display
$41$ \( T^{2} + 332T - 72381 \) Copy content Toggle raw display
$43$ \( T^{2} + 354T + 22496 \) Copy content Toggle raw display
$47$ \( T^{2} + 599T + 89244 \) Copy content Toggle raw display
$53$ \( T^{2} + 305T + 22362 \) Copy content Toggle raw display
$59$ \( T^{2} - 357T - 169344 \) Copy content Toggle raw display
$61$ \( T^{2} + 172T + 4768 \) Copy content Toggle raw display
$67$ \( T^{2} + 531T + 39812 \) Copy content Toggle raw display
$71$ \( T^{2} - 1254 T + 195737 \) Copy content Toggle raw display
$73$ \( T^{2} + 343T + 19758 \) Copy content Toggle raw display
$79$ \( T^{2} + 88T - 55296 \) Copy content Toggle raw display
$83$ \( T^{2} - 1273 T + 155308 \) Copy content Toggle raw display
$89$ \( T^{2} - 1106 T + 299896 \) Copy content Toggle raw display
$97$ \( T^{2} + 2240 T + 763548 \) Copy content Toggle raw display
show more
show less