Properties

Label 230.4.a.e
Level $230$
Weight $4$
Character orbit 230.a
Self dual yes
Analytic conductor $13.570$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 230 = 2 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 230.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(13.5704393013\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 2q^{2} + q^{3} + 4q^{4} - 5q^{5} + 2q^{6} - 18q^{7} + 8q^{8} - 26q^{9} + O(q^{10}) \) \( q + 2q^{2} + q^{3} + 4q^{4} - 5q^{5} + 2q^{6} - 18q^{7} + 8q^{8} - 26q^{9} - 10q^{10} - 32q^{11} + 4q^{12} - 47q^{13} - 36q^{14} - 5q^{15} + 16q^{16} + 20q^{17} - 52q^{18} + 36q^{19} - 20q^{20} - 18q^{21} - 64q^{22} - 23q^{23} + 8q^{24} + 25q^{25} - 94q^{26} - 53q^{27} - 72q^{28} - 27q^{29} - 10q^{30} - 33q^{31} + 32q^{32} - 32q^{33} + 40q^{34} + 90q^{35} - 104q^{36} + 56q^{37} + 72q^{38} - 47q^{39} - 40q^{40} - 157q^{41} - 36q^{42} + 18q^{43} - 128q^{44} + 130q^{45} - 46q^{46} + 65q^{47} + 16q^{48} - 19q^{49} + 50q^{50} + 20q^{51} - 188q^{52} - 14q^{53} - 106q^{54} + 160q^{55} - 144q^{56} + 36q^{57} - 54q^{58} - 744q^{59} - 20q^{60} + 552q^{61} - 66q^{62} + 468q^{63} + 64q^{64} + 235q^{65} - 64q^{66} - 156q^{67} + 80q^{68} - 23q^{69} + 180q^{70} + 699q^{71} - 208q^{72} - 609q^{73} + 112q^{74} + 25q^{75} + 144q^{76} + 576q^{77} - 94q^{78} - 644q^{79} - 80q^{80} + 649q^{81} - 314q^{82} + 512q^{83} - 72q^{84} - 100q^{85} + 36q^{86} - 27q^{87} - 256q^{88} - 102q^{89} + 260q^{90} + 846q^{91} - 92q^{92} - 33q^{93} + 130q^{94} - 180q^{95} + 32q^{96} + 578q^{97} - 38q^{98} + 832q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
2.00000 1.00000 4.00000 −5.00000 2.00000 −18.0000 8.00000 −26.0000 −10.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(1\)
\(23\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 230.4.a.e 1
3.b odd 2 1 2070.4.a.e 1
4.b odd 2 1 1840.4.a.d 1
5.b even 2 1 1150.4.a.b 1
5.c odd 4 2 1150.4.b.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
230.4.a.e 1 1.a even 1 1 trivial
1150.4.a.b 1 5.b even 2 1
1150.4.b.f 2 5.c odd 4 2
1840.4.a.d 1 4.b odd 2 1
2070.4.a.e 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 1 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(230))\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -2 + T \)
$3$ \( -1 + T \)
$5$ \( 5 + T \)
$7$ \( 18 + T \)
$11$ \( 32 + T \)
$13$ \( 47 + T \)
$17$ \( -20 + T \)
$19$ \( -36 + T \)
$23$ \( 23 + T \)
$29$ \( 27 + T \)
$31$ \( 33 + T \)
$37$ \( -56 + T \)
$41$ \( 157 + T \)
$43$ \( -18 + T \)
$47$ \( -65 + T \)
$53$ \( 14 + T \)
$59$ \( 744 + T \)
$61$ \( -552 + T \)
$67$ \( 156 + T \)
$71$ \( -699 + T \)
$73$ \( 609 + T \)
$79$ \( 644 + T \)
$83$ \( -512 + T \)
$89$ \( 102 + T \)
$97$ \( -578 + T \)
show more
show less