Properties

Label 230.3.i.a.19.9
Level $230$
Weight $3$
Character 230.19
Analytic conductor $6.267$
Analytic rank $0$
Dimension $240$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 230 = 2 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 230.i (of order \(22\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.26704608029\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(24\) over \(\Q(\zeta_{22})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 19.9
Character \(\chi\) \(=\) 230.19
Dual form 230.3.i.a.109.9

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.28641 + 0.587486i) q^{2} +(0.576935 + 1.96486i) q^{3} +(1.30972 - 1.51150i) q^{4} +(1.83597 - 4.65072i) q^{5} +(-1.89650 - 2.18868i) q^{6} +(-0.457318 - 3.18071i) q^{7} +(-0.796860 + 2.71386i) q^{8} +(4.04347 - 2.59858i) q^{9} +O(q^{10})\) \(q+(-1.28641 + 0.587486i) q^{2} +(0.576935 + 1.96486i) q^{3} +(1.30972 - 1.51150i) q^{4} +(1.83597 - 4.65072i) q^{5} +(-1.89650 - 2.18868i) q^{6} +(-0.457318 - 3.18071i) q^{7} +(-0.796860 + 2.71386i) q^{8} +(4.04347 - 2.59858i) q^{9} +(0.370417 + 7.06136i) q^{10} +(-18.0924 - 8.26254i) q^{11} +(3.72551 + 1.70138i) q^{12} +(-14.1697 - 2.03730i) q^{13} +(2.45692 + 3.82305i) q^{14} +(10.1972 + 0.924256i) q^{15} +(-0.569259 - 3.95929i) q^{16} +(-8.56409 - 9.88349i) q^{17} +(-3.67494 + 5.71832i) q^{18} +(-4.81195 - 4.16958i) q^{19} +(-4.62496 - 8.86622i) q^{20} +(5.98581 - 2.73363i) q^{21} +28.1285 q^{22} +(22.0451 - 6.55838i) q^{23} -5.79208 q^{24} +(-18.2584 - 17.0772i) q^{25} +(19.4250 - 5.70371i) q^{26} +(21.3673 + 18.5149i) q^{27} +(-5.40660 - 3.47461i) q^{28} +(-15.7498 - 18.1762i) q^{29} +(-13.6609 + 4.80176i) q^{30} +(50.2447 + 14.7532i) q^{31} +(3.05833 + 4.75885i) q^{32} +(5.79657 - 40.3160i) q^{33} +(16.8234 + 7.68298i) q^{34} +(-15.6322 - 3.71283i) q^{35} +(1.36807 - 9.51511i) q^{36} +(23.8013 - 15.2962i) q^{37} +(8.63973 + 2.53685i) q^{38} +(-4.17201 - 29.0169i) q^{39} +(11.1584 + 8.68853i) q^{40} +(30.5899 + 19.6590i) q^{41} +(-6.09426 + 7.03315i) q^{42} +(-77.6196 + 22.7912i) q^{43} +(-36.1849 + 16.5251i) q^{44} +(-4.66159 - 23.5759i) q^{45} +(-24.5062 + 21.3880i) q^{46} -61.7989i q^{47} +(7.45101 - 3.40276i) q^{48} +(37.1074 - 10.8957i) q^{49} +(33.5205 + 11.2417i) q^{50} +(14.4787 - 22.5294i) q^{51} +(-21.6378 + 18.7493i) q^{52} +(-10.8805 - 75.6756i) q^{53} +(-38.3645 - 11.2648i) q^{54} +(-71.6439 + 68.9731i) q^{55} +(8.99642 + 1.29349i) q^{56} +(5.41645 - 11.8604i) q^{57} +(30.9390 + 14.1294i) q^{58} +(-7.33465 + 51.0136i) q^{59} +(14.7526 - 14.2026i) q^{60} +(-14.8579 + 50.6014i) q^{61} +(-73.3028 + 10.5394i) q^{62} +(-10.1145 - 11.6727i) q^{63} +(-6.73003 - 4.32513i) q^{64} +(-35.4901 + 62.1591i) q^{65} +(16.2283 + 55.2685i) q^{66} +(28.2599 + 61.8806i) q^{67} -26.1555 q^{68} +(25.6049 + 39.5318i) q^{69} +(22.2908 - 4.40747i) q^{70} +(43.9109 + 96.1515i) q^{71} +(3.83009 + 13.0441i) q^{72} +(-16.7443 - 14.5090i) q^{73} +(-21.6321 + 33.6601i) q^{74} +(23.0203 - 45.7277i) q^{75} +(-12.6046 + 1.81227i) q^{76} +(-18.0068 + 61.3255i) q^{77} +(22.4140 + 34.8768i) q^{78} +(15.8399 + 2.27744i) q^{79} +(-19.4587 - 4.62166i) q^{80} +(-6.08146 + 13.3165i) q^{81} +(-50.9007 - 7.31841i) q^{82} +(31.8536 - 20.4711i) q^{83} +(3.70787 - 12.6278i) q^{84} +(-61.6888 + 21.6834i) q^{85} +(86.4615 - 74.9193i) q^{86} +(26.6271 - 41.4326i) q^{87} +(36.8405 - 42.5162i) q^{88} +(-41.3510 - 140.829i) q^{89} +(19.8473 + 27.5898i) q^{90} +46.0016i q^{91} +(18.9600 - 41.9108i) q^{92} +107.235i q^{93} +(36.3060 + 79.4990i) q^{94} +(-28.2261 + 14.7238i) q^{95} +(-7.58601 + 8.75472i) q^{96} +(52.8735 + 33.9798i) q^{97} +(-41.3343 + 35.8164i) q^{98} +(-94.6270 + 13.6053i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240q + 48q^{4} - 8q^{6} + 96q^{9} + O(q^{10}) \) \( 240q + 48q^{4} - 8q^{6} + 96q^{9} + 154q^{15} - 96q^{16} + 44q^{20} + 16q^{24} - 84q^{25} + 32q^{26} - 100q^{29} - 352q^{30} + 124q^{31} + 28q^{35} - 192q^{36} + 72q^{39} + 116q^{41} - 148q^{46} - 188q^{49} + 144q^{50} + 324q^{54} + 796q^{55} - 264q^{56} + 400q^{59} + 176q^{60} - 616q^{61} + 192q^{64} + 462q^{65} - 176q^{66} + 120q^{69} - 504q^{70} + 464q^{71} - 528q^{74} - 934q^{75} - 968q^{79} - 264q^{80} + 664q^{81} - 352q^{84} - 1196q^{85} + 396q^{86} + 376q^{94} + 126q^{95} - 32q^{96} - 3300q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/230\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(-1\) \(e\left(\frac{15}{22}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.28641 + 0.587486i −0.643207 + 0.293743i
\(3\) 0.576935 + 1.96486i 0.192312 + 0.654953i 0.998035 + 0.0626608i \(0.0199586\pi\)
−0.805723 + 0.592292i \(0.798223\pi\)
\(4\) 1.30972 1.51150i 0.327430 0.377875i
\(5\) 1.83597 4.65072i 0.367194 0.930144i
\(6\) −1.89650 2.18868i −0.316084 0.364780i
\(7\) −0.457318 3.18071i −0.0653311 0.454388i −0.996060 0.0886786i \(-0.971736\pi\)
0.930729 0.365709i \(-0.119173\pi\)
\(8\) −0.796860 + 2.71386i −0.0996075 + 0.339232i
\(9\) 4.04347 2.59858i 0.449274 0.288731i
\(10\) 0.370417 + 7.06136i 0.0370417 + 0.706136i
\(11\) −18.0924 8.26254i −1.64477 0.751140i −0.644853 0.764306i \(-0.723082\pi\)
−0.999913 + 0.0131666i \(0.995809\pi\)
\(12\) 3.72551 + 1.70138i 0.310459 + 0.141782i
\(13\) −14.1697 2.03730i −1.08998 0.156716i −0.426190 0.904634i \(-0.640144\pi\)
−0.663791 + 0.747918i \(0.731053\pi\)
\(14\) 2.45692 + 3.82305i 0.175495 + 0.273075i
\(15\) 10.1972 + 0.924256i 0.679816 + 0.0616171i
\(16\) −0.569259 3.95929i −0.0355787 0.247455i
\(17\) −8.56409 9.88349i −0.503770 0.581382i 0.445722 0.895171i \(-0.352947\pi\)
−0.949493 + 0.313789i \(0.898401\pi\)
\(18\) −3.67494 + 5.71832i −0.204164 + 0.317685i
\(19\) −4.81195 4.16958i −0.253261 0.219452i 0.518972 0.854791i \(-0.326315\pi\)
−0.772233 + 0.635339i \(0.780860\pi\)
\(20\) −4.62496 8.86622i −0.231248 0.443311i
\(21\) 5.98581 2.73363i 0.285039 0.130173i
\(22\) 28.1285 1.27857
\(23\) 22.0451 6.55838i 0.958484 0.285147i
\(24\) −5.79208 −0.241337
\(25\) −18.2584 17.0772i −0.730338 0.683086i
\(26\) 19.4250 5.70371i 0.747117 0.219373i
\(27\) 21.3673 + 18.5149i 0.791383 + 0.685737i
\(28\) −5.40660 3.47461i −0.193093 0.124093i
\(29\) −15.7498 18.1762i −0.543096 0.626766i 0.416165 0.909289i \(-0.363374\pi\)
−0.959260 + 0.282523i \(0.908829\pi\)
\(30\) −13.6609 + 4.80176i −0.455362 + 0.160059i
\(31\) 50.2447 + 14.7532i 1.62080 + 0.475909i 0.961233 0.275738i \(-0.0889222\pi\)
0.659565 + 0.751647i \(0.270740\pi\)
\(32\) 3.05833 + 4.75885i 0.0955727 + 0.148714i
\(33\) 5.79657 40.3160i 0.175654 1.22170i
\(34\) 16.8234 + 7.68298i 0.494805 + 0.225970i
\(35\) −15.6322 3.71283i −0.446635 0.106081i
\(36\) 1.36807 9.51511i 0.0380018 0.264309i
\(37\) 23.8013 15.2962i 0.643279 0.413410i −0.177926 0.984044i \(-0.556939\pi\)
0.821205 + 0.570634i \(0.193302\pi\)
\(38\) 8.63973 + 2.53685i 0.227361 + 0.0667593i
\(39\) −4.17201 29.0169i −0.106975 0.744024i
\(40\) 11.1584 + 8.68853i 0.278960 + 0.217213i
\(41\) 30.5899 + 19.6590i 0.746096 + 0.479487i 0.857626 0.514274i \(-0.171939\pi\)
−0.111530 + 0.993761i \(0.535575\pi\)
\(42\) −6.09426 + 7.03315i −0.145102 + 0.167456i
\(43\) −77.6196 + 22.7912i −1.80511 + 0.530027i −0.998162 0.0605984i \(-0.980699\pi\)
−0.806946 + 0.590626i \(0.798881\pi\)
\(44\) −36.1849 + 16.5251i −0.822383 + 0.375570i
\(45\) −4.66159 23.5759i −0.103591 0.523910i
\(46\) −24.5062 + 21.3880i −0.532744 + 0.464956i
\(47\) 61.7989i 1.31487i −0.753511 0.657435i \(-0.771641\pi\)
0.753511 0.657435i \(-0.228359\pi\)
\(48\) 7.45101 3.40276i 0.155229 0.0708909i
\(49\) 37.1074 10.8957i 0.757293 0.222361i
\(50\) 33.5205 + 11.2417i 0.670410 + 0.224835i
\(51\) 14.4787 22.5294i 0.283897 0.441752i
\(52\) −21.6378 + 18.7493i −0.416112 + 0.360563i
\(53\) −10.8805 75.6756i −0.205293 1.42784i −0.788258 0.615345i \(-0.789017\pi\)
0.582965 0.812497i \(-0.301892\pi\)
\(54\) −38.3645 11.2648i −0.710453 0.208608i
\(55\) −71.6439 + 68.9731i −1.30262 + 1.25406i
\(56\) 8.99642 + 1.29349i 0.160650 + 0.0230980i
\(57\) 5.41645 11.8604i 0.0950255 0.208077i
\(58\) 30.9390 + 14.1294i 0.533431 + 0.243610i
\(59\) −7.33465 + 51.0136i −0.124316 + 0.864637i 0.828262 + 0.560342i \(0.189330\pi\)
−0.952578 + 0.304295i \(0.901579\pi\)
\(60\) 14.7526 14.2026i 0.245876 0.236710i
\(61\) −14.8579 + 50.6014i −0.243572 + 0.829531i 0.743428 + 0.668816i \(0.233198\pi\)
−0.987001 + 0.160716i \(0.948620\pi\)
\(62\) −73.3028 + 10.5394i −1.18230 + 0.169990i
\(63\) −10.1145 11.6727i −0.160547 0.185281i
\(64\) −6.73003 4.32513i −0.105157 0.0675801i
\(65\) −35.4901 + 62.1591i −0.546002 + 0.956294i
\(66\) 16.2283 + 55.2685i 0.245883 + 0.837401i
\(67\) 28.2599 + 61.8806i 0.421790 + 0.923591i 0.994588 + 0.103895i \(0.0331305\pi\)
−0.572798 + 0.819696i \(0.694142\pi\)
\(68\) −26.1555 −0.384639
\(69\) 25.6049 + 39.5318i 0.371085 + 0.572925i
\(70\) 22.2908 4.40747i 0.318439 0.0629639i
\(71\) 43.9109 + 96.1515i 0.618464 + 1.35425i 0.916632 + 0.399733i \(0.130897\pi\)
−0.298168 + 0.954513i \(0.596376\pi\)
\(72\) 3.83009 + 13.0441i 0.0531957 + 0.181168i
\(73\) −16.7443 14.5090i −0.229373 0.198753i 0.532590 0.846374i \(-0.321219\pi\)
−0.761963 + 0.647620i \(0.775764\pi\)
\(74\) −21.6321 + 33.6601i −0.292325 + 0.454867i
\(75\) 23.0203 45.7277i 0.306937 0.609702i
\(76\) −12.6046 + 1.81227i −0.165850 + 0.0238457i
\(77\) −18.0068 + 61.3255i −0.233854 + 0.796434i
\(78\) 22.4140 + 34.8768i 0.287358 + 0.447138i
\(79\) 15.8399 + 2.27744i 0.200505 + 0.0288283i 0.241836 0.970317i \(-0.422251\pi\)
−0.0413303 + 0.999146i \(0.513160\pi\)
\(80\) −19.4587 4.62166i −0.243234 0.0577707i
\(81\) −6.08146 + 13.3165i −0.0750798 + 0.164402i
\(82\) −50.9007 7.31841i −0.620740 0.0892489i
\(83\) 31.8536 20.4711i 0.383779 0.246639i −0.334499 0.942396i \(-0.608567\pi\)
0.718278 + 0.695757i \(0.244931\pi\)
\(84\) 3.70787 12.6278i 0.0441413 0.150331i
\(85\) −61.6888 + 21.6834i −0.725750 + 0.255099i
\(86\) 86.4615 74.9193i 1.00537 0.871155i
\(87\) 26.6271 41.4326i 0.306059 0.476237i
\(88\) 36.8405 42.5162i 0.418642 0.483138i
\(89\) −41.3510 140.829i −0.464618 1.58234i −0.775148 0.631780i \(-0.782325\pi\)
0.310530 0.950564i \(-0.399493\pi\)
\(90\) 19.8473 + 27.5898i 0.220525 + 0.306553i
\(91\) 46.0016i 0.505512i
\(92\) 18.9600 41.9108i 0.206087 0.455553i
\(93\) 107.235i 1.15307i
\(94\) 36.3060 + 79.4990i 0.386234 + 0.845734i
\(95\) −28.2261 + 14.7238i −0.297117 + 0.154988i
\(96\) −7.58601 + 8.75472i −0.0790209 + 0.0911950i
\(97\) 52.8735 + 33.9798i 0.545088 + 0.350307i 0.784026 0.620728i \(-0.213163\pi\)
−0.238938 + 0.971035i \(0.576799\pi\)
\(98\) −41.3343 + 35.8164i −0.421779 + 0.365474i
\(99\) −94.6270 + 13.6053i −0.955828 + 0.137427i
\(100\) −49.7256 + 5.23129i −0.497256 + 0.0523129i
\(101\) 22.0902 14.1965i 0.218715 0.140560i −0.426696 0.904395i \(-0.640323\pi\)
0.645411 + 0.763836i \(0.276686\pi\)
\(102\) −5.38998 + 37.4881i −0.0528429 + 0.367531i
\(103\) −37.9925 + 83.1919i −0.368859 + 0.807689i 0.630641 + 0.776075i \(0.282792\pi\)
−0.999500 + 0.0316140i \(0.989935\pi\)
\(104\) 16.8202 36.8312i 0.161733 0.354146i
\(105\) −1.72359 32.8572i −0.0164151 0.312926i
\(106\) 58.4552 + 90.9580i 0.551464 + 0.858095i
\(107\) 95.6935 + 28.0981i 0.894331 + 0.262599i 0.696432 0.717623i \(-0.254770\pi\)
0.197900 + 0.980222i \(0.436588\pi\)
\(108\) 55.9705 8.04734i 0.518245 0.0745124i
\(109\) −30.6686 + 26.5745i −0.281363 + 0.243803i −0.784096 0.620639i \(-0.786873\pi\)
0.502733 + 0.864442i \(0.332328\pi\)
\(110\) 51.6430 130.818i 0.469482 1.18925i
\(111\) 43.7866 + 37.9413i 0.394474 + 0.341814i
\(112\) −12.3330 + 3.62130i −0.110116 + 0.0323331i
\(113\) −86.8569 190.190i −0.768645 1.68310i −0.729613 0.683860i \(-0.760300\pi\)
−0.0390323 0.999238i \(-0.512428\pi\)
\(114\) 18.4394i 0.161749i
\(115\) 9.97298 114.567i 0.0867215 0.996233i
\(116\) −48.1012 −0.414665
\(117\) −62.5890 + 28.5834i −0.534948 + 0.244303i
\(118\) −20.5344 69.9336i −0.174020 0.592657i
\(119\) −27.5200 + 31.7598i −0.231261 + 0.266889i
\(120\) −10.6341 + 26.9374i −0.0886173 + 0.224478i
\(121\) 179.828 + 207.533i 1.48619 + 1.71515i
\(122\) −10.6142 73.8232i −0.0870014 0.605108i
\(123\) −20.9787 + 71.4468i −0.170558 + 0.580869i
\(124\) 88.1061 56.6223i 0.710533 0.456632i
\(125\) −112.943 + 53.5618i −0.903544 + 0.428494i
\(126\) 19.8690 + 9.07385i 0.157690 + 0.0720147i
\(127\) −4.47671 2.04445i −0.0352497 0.0160980i 0.397712 0.917510i \(-0.369804\pi\)
−0.432962 + 0.901412i \(0.642532\pi\)
\(128\) 11.1986 + 1.61011i 0.0874887 + 0.0125790i
\(129\) −89.5629 139.363i −0.694286 1.08033i
\(130\) 9.13741 100.812i 0.0702878 0.775479i
\(131\) −31.2996 217.694i −0.238929 1.66178i −0.657390 0.753550i \(-0.728340\pi\)
0.418462 0.908234i \(-0.362569\pi\)
\(132\) −53.3457 61.5643i −0.404134 0.466396i
\(133\) −11.0616 + 17.2123i −0.0831703 + 0.129415i
\(134\) −72.7079 63.0018i −0.542596 0.470162i
\(135\) 125.337 65.3808i 0.928425 0.484302i
\(136\) 33.6468 15.3660i 0.247403 0.112985i
\(137\) −71.0681 −0.518745 −0.259373 0.965777i \(-0.583516\pi\)
−0.259373 + 0.965777i \(0.583516\pi\)
\(138\) −56.1628 35.8118i −0.406977 0.259506i
\(139\) 74.5914 0.536629 0.268314 0.963331i \(-0.413533\pi\)
0.268314 + 0.963331i \(0.413533\pi\)
\(140\) −26.0858 + 18.7653i −0.186327 + 0.134038i
\(141\) 121.426 35.6539i 0.861179 0.252865i
\(142\) −112.975 97.8936i −0.795600 0.689391i
\(143\) 239.532 + 153.938i 1.67505 + 1.07649i
\(144\) −12.5903 14.5300i −0.0874326 0.100903i
\(145\) −113.449 + 39.8769i −0.782404 + 0.275013i
\(146\) 30.0639 + 8.82755i 0.205917 + 0.0604627i
\(147\) 42.8170 + 66.6246i 0.291272 + 0.453229i
\(148\) 8.05294 56.0094i 0.0544117 0.378442i
\(149\) −140.140 63.9999i −0.940538 0.429529i −0.114677 0.993403i \(-0.536583\pi\)
−0.825861 + 0.563874i \(0.809311\pi\)
\(150\) −2.74928 + 72.3488i −0.0183285 + 0.482325i
\(151\) −4.39611 + 30.5756i −0.0291133 + 0.202487i −0.999187 0.0403247i \(-0.987161\pi\)
0.970073 + 0.242812i \(0.0780699\pi\)
\(152\) 15.1501 9.73637i 0.0996716 0.0640551i
\(153\) −60.3116 17.7091i −0.394194 0.115746i
\(154\) −12.8636 89.4686i −0.0835302 0.580965i
\(155\) 160.861 206.588i 1.03781 1.33283i
\(156\) −49.3232 31.6981i −0.316175 0.203193i
\(157\) −6.92666 + 7.99379i −0.0441188 + 0.0509159i −0.777380 0.629031i \(-0.783452\pi\)
0.733261 + 0.679947i \(0.237997\pi\)
\(158\) −21.7147 + 6.37600i −0.137435 + 0.0403544i
\(159\) 142.415 65.0386i 0.895689 0.409048i
\(160\) 27.7471 5.48633i 0.173419 0.0342896i
\(161\) −30.9419 67.1200i −0.192186 0.416894i
\(162\) 20.7034i 0.127799i
\(163\) 206.375 94.2485i 1.26611 0.578212i 0.334746 0.942308i \(-0.391349\pi\)
0.931361 + 0.364097i \(0.118622\pi\)
\(164\) 69.7788 20.4889i 0.425480 0.124932i
\(165\) −176.856 100.977i −1.07186 0.611983i
\(166\) −28.9505 + 45.0478i −0.174400 + 0.271372i
\(167\) 49.0354 42.4895i 0.293625 0.254428i −0.495573 0.868566i \(-0.665042\pi\)
0.789198 + 0.614139i \(0.210496\pi\)
\(168\) 2.64882 + 18.4229i 0.0157668 + 0.109660i
\(169\) 34.4768 + 10.1233i 0.204005 + 0.0599012i
\(170\) 66.6186 64.1351i 0.391874 0.377266i
\(171\) −30.2919 4.35532i −0.177146 0.0254697i
\(172\) −67.2113 + 147.172i −0.390763 + 0.855652i
\(173\) 184.256 + 84.1467i 1.06506 + 0.486397i 0.869315 0.494258i \(-0.164560\pi\)
0.195745 + 0.980655i \(0.437287\pi\)
\(174\) −9.91243 + 68.9425i −0.0569680 + 0.396221i
\(175\) −45.9677 + 65.8846i −0.262672 + 0.376483i
\(176\) −22.4145 + 76.3366i −0.127355 + 0.433731i
\(177\) −104.466 + 15.0200i −0.590204 + 0.0848585i
\(178\) 135.929 + 156.871i 0.763647 + 0.881296i
\(179\) 29.5857 + 19.0136i 0.165283 + 0.106221i 0.620667 0.784074i \(-0.286862\pi\)
−0.455384 + 0.890295i \(0.650498\pi\)
\(180\) −41.7404 23.8319i −0.231891 0.132400i
\(181\) −32.4570 110.538i −0.179320 0.610709i −0.999267 0.0382699i \(-0.987815\pi\)
0.819947 0.572439i \(-0.194003\pi\)
\(182\) −27.0253 59.1771i −0.148491 0.325149i
\(183\) −107.997 −0.590146
\(184\) 0.231606 + 65.0534i 0.00125873 + 0.353551i
\(185\) −27.4398 138.777i −0.148323 0.750144i
\(186\) −62.9993 137.949i −0.338706 0.741662i
\(187\) 73.2826 + 249.578i 0.391885 + 1.33464i
\(188\) −93.4090 80.9394i −0.496857 0.430529i
\(189\) 49.1189 76.4306i 0.259889 0.404394i
\(190\) 27.6605 35.5234i 0.145581 0.186965i
\(191\) −85.7066 + 12.3227i −0.448726 + 0.0645170i −0.362973 0.931799i \(-0.618238\pi\)
−0.0857522 + 0.996316i \(0.527329\pi\)
\(192\) 4.61548 15.7189i 0.0240389 0.0818691i
\(193\) 116.628 + 181.477i 0.604291 + 0.940295i 0.999762 + 0.0218163i \(0.00694491\pi\)
−0.395471 + 0.918478i \(0.629419\pi\)
\(194\) −87.9799 12.6496i −0.453504 0.0652041i
\(195\) −142.609 33.8713i −0.731330 0.173699i
\(196\) 32.1315 70.3581i 0.163936 0.358970i
\(197\) 174.893 + 25.1457i 0.887779 + 0.127643i 0.571091 0.820886i \(-0.306520\pi\)
0.316688 + 0.948530i \(0.397429\pi\)
\(198\) 113.737 73.0940i 0.574427 0.369162i
\(199\) −36.5317 + 124.416i −0.183576 + 0.625204i 0.815354 + 0.578963i \(0.196542\pi\)
−0.998930 + 0.0462410i \(0.985276\pi\)
\(200\) 60.8944 35.9427i 0.304472 0.179713i
\(201\) −105.282 + 91.2278i −0.523793 + 0.453870i
\(202\) −20.0769 + 31.2403i −0.0993907 + 0.154655i
\(203\) −50.6107 + 58.4078i −0.249314 + 0.287723i
\(204\) −15.0900 51.3918i −0.0739705 0.251921i
\(205\) 147.591 106.172i 0.719954 0.517913i
\(206\) 129.339i 0.627861i
\(207\) 72.0963 83.8045i 0.348291 0.404853i
\(208\) 57.2618i 0.275297i
\(209\) 52.6086 + 115.197i 0.251716 + 0.551181i
\(210\) 21.5204 + 41.2554i 0.102478 + 0.196454i
\(211\) 164.719 190.096i 0.780660 0.900929i −0.216497 0.976283i \(-0.569463\pi\)
0.997157 + 0.0753541i \(0.0240087\pi\)
\(212\) −128.634 82.6681i −0.606765 0.389944i
\(213\) −163.590 + 141.752i −0.768030 + 0.665502i
\(214\) −139.609 + 20.0727i −0.652377 + 0.0937976i
\(215\) −36.5118 + 402.831i −0.169822 + 1.87363i
\(216\) −67.2735 + 43.2341i −0.311452 + 0.200158i
\(217\) 23.9479 166.561i 0.110359 0.767562i
\(218\) 23.8404 52.2031i 0.109360 0.239464i
\(219\) 18.8478 41.2708i 0.0860628 0.188451i
\(220\) 10.4193 + 198.625i 0.0473603 + 0.902842i
\(221\) 101.215 + 157.494i 0.457988 + 0.712643i
\(222\) −78.6177 23.0842i −0.354134 0.103983i
\(223\) −270.454 + 38.8854i −1.21280 + 0.174374i −0.718879 0.695135i \(-0.755345\pi\)
−0.493917 + 0.869509i \(0.664435\pi\)
\(224\) 13.7379 11.9040i 0.0613300 0.0531427i
\(225\) −118.204 21.6049i −0.525350 0.0960220i
\(226\) 223.468 + 193.636i 0.988796 + 0.856797i
\(227\) 251.363 73.8069i 1.10733 0.325140i 0.323567 0.946205i \(-0.395118\pi\)
0.783759 + 0.621065i \(0.213300\pi\)
\(228\) −10.8329 23.7208i −0.0475127 0.104038i
\(229\) 368.522i 1.60927i 0.593771 + 0.804634i \(0.297639\pi\)
−0.593771 + 0.804634i \(0.702361\pi\)
\(230\) 54.4769 + 153.239i 0.236856 + 0.666258i
\(231\) −130.885 −0.566600
\(232\) 61.8780 28.2587i 0.266715 0.121805i
\(233\) −33.1351 112.848i −0.142211 0.484325i 0.857326 0.514774i \(-0.172124\pi\)
−0.999536 + 0.0304495i \(0.990306\pi\)
\(234\) 63.7230 73.5402i 0.272320 0.314274i
\(235\) −287.410 113.461i −1.22302 0.482812i
\(236\) 67.5006 + 77.8999i 0.286020 + 0.330084i
\(237\) 4.66376 + 32.4371i 0.0196783 + 0.136866i
\(238\) 16.7437 57.0239i 0.0703518 0.239596i
\(239\) −193.998 + 124.675i −0.811707 + 0.521652i −0.879417 0.476053i \(-0.842067\pi\)
0.0677100 + 0.997705i \(0.478431\pi\)
\(240\) −2.14548 40.9000i −0.00893951 0.170416i
\(241\) 48.3705 + 22.0901i 0.200708 + 0.0916601i 0.513233 0.858249i \(-0.328448\pi\)
−0.312525 + 0.949909i \(0.601175\pi\)
\(242\) −353.257 161.327i −1.45974 0.666640i
\(243\) 222.194 + 31.9466i 0.914377 + 0.131468i
\(244\) 57.0243 + 88.7315i 0.233706 + 0.363654i
\(245\) 17.4551 192.580i 0.0712451 0.786042i
\(246\) −14.9867 104.235i −0.0609216 0.423719i
\(247\) 59.6894 + 68.8853i 0.241658 + 0.278888i
\(248\) −80.0761 + 124.601i −0.322887 + 0.502423i
\(249\) 58.6002 + 50.7774i 0.235342 + 0.203925i
\(250\) 113.825 135.255i 0.455299 0.541020i
\(251\) −180.001 + 82.2038i −0.717136 + 0.327505i −0.740347 0.672225i \(-0.765339\pi\)
0.0232102 + 0.999731i \(0.492611\pi\)
\(252\) −30.8905 −0.122581
\(253\) −453.039 63.4917i −1.79067 0.250955i
\(254\) 6.95999 0.0274015
\(255\) −78.1953 108.700i −0.306648 0.426274i
\(256\) −15.3519 + 4.50772i −0.0599683 + 0.0176083i
\(257\) 166.414 + 144.199i 0.647527 + 0.561085i 0.915488 0.402345i \(-0.131805\pi\)
−0.267962 + 0.963430i \(0.586350\pi\)
\(258\) 197.088 + 126.661i 0.763909 + 0.490934i
\(259\) −59.5375 68.7100i −0.229875 0.265289i
\(260\) 47.4713 + 135.054i 0.182582 + 0.519440i
\(261\) −110.916 32.5679i −0.424965 0.124781i
\(262\) 168.156 + 261.656i 0.641818 + 0.998688i
\(263\) −17.4622 + 121.452i −0.0663962 + 0.461796i 0.929316 + 0.369287i \(0.120398\pi\)
−0.995712 + 0.0925094i \(0.970511\pi\)
\(264\) 104.793 + 47.8573i 0.396942 + 0.181278i
\(265\) −371.923 88.3358i −1.40348 0.333343i
\(266\) 4.11790 28.6406i 0.0154808 0.107672i
\(267\) 252.851 162.498i 0.947009 0.608606i
\(268\) 130.545 + 38.3315i 0.487109 + 0.143028i
\(269\) 17.2537 + 120.002i 0.0641402 + 0.446105i 0.996432 + 0.0843982i \(0.0268968\pi\)
−0.932292 + 0.361707i \(0.882194\pi\)
\(270\) −122.826 + 157.741i −0.454909 + 0.584225i
\(271\) 82.8606 + 53.2513i 0.305759 + 0.196499i 0.684518 0.728996i \(-0.260013\pi\)
−0.378759 + 0.925495i \(0.623649\pi\)
\(272\) −34.2564 + 39.5340i −0.125943 + 0.145345i
\(273\) −90.3866 + 26.5399i −0.331087 + 0.0972158i
\(274\) 91.4230 41.7515i 0.333660 0.152378i
\(275\) 189.239 + 459.828i 0.688141 + 1.67210i
\(276\) 93.2876 + 13.0739i 0.337998 + 0.0473692i
\(277\) 454.614i 1.64121i −0.571498 0.820603i \(-0.693638\pi\)
0.571498 0.820603i \(-0.306362\pi\)
\(278\) −95.9554 + 43.8214i −0.345163 + 0.157631i
\(279\) 241.500 70.9109i 0.865592 0.254161i
\(280\) 22.5328 39.4650i 0.0804743 0.140947i
\(281\) 51.5114 80.1534i 0.183315 0.285243i −0.737418 0.675436i \(-0.763955\pi\)
0.920733 + 0.390193i \(0.127592\pi\)
\(282\) −135.258 + 117.202i −0.479639 + 0.415609i
\(283\) −67.0421 466.288i −0.236898 1.64766i −0.667128 0.744943i \(-0.732477\pi\)
0.430230 0.902719i \(-0.358432\pi\)
\(284\) 202.844 + 59.5604i 0.714239 + 0.209720i
\(285\) −45.2149 46.9657i −0.158649 0.164792i
\(286\) −398.573 57.3062i −1.39361 0.200371i
\(287\) 48.5402 106.288i 0.169130 0.370342i
\(288\) 24.7325 + 11.2949i 0.0858766 + 0.0392186i
\(289\) 16.7893 116.772i 0.0580945 0.404056i
\(290\) 122.515 117.948i 0.422465 0.406716i
\(291\) −36.2608 + 123.493i −0.124608 + 0.424375i
\(292\) −43.8606 + 6.30621i −0.150208 + 0.0215966i
\(293\) −60.8347 70.2070i −0.207627 0.239614i 0.642379 0.766387i \(-0.277947\pi\)
−0.850006 + 0.526773i \(0.823402\pi\)
\(294\) −94.2214 60.5524i −0.320481 0.205961i
\(295\) 223.784 + 127.771i 0.758589 + 0.433121i
\(296\) 22.5453 + 76.7822i 0.0761666 + 0.259399i
\(297\) −233.607 511.528i −0.786555 1.72232i
\(298\) 217.877 0.731132
\(299\) −325.735 + 48.0179i −1.08942 + 0.160595i
\(300\) −38.9672 94.6856i −0.129891 0.315619i
\(301\) 107.989 + 236.463i 0.358768 + 0.785591i
\(302\) −12.3075 41.9155i −0.0407533 0.138793i
\(303\) 40.6388 + 35.2137i 0.134121 + 0.116217i
\(304\) −13.7693 + 21.4255i −0.0452938 + 0.0704785i
\(305\) 208.054 + 162.003i 0.682146 + 0.531156i
\(306\) 87.9896 12.6510i 0.287548 0.0413431i
\(307\) −6.11735 + 20.8338i −0.0199262 + 0.0678625i −0.968856 0.247625i \(-0.920350\pi\)
0.948930 + 0.315488i \(0.102168\pi\)
\(308\) 69.1095 + 107.536i 0.224382 + 0.349144i
\(309\) −185.380 26.6536i −0.599934 0.0862575i
\(310\) −85.5661 + 360.261i −0.276020 + 1.16213i
\(311\) 116.643 255.412i 0.375056 0.821259i −0.624145 0.781308i \(-0.714553\pi\)
0.999202 0.0399507i \(-0.0127201\pi\)
\(312\) 82.0723 + 11.8002i 0.263052 + 0.0378212i
\(313\) 293.941 188.904i 0.939108 0.603528i 0.0209665 0.999780i \(-0.493326\pi\)
0.918142 + 0.396252i \(0.129689\pi\)
\(314\) 4.21431 14.3526i 0.0134214 0.0457090i
\(315\) −72.8565 + 25.6089i −0.231290 + 0.0812980i
\(316\) 24.1882 20.9592i 0.0765450 0.0663267i
\(317\) −276.143 + 429.688i −0.871115 + 1.35548i 0.0628151 + 0.998025i \(0.479992\pi\)
−0.933930 + 0.357456i \(0.883644\pi\)
\(318\) −144.995 + 167.333i −0.455959 + 0.526204i
\(319\) 134.770 + 458.985i 0.422477 + 1.43882i
\(320\) −32.4711 + 23.3587i −0.101472 + 0.0729959i
\(321\) 204.235i 0.636246i
\(322\) 79.2362 + 68.1661i 0.246075 + 0.211696i
\(323\) 83.2675i 0.257794i
\(324\) 12.1629 + 26.6331i 0.0375399 + 0.0822009i
\(325\) 223.926 + 279.177i 0.689003 + 0.859006i
\(326\) −210.115 + 242.485i −0.644523 + 0.743820i
\(327\) −69.9089 44.9277i −0.213789 0.137394i
\(328\) −77.7275 + 67.3512i −0.236974 + 0.205339i
\(329\) −196.565 + 28.2617i −0.597461 + 0.0859019i
\(330\) 286.833 + 25.9979i 0.869191 + 0.0787816i
\(331\) −144.875 + 93.1055i −0.437689 + 0.281285i −0.740871 0.671647i \(-0.765587\pi\)
0.303183 + 0.952932i \(0.401951\pi\)
\(332\) 10.7774 74.9581i 0.0324619 0.225777i
\(333\) 56.4915 123.699i 0.169644 0.371469i
\(334\) −38.1179 + 83.4666i −0.114126 + 0.249900i
\(335\) 339.674 17.8182i 1.01395 0.0531887i
\(336\) −14.2307 22.1434i −0.0423533 0.0659030i
\(337\) 349.281 + 102.558i 1.03644 + 0.304327i 0.755328 0.655347i \(-0.227478\pi\)
0.281115 + 0.959674i \(0.409296\pi\)
\(338\) −50.2987 + 7.23186i −0.148813 + 0.0213960i
\(339\) 323.586 280.389i 0.954531 0.827106i
\(340\) −48.0206 + 121.642i −0.141237 + 0.357770i
\(341\) −787.151 682.070i −2.30836 2.00021i
\(342\) 41.5266 12.1933i 0.121423 0.0356530i
\(343\) −117.036 256.274i −0.341214 0.747153i
\(344\) 228.810i 0.665145i
\(345\) 230.861 46.5020i 0.669163 0.134788i
\(346\) −286.464 −0.827930
\(347\) −108.273 + 49.4466i −0.312026 + 0.142497i −0.565272 0.824904i \(-0.691229\pi\)
0.253247 + 0.967402i \(0.418502\pi\)
\(348\) −27.7512 94.5120i −0.0797449 0.271586i
\(349\) 232.662 268.506i 0.666652 0.769357i −0.317197 0.948360i \(-0.602742\pi\)
0.983849 + 0.179002i \(0.0572870\pi\)
\(350\) 20.4272 111.760i 0.0583635 0.319315i
\(351\) −265.049 305.883i −0.755126 0.871462i
\(352\) −16.0124 111.369i −0.0454898 0.316388i
\(353\) 65.8732 224.343i 0.186610 0.635534i −0.812041 0.583600i \(-0.801643\pi\)
0.998651 0.0519333i \(-0.0165383\pi\)
\(354\) 125.563 80.6942i 0.354697 0.227950i
\(355\) 527.793 27.6864i 1.48674 0.0779897i
\(356\) −267.021 121.944i −0.750058 0.342540i
\(357\) −78.2808 35.7497i −0.219274 0.100139i
\(358\) −49.2297 7.07816i −0.137513 0.0197714i
\(359\) 34.8462 + 54.2217i 0.0970645 + 0.151035i 0.886389 0.462940i \(-0.153206\pi\)
−0.789325 + 0.613976i \(0.789569\pi\)
\(360\) 67.6963 + 6.13585i 0.188045 + 0.0170440i
\(361\) −45.6062 317.198i −0.126333 0.878665i
\(362\) 106.693 + 123.130i 0.294732 + 0.340138i
\(363\) −304.024 + 473.071i −0.837532 + 1.30322i
\(364\) 69.5314 + 60.2493i 0.191020 + 0.165520i
\(365\) −98.2192 + 51.2349i −0.269094 + 0.140370i
\(366\) 138.928 63.4465i 0.379586 0.173351i
\(367\) 482.864 1.31570 0.657852 0.753147i \(-0.271465\pi\)
0.657852 + 0.753147i \(0.271465\pi\)
\(368\) −38.5159 83.5495i −0.104663 0.227037i
\(369\) 174.775 0.473644
\(370\) 116.828 + 162.404i 0.315752 + 0.438929i
\(371\) −235.727 + 69.2156i −0.635382 + 0.186565i
\(372\) 162.086 + 140.449i 0.435716 + 0.377550i
\(373\) −64.4694 41.4320i −0.172840 0.111078i 0.451360 0.892342i \(-0.350939\pi\)
−0.624201 + 0.781264i \(0.714575\pi\)
\(374\) −240.895 278.008i −0.644104 0.743336i
\(375\) −170.402 191.015i −0.454406 0.509375i
\(376\) 167.713 + 49.2451i 0.446046 + 0.130971i
\(377\) 186.140 + 289.639i 0.493740 + 0.768274i
\(378\) −18.2854 + 127.178i −0.0483742 + 0.336450i
\(379\) 93.4272 + 42.6668i 0.246510 + 0.112577i 0.534839 0.844954i \(-0.320372\pi\)
−0.288329 + 0.957531i \(0.593100\pi\)
\(380\) −14.7133 + 61.9479i −0.0387193 + 0.163021i
\(381\) 1.43428 9.97562i 0.00376451 0.0261827i
\(382\) 103.015 66.2035i 0.269672 0.173308i
\(383\) −21.3361 6.26486i −0.0557079 0.0163573i 0.253760 0.967267i \(-0.418333\pi\)
−0.309468 + 0.950910i \(0.600151\pi\)
\(384\) 3.29720 + 22.9325i 0.00858645 + 0.0597200i
\(385\) 252.148 + 196.336i 0.654929 + 0.509964i
\(386\) −256.647 164.937i −0.664889 0.427298i
\(387\) −254.628 + 293.856i −0.657953 + 0.759318i
\(388\) 120.610 35.4143i 0.310850 0.0912739i
\(389\) 652.186 297.843i 1.67657 0.765664i 0.677012 0.735972i \(-0.263274\pi\)
0.999559 0.0296924i \(-0.00945278\pi\)
\(390\) 203.354 40.2084i 0.521420 0.103098i
\(391\) −253.616 161.716i −0.648635 0.413597i
\(392\) 109.386i 0.279047i
\(393\) 409.680 187.094i 1.04244 0.476067i
\(394\) −239.757 + 70.3990i −0.608520 + 0.178678i
\(395\) 39.6733 69.4858i 0.100439 0.175913i
\(396\) −103.371 + 160.848i −0.261037 + 0.406181i
\(397\) −464.244 + 402.270i −1.16938 + 1.01327i −0.169766 + 0.985484i \(0.554301\pi\)
−0.999614 + 0.0277891i \(0.991153\pi\)
\(398\) −26.0975 181.512i −0.0655715 0.456060i
\(399\) −40.2015 11.8042i −0.100756 0.0295845i
\(400\) −57.2196 + 82.0117i −0.143049 + 0.205029i
\(401\) 375.774 + 54.0281i 0.937091 + 0.134733i 0.593906 0.804534i \(-0.297585\pi\)
0.343185 + 0.939268i \(0.388494\pi\)
\(402\) 81.8418 179.209i 0.203587 0.445793i
\(403\) −681.899 311.413i −1.69206 0.772736i
\(404\) 7.47400 51.9828i 0.0185000 0.128670i
\(405\) 50.7662 + 52.7320i 0.125349 + 0.130202i
\(406\) 30.7925 104.870i 0.0758437 0.258300i
\(407\) −557.009 + 80.0858i −1.36857 + 0.196771i
\(408\) 49.6039 + 57.2460i 0.121578 + 0.140309i
\(409\) −394.331 253.421i −0.964135 0.619612i −0.0389955 0.999239i \(-0.512416\pi\)
−0.925139 + 0.379627i \(0.876052\pi\)
\(410\) −127.488 + 223.289i −0.310946 + 0.544606i
\(411\) −41.0016 139.639i −0.0997607 0.339754i
\(412\) 75.9850 + 166.384i 0.184429 + 0.403844i
\(413\) 165.614 0.401002
\(414\) −43.5117 + 150.163i −0.105101 + 0.362712i
\(415\) −36.7231 185.727i −0.0884893 0.447534i
\(416\) −33.6405 73.6624i −0.0808666 0.177073i
\(417\) 43.0343 + 146.562i 0.103200 + 0.351467i
\(418\) −135.353 117.284i −0.323811 0.280584i
\(419\) 25.2814 39.3386i 0.0603374 0.0938869i −0.809774 0.586742i \(-0.800410\pi\)
0.870111 + 0.492855i \(0.164047\pi\)
\(420\) −51.9210 40.4286i −0.123622 0.0962585i
\(421\) −99.9189 + 14.3662i −0.237337 + 0.0341239i −0.259957 0.965620i \(-0.583708\pi\)
0.0226199 + 0.999744i \(0.492799\pi\)
\(422\) −100.218 + 341.312i −0.237484 + 0.808797i
\(423\) −160.589 249.882i −0.379644 0.590737i
\(424\) 214.043 + 30.7747i 0.504818 + 0.0725819i
\(425\) −12.4150 + 326.708i −0.0292117 + 0.768724i
\(426\) 127.168 278.459i 0.298516 0.653659i
\(427\) 167.743 + 24.1179i 0.392842 + 0.0564821i
\(428\) 167.802 107.840i 0.392061 0.251962i
\(429\) −164.272 + 559.458i −0.382918 + 1.30410i
\(430\) −189.688 539.658i −0.441136 1.25502i
\(431\) 172.177 149.192i 0.399482 0.346153i −0.431834 0.901953i \(-0.642133\pi\)
0.831316 + 0.555800i \(0.187588\pi\)
\(432\) 61.1422 95.1392i 0.141533 0.220230i
\(433\) 85.5046 98.6775i 0.197470 0.227893i −0.648375 0.761321i \(-0.724551\pi\)
0.845845 + 0.533428i \(0.179097\pi\)
\(434\) 67.0453 + 228.335i 0.154482 + 0.526119i
\(435\) −143.805 199.904i −0.330586 0.459550i
\(436\) 81.1607i 0.186148i
\(437\) −133.426 60.3603i −0.305322 0.138124i
\(438\) 64.1642i 0.146494i
\(439\) −177.754 389.228i −0.404907 0.886623i −0.996749 0.0805691i \(-0.974326\pi\)
0.591842 0.806054i \(-0.298401\pi\)
\(440\) −130.093 249.393i −0.295666 0.566803i
\(441\) 121.729 140.483i 0.276029 0.318555i
\(442\) −222.730 143.140i −0.503915 0.323846i
\(443\) −335.140 + 290.400i −0.756524 + 0.655532i −0.945194 0.326509i \(-0.894128\pi\)
0.188670 + 0.982040i \(0.439582\pi\)
\(444\) 114.697 16.4909i 0.258326 0.0371416i
\(445\) −730.874 66.2448i −1.64241 0.148865i
\(446\) 325.071 208.910i 0.728858 0.468409i
\(447\) 44.8990 312.279i 0.100445 0.698611i
\(448\) −10.6792 + 23.3843i −0.0238376 + 0.0521970i
\(449\) −17.1121 + 37.4702i −0.0381115 + 0.0834525i −0.927730 0.373251i \(-0.878243\pi\)
0.889619 + 0.456704i \(0.150970\pi\)
\(450\) 164.751 41.6501i 0.366114 0.0925557i
\(451\) −391.014 608.429i −0.866992 1.34907i
\(452\) −401.231 117.812i −0.887678 0.260646i
\(453\) −62.6130 + 9.00239i −0.138219 + 0.0198728i
\(454\) −279.997 + 242.618i −0.616733 + 0.534402i
\(455\) 213.941 + 84.4575i 0.470199 + 0.185621i
\(456\) 27.8712 + 24.1505i 0.0611211 + 0.0529617i
\(457\) 455.702 133.806i 0.997159 0.292792i 0.257869 0.966180i \(-0.416980\pi\)
0.739290 + 0.673388i \(0.235161\pi\)
\(458\) −216.502 474.072i −0.472711 1.03509i
\(459\) 369.747i 0.805549i
\(460\) −160.106 165.125i −0.348056 0.358967i
\(461\) 51.5459 0.111813 0.0559066 0.998436i \(-0.482195\pi\)
0.0559066 + 0.998436i \(0.482195\pi\)
\(462\) 168.372 76.8928i 0.364441 0.166435i
\(463\) 42.9166 + 146.161i 0.0926925 + 0.315682i 0.992767 0.120053i \(-0.0383066\pi\)
−0.900075 + 0.435735i \(0.856488\pi\)
\(464\) −62.9991 + 72.7049i −0.135774 + 0.156691i
\(465\) 498.722 + 196.881i 1.07252 + 0.423400i
\(466\) 108.922 + 125.702i 0.233738 + 0.269748i
\(467\) 37.7941 + 262.864i 0.0809295 + 0.562877i 0.989432 + 0.144998i \(0.0463175\pi\)
−0.908502 + 0.417879i \(0.862773\pi\)
\(468\) −38.7703 + 132.039i −0.0828425 + 0.282136i
\(469\) 183.901 118.186i 0.392112 0.251995i
\(470\) 436.384 22.8914i 0.928478 0.0487050i
\(471\) −19.7029 8.99801i −0.0418321 0.0191041i
\(472\) −132.599 60.5559i −0.280930 0.128296i
\(473\) 1592.64 + 228.987i 3.36711 + 0.484117i
\(474\) −25.0559 38.9877i −0.0528605 0.0822525i
\(475\) 16.6541 + 158.304i 0.0350613 + 0.333273i
\(476\) 11.9614 + 83.1930i 0.0251289 + 0.174775i
\(477\) −240.644 277.718i −0.504495 0.582218i
\(478\) 176.317 274.354i 0.368864 0.573963i
\(479\) −16.1525 13.9963i −0.0337214 0.0292198i 0.637837 0.770171i \(-0.279829\pi\)
−0.671558 + 0.740952i \(0.734375\pi\)
\(480\) 26.7881 + 51.3538i 0.0558086 + 0.106987i
\(481\) −368.421 + 168.252i −0.765949 + 0.349797i
\(482\) −75.2021 −0.156021
\(483\) 114.030 99.5204i 0.236087 0.206046i
\(484\) 549.211 1.13473
\(485\) 255.105 183.514i 0.525989 0.378380i
\(486\) −304.601 + 89.4389i −0.626751 + 0.184031i
\(487\) −295.379 255.948i −0.606529 0.525560i 0.296560 0.955014i \(-0.404160\pi\)
−0.903089 + 0.429454i \(0.858706\pi\)
\(488\) −125.485 80.6445i −0.257142 0.165255i
\(489\) 304.250 + 351.123i 0.622189 + 0.718044i
\(490\) 90.6836 + 257.992i 0.185069 + 0.526515i
\(491\) 715.557 + 210.107i 1.45735 + 0.427915i 0.911963 0.410272i \(-0.134566\pi\)
0.545383 + 0.838187i \(0.316384\pi\)
\(492\) 80.5156 + 125.285i 0.163650 + 0.254644i
\(493\) −44.7619 + 311.326i −0.0907949 + 0.631492i
\(494\) −117.254 53.5483i −0.237357 0.108397i
\(495\) −110.458 + 465.063i −0.223147 + 0.939521i
\(496\) 29.8098 207.332i 0.0601004 0.418007i
\(497\) 285.749 183.640i 0.574948 0.369497i
\(498\) −105.215 30.8939i −0.211275 0.0620360i
\(499\) 55.5483 + 386.347i 0.111319 + 0.774243i 0.966639 + 0.256142i \(0.0824515\pi\)
−0.855320 + 0.518100i \(0.826639\pi\)
\(500\) −66.9653 + 240.864i −0.133931 + 0.481729i
\(501\) 111.776 + 71.8341i 0.223106 + 0.143381i
\(502\) 183.263 211.496i 0.365065 0.421307i
\(503\) 79.8119 23.4349i 0.158672 0.0465902i −0.201432 0.979503i \(-0.564559\pi\)
0.360104 + 0.932912i \(0.382741\pi\)
\(504\) 39.7379 18.1477i 0.0788451 0.0360074i
\(505\) −25.4671 128.800i −0.0504300 0.255049i
\(506\) 620.096 184.477i 1.22549 0.364579i
\(507\) 73.5825i 0.145133i
\(508\) −8.95342 + 4.08889i −0.0176248 + 0.00804900i
\(509\) 14.3333 4.20864i 0.0281597 0.00826845i −0.267622 0.963524i \(-0.586238\pi\)
0.295782 + 0.955255i \(0.404420\pi\)
\(510\) 164.451 + 93.8943i 0.322453 + 0.184107i
\(511\) −38.4915 + 59.8939i −0.0753258 + 0.117209i
\(512\) 17.1007 14.8178i 0.0333997 0.0289410i
\(513\) −25.6192 178.186i −0.0499400 0.347340i
\(514\) −298.792 87.7334i −0.581308 0.170688i
\(515\) 317.150 + 329.430i 0.615824 + 0.639670i
\(516\) −327.949 47.1519i −0.635560 0.0913797i
\(517\) −510.616 + 1118.09i −0.987652 + 2.16266i
\(518\) 116.956 + 53.4120i 0.225784 + 0.103112i
\(519\) −59.0329 + 410.583i −0.113744 + 0.791104i
\(520\) −140.410 145.847i −0.270020 0.280475i
\(521\) −15.7378 + 53.5980i −0.0302069 + 0.102875i −0.973217 0.229890i \(-0.926163\pi\)
0.943010 + 0.332765i \(0.107982\pi\)
\(522\) 161.817 23.2658i 0.309994 0.0445705i
\(523\) −78.6175 90.7294i −0.150320 0.173479i 0.675595 0.737273i \(-0.263887\pi\)
−0.825916 + 0.563794i \(0.809341\pi\)
\(524\) −370.038 237.809i −0.706179 0.453834i
\(525\) −155.974 52.3089i −0.297094 0.0996359i
\(526\) −48.8879 166.497i −0.0929427 0.316534i
\(527\) −284.488 622.941i −0.539825 1.18205i
\(528\) −162.922 −0.308565
\(529\) 442.975 289.160i 0.837383 0.546617i
\(530\) 530.342 104.863i 1.00065 0.197854i
\(531\) 102.905 + 225.331i 0.193795 + 0.424353i
\(532\) 11.5286 + 39.2629i 0.0216704 + 0.0738025i
\(533\) −393.400 340.883i −0.738087 0.639556i
\(534\) −229.806 + 357.586i −0.430349 + 0.669636i
\(535\) 306.367 393.456i 0.572648 0.735433i
\(536\) −190.454 + 27.3832i −0.355325 + 0.0510880i
\(537\) −20.2900 + 69.1013i −0.0377840 + 0.128680i
\(538\) −92.6950 144.236i −0.172296 0.268097i
\(539\) −761.388 109.471i −1.41259 0.203100i
\(540\) 65.3341 275.078i 0.120989 0.509404i
\(541\) −226.777 + 496.572i −0.419181 + 0.917878i 0.575779 + 0.817605i \(0.304699\pi\)
−0.994960 + 0.100273i \(0.968029\pi\)
\(542\) −137.877 19.8238i −0.254386 0.0365752i
\(543\) 198.467 127.547i 0.365500 0.234893i
\(544\) 20.8422 70.9822i 0.0383129 0.130482i
\(545\) 67.2840 + 191.421i 0.123457 + 0.351231i
\(546\) 100.683 87.2422i 0.184401 0.159784i
\(547\) 390.179 607.131i 0.713308 1.10993i −0.275582 0.961278i \(-0.588871\pi\)
0.988890 0.148651i \(-0.0474931\pi\)
\(548\) −93.0794 + 107.419i −0.169853 + 0.196021i
\(549\) 71.4142 + 243.215i 0.130081 + 0.443014i
\(550\) −513.582 480.355i −0.933786 0.873372i
\(551\) 153.133i 0.277918i
\(552\) −127.687 + 37.9866i −0.231317 + 0.0688164i
\(553\) 51.4238i 0.0929906i
\(554\) 267.079 + 584.822i 0.482093 + 1.05564i
\(555\) 256.845 133.980i 0.462785 0.241406i
\(556\) 97.6939 112.745i 0.175709 0.202778i
\(557\) 913.492 + 587.066i 1.64002 + 1.05398i 0.940738 + 0.339135i \(0.110134\pi\)
0.699285 + 0.714843i \(0.253502\pi\)
\(558\) −269.010 + 233.099i −0.482097 + 0.417739i
\(559\) 1146.28 164.811i 2.05060 0.294831i
\(560\) −5.80137 + 64.0061i −0.0103596 + 0.114297i
\(561\) −448.105 + 287.980i −0.798762 + 0.513333i
\(562\) −19.1761 + 133.373i −0.0341211 + 0.237318i
\(563\) −369.275 + 808.600i −0.655906 + 1.43623i 0.230382 + 0.973100i \(0.426002\pi\)
−0.886288 + 0.463134i \(0.846725\pi\)
\(564\) 105.144 230.232i 0.186425 0.408213i
\(565\) −1043.99 + 54.7643i −1.84777 + 0.0969280i
\(566\) 360.182 + 560.454i 0.636363 + 0.990201i
\(567\) 45.1373 + 13.2535i 0.0796072 + 0.0233748i
\(568\) −295.932 + 42.5486i −0.521007 + 0.0749095i
\(569\) −769.315 + 666.615i −1.35205 + 1.17156i −0.383267 + 0.923638i \(0.625201\pi\)
−0.968781 + 0.247918i \(0.920254\pi\)
\(570\) 85.7567 + 33.8542i 0.150450 + 0.0593934i
\(571\) −612.289 530.552i −1.07231 0.929163i −0.0746288 0.997211i \(-0.523777\pi\)
−0.997682 + 0.0680488i \(0.978323\pi\)
\(572\) 546.397 160.437i 0.955239 0.280484i
\(573\) −73.6596 161.292i −0.128551 0.281487i
\(574\) 165.247i 0.287887i
\(575\) −514.508 256.723i −0.894797 0.446474i
\(576\) −38.4518 −0.0667566
\(577\) 323.706 147.832i 0.561016 0.256207i −0.114662 0.993405i \(-0.536578\pi\)
0.675678 + 0.737197i \(0.263851\pi\)
\(578\) 47.0040 + 160.081i 0.0813217 + 0.276956i
\(579\) −289.290 + 333.858i −0.499637 + 0.576611i
\(580\) −88.3122 + 223.705i −0.152262 + 0.385698i
\(581\) −79.6799 91.9555i −0.137143 0.158271i
\(582\) −25.9040 180.166i −0.0445085 0.309564i
\(583\) −428.418 + 1459.06i −0.734850 + 2.50267i
\(584\) 52.7181 33.8799i 0.0902708 0.0580135i
\(585\) 18.0222 + 343.562i 0.0308072 + 0.587286i
\(586\) 119.504 + 54.5757i 0.203932 + 0.0931326i
\(587\) −709.871 324.187i −1.20932 0.552278i −0.294311 0.955710i \(-0.595090\pi\)
−0.915010 + 0.403432i \(0.867817\pi\)
\(588\) 156.781 + 22.5418i 0.266635 + 0.0383363i
\(589\) −180.261 280.491i −0.306045 0.476216i
\(590\) −362.942 32.8963i −0.615156 0.0557564i
\(591\) 51.4937 + 358.147i 0.0871298 + 0.606001i
\(592\) −74.1111 85.5287i −0.125188 0.144474i
\(593\) 280.995 437.236i 0.473853 0.737329i −0.519244 0.854626i \(-0.673786\pi\)
0.993097 + 0.117297i \(0.0374228\pi\)
\(594\) 601.031 + 520.796i 1.01184 + 0.876761i
\(595\) 97.1802 + 186.298i 0.163328 + 0.313106i
\(596\) −280.280 + 128.000i −0.470269 + 0.214765i
\(597\) −265.535 −0.444783
\(598\) 390.821 253.136i 0.653546 0.423304i
\(599\) −563.889 −0.941383 −0.470692 0.882298i \(-0.655996\pi\)
−0.470692 + 0.882298i \(0.655996\pi\)
\(600\) 105.754 + 98.9123i 0.176257 + 0.164854i
\(601\) −482.617 + 141.709i −0.803024 + 0.235789i −0.657391 0.753550i \(-0.728340\pi\)
−0.145633 + 0.989339i \(0.546522\pi\)
\(602\) −277.837 240.747i −0.461524 0.399913i
\(603\) 275.070 + 176.776i 0.456168 + 0.293162i
\(604\) 40.4573 + 46.6902i 0.0669823 + 0.0773017i
\(605\) 1295.34 455.308i 2.14105 0.752575i
\(606\) −72.9658 21.4247i −0.120406 0.0353543i
\(607\) 348.692 + 542.575i 0.574451 + 0.893863i 0.999938 0.0111011i \(-0.00353367\pi\)
−0.425487 + 0.904964i \(0.639897\pi\)
\(608\) 5.12588 35.6513i 0.00843072 0.0586370i
\(609\) −143.962 65.7453i −0.236391 0.107956i
\(610\) −362.818 86.1735i −0.594784 0.141268i
\(611\) −125.903 + 875.675i −0.206061 + 1.43318i
\(612\) −105.759 + 67.9670i −0.172808 + 0.111057i
\(613\) 125.427 + 36.8287i 0.204612 + 0.0600795i 0.382432 0.923983i \(-0.375086\pi\)
−0.177820 + 0.984063i \(0.556905\pi\)
\(614\) −4.37010 30.3947i −0.00711743 0.0495028i
\(615\) 293.763 + 228.740i 0.477664 + 0.371935i
\(616\) −152.080 97.7356i −0.246882 0.158662i
\(617\) −108.173 + 124.839i −0.175321 + 0.202332i −0.836609 0.547801i \(-0.815465\pi\)
0.661287 + 0.750133i \(0.270011\pi\)
\(618\) 254.133 74.6203i 0.411219 0.120745i
\(619\) 223.792 102.202i 0.361537 0.165109i −0.226361 0.974044i \(-0.572683\pi\)
0.587898 + 0.808935i \(0.299956\pi\)
\(620\) −101.575 513.714i −0.163830 0.828570i
\(621\) 592.473 + 268.028i 0.954063 + 0.431608i
\(622\) 397.091i 0.638410i
\(623\) −429.025 + 195.929i −0.688643 + 0.314493i
\(624\) −112.511 + 33.0363i −0.180307 + 0.0529428i
\(625\) 41.7412 + 623.605i 0.0667858 + 0.997767i
\(626\) −267.151 + 415.695i −0.426759 + 0.664050i
\(627\) −195.994 + 169.829i −0.312589 + 0.270860i
\(628\) 3.01061 + 20.9393i 0.00479397 + 0.0333428i
\(629\) −355.016 104.242i −0.564414 0.165727i
\(630\) 78.6788 75.7457i 0.124887 0.120231i
\(631\) 140.745 + 20.2361i 0.223051 + 0.0320699i 0.252934 0.967484i \(-0.418604\pi\)
−0.0298832 + 0.999553i \(0.509514\pi\)
\(632\) −18.8028 + 41.1725i −0.0297513 + 0.0651463i
\(633\) 468.544 + 213.977i 0.740196 + 0.338036i
\(634\) 102.800 714.986i 0.162144 1.12774i
\(635\) −17.7272 + 17.0664i −0.0279169 + 0.0268762i
\(636\) 88.2177 300.442i 0.138707 0.472393i
\(637\) −548.000 + 78.7904i −0.860282 + 0.123690i
\(638\) −443.017 511.269i −0.694385 0.801362i
\(639\) 427.409 + 274.679i 0.668872 + 0.429858i
\(640\) 28.0484 49.1252i 0.0438256 0.0767582i
\(641\) 60.7964 + 207.053i 0.0948461 + 0.323016i 0.993225 0.116204i \(-0.0370728\pi\)
−0.898379 + 0.439221i \(0.855255\pi\)
\(642\) −119.985 262.731i −0.186893 0.409238i
\(643\) −0.549470 −0.000854541 −0.000427271 1.00000i \(-0.500136\pi\)
−0.000427271 1.00000i \(0.500136\pi\)
\(644\) −141.977 41.1398i −0.220461 0.0638816i
\(645\) −812.571 + 160.667i −1.25980 + 0.249096i
\(646\) −48.9185 107.117i −0.0757252 0.165815i
\(647\) −7.27404 24.7731i −0.0112427 0.0382892i 0.953681 0.300821i \(-0.0972607\pi\)
−0.964923 + 0.262532i \(0.915443\pi\)
\(648\) −31.2931 27.1156i −0.0482918 0.0418451i
\(649\) 554.203 862.357i 0.853934 1.32875i
\(650\) −452.074 227.584i −0.695499 0.350129i
\(651\) 341.085 49.0407i 0.523941 0.0753313i
\(652\) 127.838 435.376i 0.196070 0.667754i
\(653\) 21.0191 + 32.7064i 0.0321885 + 0.0500863i 0.856975 0.515358i \(-0.172341\pi\)
−0.824786 + 0.565444i \(0.808705\pi\)
\(654\) 116.326 + 16.7252i 0.177869 + 0.0255737i
\(655\) −1069.90 254.113i −1.63343 0.387959i
\(656\) 60.4218 132.305i 0.0921065 0.201685i
\(657\) −105.408 15.1553i −0.160438 0.0230675i
\(658\) 236.260 151.835i 0.359058 0.230753i
\(659\) 20.6353 70.2774i 0.0313131 0.106643i −0.942354 0.334618i \(-0.891393\pi\)
0.973667 + 0.227976i \(0.0732107\pi\)
\(660\) −384.259 + 135.066i −0.582211 + 0.204646i
\(661\) 448.188 388.357i 0.678046 0.587530i −0.246250 0.969206i \(-0.579199\pi\)
0.924296 + 0.381676i \(0.124653\pi\)
\(662\) 131.671 204.884i 0.198899 0.309493i
\(663\) −251.059 + 289.738i −0.378671 + 0.437010i
\(664\) 30.1727 + 102.759i 0.0454408 + 0.154757i
\(665\) 59.7406 + 83.0458i 0.0898355 + 0.124881i
\(666\) 192.316i 0.288763i
\(667\) −466.412 297.404i −0.699269 0.445883i
\(668\) 129.766i 0.194261i
\(669\) −232.438 508.969i −0.347441 0.760790i
\(670\) −426.493 + 222.475i −0.636557 + 0.332052i
\(671\) 686.912 792.739i 1.02371 1.18143i
\(672\) 31.3155 + 20.1252i 0.0466004 + 0.0299483i
\(673\) 514.100 445.470i 0.763892 0.661917i −0.183128 0.983089i \(-0.558622\pi\)
0.947021 + 0.321172i \(0.104077\pi\)
\(674\) −509.572 + 73.2654i −0.756041 + 0.108702i
\(675\) −73.9522 702.947i −0.109559 1.04140i
\(676\) 60.4563 38.8529i 0.0894324 0.0574747i
\(677\) −20.8122 + 144.752i −0.0307418 + 0.213814i −0.999402 0.0345754i \(-0.988992\pi\)
0.968660 + 0.248389i \(0.0799012\pi\)
\(678\) −251.541 + 550.798i −0.371005 + 0.812387i
\(679\) 83.8999 183.715i 0.123564 0.270567i
\(680\) −9.68842 184.693i −0.0142477 0.271608i
\(681\) 290.040 + 451.311i 0.425903 + 0.662719i
\(682\) 1413.31 + 414.985i 2.07230 + 0.608482i
\(683\) −834.571 + 119.993i −1.22192 + 0.175685i −0.722929 0.690922i \(-0.757205\pi\)
−0.498990 + 0.866608i \(0.666296\pi\)
\(684\) −46.2571 + 40.0820i −0.0676273 + 0.0585994i
\(685\) −130.479 + 330.518i −0.190480 + 0.482508i
\(686\) 301.114 + 260.917i 0.438942 + 0.380345i
\(687\) −724.095 + 212.613i −1.05400 + 0.309481i
\(688\) 134.423 + 294.344i 0.195382 + 0.427826i
\(689\) 1094.47i 1.58849i
\(690\) −269.664 + 195.448i −0.390817 + 0.283259i
\(691\) 218.997 0.316928 0.158464 0.987365i \(-0.449346\pi\)
0.158464 + 0.987365i \(0.449346\pi\)
\(692\) 368.511 168.293i 0.532530 0.243198i
\(693\) 86.5492 + 294.759i 0.124891 + 0.425338i
\(694\) 110.235 127.218i 0.158840 0.183311i
\(695\) 136.947 346.904i 0.197047 0.499142i
\(696\) 91.2240 + 105.278i 0.131069 + 0.151262i
\(697\) −67.6759 470.697i −0.0970960 0.675318i
\(698\) −141.556 + 482.095i −0.202802 + 0.690680i
\(699\) 202.613 130.211i 0.289861 0.186283i
\(700\) 39.3796 + 155.770i 0.0562566 + 0.222529i
\(701\) 878.638 + 401.260i 1.25341 + 0.572411i 0.927794 0.373092i \(-0.121703\pi\)
0.325612 + 0.945504i \(0.394430\pi\)
\(702\) 520.665 + 237.780i 0.741688 + 0.338718i
\(703\) −178.309 25.6370i −0.253641 0.0364680i
\(704\) 86.0261 + 133.859i 0.122196 + 0.190141i
\(705\) 57.1181 630.179i 0.0810185 0.893871i
\(706\) 47.0583 + 327.298i 0.0666549 + 0.463595i
\(707\) −55.2573 63.7703i −0.0781575 0.0901985i
\(708\) −114.119 + 177.572i −0.161185 + 0.250808i
\(709\) −541.039 468.813i −0.763102 0.661231i 0.183724 0.982978i \(-0.441185\pi\)
−0.946826 + 0.321746i \(0.895730\pi\)
\(710\) −662.695 + 345.687i −0.933373 + 0.486883i
\(711\) 69.9663 31.9525i 0.0984055 0.0449403i
\(712\) 415.139 0.583061
\(713\) 1204.41 4.28799i 1.68921 0.00601402i
\(714\) 121.704 0.170454
\(715\) 1155.69 831.371i 1.61636 1.16276i
\(716\) 67.4881 19.8163i 0.0942571 0.0276764i
\(717\) −356.893 309.249i −0.497758 0.431310i
\(718\) −76.6811 49.2799i −0.106798 0.0686350i
\(719\) −764.855 882.690i −1.06378 1.22766i −0.972760 0.231813i \(-0.925534\pi\)
−0.0910157 0.995849i \(-0.529011\pi\)
\(720\) −90.6902 + 31.8774i −0.125959 + 0.0442741i
\(721\) 281.984 + 82.7981i 0.391102 + 0.114838i
\(722\) 245.018 + 381.255i 0.339360 + 0.528054i
\(723\) −15.4973 + 107.786i −0.0214347 + 0.149081i
\(724\) −209.588 95.7158i −0.289487 0.132204i
\(725\) −22.8318 + 600.831i −0.0314921 + 0.828732i
\(726\) 113.179 787.174i 0.155893 1.08426i
\(727\) −17.0437 + 10.9533i −0.0234439 + 0.0150665i −0.552310 0.833639i \(-0.686254\pi\)
0.528866 + 0.848705i \(0.322617\pi\)
\(728\) −124.842 36.6568i −0.171486 0.0503528i
\(729\) 84.1713 + 585.424i 0.115461 + 0.803051i
\(730\) 96.2508 123.612i 0.131850 0.169331i
\(731\) 889.998 + 571.967i 1.21751 + 0.782445i
\(732\) −141.446 + 163.237i −0.193232 + 0.223001i
\(733\) 1041.83 305.909i 1.42132 0.417338i 0.521373 0.853329i \(-0.325420\pi\)
0.899951 + 0.435991i \(0.143602\pi\)
\(734\) −621.163 + 283.675i −0.846271 + 0.386479i
\(735\) 388.463 76.8095i 0.528521 0.104503i
\(736\) 98.6315 + 84.8518i 0.134010 + 0.115288i
\(737\) 1353.07i 1.83591i
\(738\) −224.833 + 102.678i −0.304651 + 0.139130i
\(739\) 335.412 98.4859i 0.453873 0.133269i −0.0468025 0.998904i \(-0.514903\pi\)
0.500676 + 0.865635i \(0.333085\pi\)
\(740\) −245.699 140.283i −0.332026 0.189572i
\(741\) −100.913 + 157.024i −0.136185 + 0.211908i
\(742\) 262.579 227.526i 0.353880 0.306639i
\(743\) 33.7897 + 235.012i 0.0454773 + 0.316302i 0.999844 + 0.0176643i \(0.00562303\pi\)
−0.954367 + 0.298637i \(0.903468\pi\)
\(744\) −291.022 85.4516i −0.391158 0.114854i
\(745\) −554.938 + 534.251i −0.744884 + 0.717116i
\(746\) 107.275 + 15.4238i 0.143800 + 0.0206754i
\(747\) 75.6033 165.548i 0.101209 0.221617i
\(748\) 473.216 + 216.111i 0.632642 + 0.288918i
\(749\) 45.6098 317.223i 0.0608943 0.423529i
\(750\) 331.426 + 145.616i 0.441902 + 0.194155i
\(751\) −168.979 + 575.489i −0.225005 + 0.766296i 0.767170 + 0.641443i \(0.221664\pi\)
−0.992175 + 0.124853i \(0.960154\pi\)
\(752\) −244.680 + 35.1796i −0.325372 + 0.0467814i
\(753\) −265.368 306.251i −0.352414 0.406707i
\(754\) −409.612 263.242i −0.543252 0.349127i
\(755\) 134.128 + 76.5809i 0.177652 + 0.101432i
\(756\) −51.1926 174.346i −0.0677151 0.230616i
\(757\) −1.07299 2.34952i −0.00141742 0.00310372i 0.908922 0.416966i \(-0.136907\pi\)
−0.910339 + 0.413863i \(0.864179\pi\)
\(758\) −145.252 −0.191625
\(759\) −136.622 926.788i −0.180002 1.22106i
\(760\) −17.4661 88.3345i −0.0229817 0.116230i
\(761\) −261.039 571.596i −0.343021 0.751112i 0.656975 0.753912i \(-0.271836\pi\)
−0.999996 + 0.00280086i \(0.999108\pi\)
\(762\) 4.01546 + 13.6754i 0.00526963 + 0.0179467i
\(763\) 98.5511 + 85.3950i 0.129163 + 0.111920i
\(764\) −93.6259 + 145.685i −0.122547 + 0.190687i
\(765\) −193.090 + 247.979i −0.252406 + 0.324156i
\(766\) 31.1276 4.47548i 0.0406366 0.00584266i
\(767\) 207.860 707.907i 0.271004 0.922955i
\(768\) −17.7141 27.5636i −0.0230652 0.0358901i
\(769\) 679.046 + 97.6320i 0.883024 + 0.126960i 0.568885 0.822417i \(-0.307375\pi\)
0.314139 + 0.949377i \(0.398284\pi\)
\(770\) −439.711 104.436i −0.571053 0.135632i
\(771\) −187.320 + 410.174i −0.242957 + 0.532003i
\(772\) 427.052 + 61.4009i 0.553177 + 0.0795348i
\(773\) 1026.85 659.916i 1.32840 0.853708i 0.332402 0.943138i \(-0.392141\pi\)
0.995993 +