Properties

Label 230.3.i.a.19.4
Level $230$
Weight $3$
Character 230.19
Analytic conductor $6.267$
Analytic rank $0$
Dimension $240$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 230 = 2 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 230.i (of order \(22\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.26704608029\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(24\) over \(\Q(\zeta_{22})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 19.4
Character \(\chi\) \(=\) 230.19
Dual form 230.3.i.a.109.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.28641 + 0.587486i) q^{2} +(-0.810314 - 2.75968i) q^{3} +(1.30972 - 1.51150i) q^{4} +(4.95827 - 0.644601i) q^{5} +(2.66367 + 3.07404i) q^{6} +(-0.976678 - 6.79294i) q^{7} +(-0.796860 + 2.71386i) q^{8} +(0.612076 - 0.393358i) q^{9} +O(q^{10})\) \(q+(-1.28641 + 0.587486i) q^{2} +(-0.810314 - 2.75968i) q^{3} +(1.30972 - 1.51150i) q^{4} +(4.95827 - 0.644601i) q^{5} +(2.66367 + 3.07404i) q^{6} +(-0.976678 - 6.79294i) q^{7} +(-0.796860 + 2.71386i) q^{8} +(0.612076 - 0.393358i) q^{9} +(-5.99970 + 3.74214i) q^{10} +(15.1121 + 6.90144i) q^{11} +(-5.23253 - 2.38962i) q^{12} +(-16.4246 - 2.36151i) q^{13} +(5.24717 + 8.16475i) q^{14} +(-5.79665 - 13.1609i) q^{15} +(-0.569259 - 3.95929i) q^{16} +(5.15630 + 5.95069i) q^{17} +(-0.556292 + 0.865607i) q^{18} +(-8.26853 - 7.16472i) q^{19} +(5.51964 - 8.33868i) q^{20} +(-17.9549 + 8.19973i) q^{21} -23.4949 q^{22} +(9.37166 - 21.0041i) q^{23} +8.13507 q^{24} +(24.1690 - 6.39222i) q^{25} +(22.5162 - 6.61136i) q^{26} +(-21.1446 - 18.3219i) q^{27} +(-11.5467 - 7.42062i) q^{28} +(-29.7713 - 34.3579i) q^{29} +(15.1887 + 13.5249i) q^{30} +(23.0191 + 6.75902i) q^{31} +(3.05833 + 4.75885i) q^{32} +(6.80024 - 47.2967i) q^{33} +(-10.1291 - 4.62580i) q^{34} +(-9.22138 - 33.0517i) q^{35} +(0.207090 - 1.44034i) q^{36} +(-22.6337 + 14.5458i) q^{37} +(14.8459 + 4.35915i) q^{38} +(6.79212 + 47.2402i) q^{39} +(-2.20170 + 13.9697i) q^{40} +(-58.9339 - 37.8745i) q^{41} +(18.2802 - 21.0965i) q^{42} +(73.8331 - 21.6794i) q^{43} +(30.2241 - 13.8029i) q^{44} +(2.78128 - 2.34492i) q^{45} +(0.283775 + 32.5257i) q^{46} +13.1589i q^{47} +(-10.4651 + 4.77924i) q^{48} +(1.82497 - 0.535860i) q^{49} +(-27.3360 + 22.4220i) q^{50} +(12.2438 - 19.0517i) q^{51} +(-25.0811 + 21.7329i) q^{52} +(10.5429 + 73.3276i) q^{53} +(37.9645 + 11.1474i) q^{54} +(79.3784 + 24.4780i) q^{55} +(19.2133 + 2.76246i) q^{56} +(-13.0722 + 28.6241i) q^{57} +(58.4830 + 26.7083i) q^{58} +(7.25963 - 50.4918i) q^{59} +(-27.4847 - 8.47549i) q^{60} +(-32.2208 + 109.734i) q^{61} +(-33.5829 + 4.82850i) q^{62} +(-3.26986 - 3.77362i) q^{63} +(-6.73003 - 4.32513i) q^{64} +(-82.9601 - 1.12165i) q^{65} +(19.0382 + 64.8382i) q^{66} +(12.4827 + 27.3333i) q^{67} +15.7478 q^{68} +(-65.5585 - 8.84282i) q^{69} +(31.2799 + 37.1008i) q^{70} +(25.3017 + 55.4031i) q^{71} +(0.579777 + 1.97454i) q^{72} +(-42.4065 - 36.7454i) q^{73} +(20.5708 - 32.0088i) q^{74} +(-37.2249 - 61.5189i) q^{75} +(-21.6589 + 3.11408i) q^{76} +(32.1215 - 109.396i) q^{77} +(-36.4904 - 56.7802i) q^{78} +(-85.9651 - 12.3599i) q^{79} +(-5.37471 - 19.2643i) q^{80} +(-30.7085 + 67.2422i) q^{81} +(98.0641 + 14.0995i) q^{82} +(6.98972 - 4.49202i) q^{83} +(-11.1220 + 37.8782i) q^{84} +(29.4022 + 26.1814i) q^{85} +(-82.2436 + 71.2645i) q^{86} +(-70.6926 + 110.000i) q^{87} +(-30.7717 + 35.5125i) q^{88} +(25.6344 + 87.3029i) q^{89} +(-2.20028 + 4.65050i) q^{90} +113.878i q^{91} +(-19.4734 - 41.6748i) q^{92} -69.0023i q^{93} +(-7.73065 - 16.9278i) q^{94} +(-45.6160 - 30.1947i) q^{95} +(10.6547 - 12.2962i) q^{96} +(115.919 + 74.4964i) q^{97} +(-2.03286 + 1.76148i) q^{98} +(11.9645 - 1.72023i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240q + 48q^{4} - 8q^{6} + 96q^{9} + O(q^{10}) \) \( 240q + 48q^{4} - 8q^{6} + 96q^{9} + 154q^{15} - 96q^{16} + 44q^{20} + 16q^{24} - 84q^{25} + 32q^{26} - 100q^{29} - 352q^{30} + 124q^{31} + 28q^{35} - 192q^{36} + 72q^{39} + 116q^{41} - 148q^{46} - 188q^{49} + 144q^{50} + 324q^{54} + 796q^{55} - 264q^{56} + 400q^{59} + 176q^{60} - 616q^{61} + 192q^{64} + 462q^{65} - 176q^{66} + 120q^{69} - 504q^{70} + 464q^{71} - 528q^{74} - 934q^{75} - 968q^{79} - 264q^{80} + 664q^{81} - 352q^{84} - 1196q^{85} + 396q^{86} + 376q^{94} + 126q^{95} - 32q^{96} - 3300q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/230\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(-1\) \(e\left(\frac{15}{22}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.28641 + 0.587486i −0.643207 + 0.293743i
\(3\) −0.810314 2.75968i −0.270105 0.919892i −0.977119 0.212693i \(-0.931777\pi\)
0.707014 0.707199i \(-0.250042\pi\)
\(4\) 1.30972 1.51150i 0.327430 0.377875i
\(5\) 4.95827 0.644601i 0.991655 0.128920i
\(6\) 2.66367 + 3.07404i 0.443945 + 0.512340i
\(7\) −0.976678 6.79294i −0.139525 0.970421i −0.932501 0.361167i \(-0.882378\pi\)
0.792976 0.609253i \(-0.208531\pi\)
\(8\) −0.796860 + 2.71386i −0.0996075 + 0.339232i
\(9\) 0.612076 0.393358i 0.0680085 0.0437064i
\(10\) −5.99970 + 3.74214i −0.599970 + 0.374214i
\(11\) 15.1121 + 6.90144i 1.37382 + 0.627404i 0.959236 0.282606i \(-0.0911987\pi\)
0.414587 + 0.910010i \(0.363926\pi\)
\(12\) −5.23253 2.38962i −0.436045 0.199135i
\(13\) −16.4246 2.36151i −1.26343 0.181654i −0.522154 0.852851i \(-0.674871\pi\)
−0.741279 + 0.671197i \(0.765780\pi\)
\(14\) 5.24717 + 8.16475i 0.374798 + 0.583197i
\(15\) −5.79665 13.1609i −0.386443 0.877394i
\(16\) −0.569259 3.95929i −0.0355787 0.247455i
\(17\) 5.15630 + 5.95069i 0.303312 + 0.350041i 0.886860 0.462038i \(-0.152882\pi\)
−0.583548 + 0.812078i \(0.698336\pi\)
\(18\) −0.556292 + 0.865607i −0.0309051 + 0.0480893i
\(19\) −8.26853 7.16472i −0.435186 0.377091i 0.409538 0.912293i \(-0.365690\pi\)
−0.844724 + 0.535202i \(0.820235\pi\)
\(20\) 5.51964 8.33868i 0.275982 0.416934i
\(21\) −17.9549 + 8.19973i −0.854996 + 0.390463i
\(22\) −23.4949 −1.06795
\(23\) 9.37166 21.0041i 0.407463 0.913222i
\(24\) 8.13507 0.338961
\(25\) 24.1690 6.39222i 0.966759 0.255689i
\(26\) 22.5162 6.61136i 0.866008 0.254283i
\(27\) −21.1446 18.3219i −0.783132 0.678588i
\(28\) −11.5467 7.42062i −0.412382 0.265022i
\(29\) −29.7713 34.3579i −1.02660 1.18476i −0.982602 0.185723i \(-0.940537\pi\)
−0.0439942 0.999032i \(-0.514008\pi\)
\(30\) 15.1887 + 13.5249i 0.506291 + 0.450831i
\(31\) 23.0191 + 6.75902i 0.742552 + 0.218033i 0.631062 0.775733i \(-0.282619\pi\)
0.111490 + 0.993766i \(0.464438\pi\)
\(32\) 3.05833 + 4.75885i 0.0955727 + 0.148714i
\(33\) 6.80024 47.2967i 0.206068 1.43323i
\(34\) −10.1291 4.62580i −0.297914 0.136053i
\(35\) −9.22138 33.0517i −0.263468 0.944335i
\(36\) 0.207090 1.44034i 0.00575250 0.0400095i
\(37\) −22.6337 + 14.5458i −0.611721 + 0.393129i −0.809502 0.587117i \(-0.800263\pi\)
0.197781 + 0.980246i \(0.436626\pi\)
\(38\) 14.8459 + 4.35915i 0.390682 + 0.114715i
\(39\) 6.79212 + 47.2402i 0.174157 + 1.21129i
\(40\) −2.20170 + 13.9697i −0.0550424 + 0.349243i
\(41\) −58.9339 37.8745i −1.43741 0.923769i −0.999696 0.0246551i \(-0.992151\pi\)
−0.437716 0.899113i \(-0.644212\pi\)
\(42\) 18.2802 21.0965i 0.435243 0.502298i
\(43\) 73.8331 21.6794i 1.71705 0.504171i 0.732723 0.680527i \(-0.238249\pi\)
0.984326 + 0.176356i \(0.0564310\pi\)
\(44\) 30.2241 13.8029i 0.686912 0.313702i
\(45\) 2.78128 2.34492i 0.0618063 0.0521093i
\(46\) 0.283775 + 32.5257i 0.00616902 + 0.707080i
\(47\) 13.1589i 0.279976i 0.990153 + 0.139988i \(0.0447064\pi\)
−0.990153 + 0.139988i \(0.955294\pi\)
\(48\) −10.4651 + 4.77924i −0.218022 + 0.0995674i
\(49\) 1.82497 0.535860i 0.0372443 0.0109359i
\(50\) −27.3360 + 22.4220i −0.546719 + 0.448439i
\(51\) 12.2438 19.0517i 0.240074 0.373562i
\(52\) −25.0811 + 21.7329i −0.482329 + 0.417940i
\(53\) 10.5429 + 73.3276i 0.198923 + 1.38354i 0.807417 + 0.589981i \(0.200865\pi\)
−0.608494 + 0.793558i \(0.708226\pi\)
\(54\) 37.9645 + 11.1474i 0.703047 + 0.206433i
\(55\) 79.3784 + 24.4780i 1.44324 + 0.445055i
\(56\) 19.2133 + 2.76246i 0.343095 + 0.0493297i
\(57\) −13.0722 + 28.6241i −0.229337 + 0.502178i
\(58\) 58.4830 + 26.7083i 1.00833 + 0.460488i
\(59\) 7.25963 50.4918i 0.123044 0.855793i −0.831031 0.556226i \(-0.812249\pi\)
0.954075 0.299567i \(-0.0968422\pi\)
\(60\) −27.4847 8.47549i −0.458078 0.141258i
\(61\) −32.2208 + 109.734i −0.528211 + 1.79892i 0.0699581 + 0.997550i \(0.477713\pi\)
−0.598169 + 0.801370i \(0.704105\pi\)
\(62\) −33.5829 + 4.82850i −0.541660 + 0.0778790i
\(63\) −3.26986 3.77362i −0.0519025 0.0598987i
\(64\) −6.73003 4.32513i −0.105157 0.0675801i
\(65\) −82.9601 1.12165i −1.27631 0.0172562i
\(66\) 19.0382 + 64.8382i 0.288458 + 0.982397i
\(67\) 12.4827 + 27.3333i 0.186309 + 0.407960i 0.979621 0.200856i \(-0.0643722\pi\)
−0.793312 + 0.608816i \(0.791645\pi\)
\(68\) 15.7478 0.231585
\(69\) −65.5585 8.84282i −0.950123 0.128157i
\(70\) 31.2799 + 37.1008i 0.446856 + 0.530011i
\(71\) 25.3017 + 55.4031i 0.356363 + 0.780325i 0.999889 + 0.0149012i \(0.00474338\pi\)
−0.643526 + 0.765424i \(0.722529\pi\)
\(72\) 0.579777 + 1.97454i 0.00805245 + 0.0274241i
\(73\) −42.4065 36.7454i −0.580910 0.503362i 0.314110 0.949387i \(-0.398294\pi\)
−0.895021 + 0.446025i \(0.852839\pi\)
\(74\) 20.5708 32.0088i 0.277984 0.432552i
\(75\) −37.2249 61.5189i −0.496332 0.820251i
\(76\) −21.6589 + 3.11408i −0.284986 + 0.0409748i
\(77\) 32.1215 109.396i 0.417163 1.42073i
\(78\) −36.4904 56.7802i −0.467826 0.727951i
\(79\) −85.9651 12.3599i −1.08817 0.156455i −0.425196 0.905101i \(-0.639795\pi\)
−0.662969 + 0.748647i \(0.730704\pi\)
\(80\) −5.37471 19.2643i −0.0671838 0.240804i
\(81\) −30.7085 + 67.2422i −0.379117 + 0.830151i
\(82\) 98.0641 + 14.0995i 1.19590 + 0.171945i
\(83\) 6.98972 4.49202i 0.0842135 0.0541207i −0.497856 0.867259i \(-0.665879\pi\)
0.582070 + 0.813139i \(0.302243\pi\)
\(84\) −11.1220 + 37.8782i −0.132405 + 0.450931i
\(85\) 29.4022 + 26.1814i 0.345908 + 0.308017i
\(86\) −82.2436 + 71.2645i −0.956321 + 0.828657i
\(87\) −70.6926 + 110.000i −0.812559 + 1.26437i
\(88\) −30.7717 + 35.5125i −0.349679 + 0.403551i
\(89\) 25.6344 + 87.3029i 0.288027 + 0.980931i 0.968677 + 0.248323i \(0.0798793\pi\)
−0.680650 + 0.732609i \(0.738303\pi\)
\(90\) −2.20028 + 4.65050i −0.0244475 + 0.0516723i
\(91\) 113.878i 1.25141i
\(92\) −19.4734 41.6748i −0.211668 0.452987i
\(93\) 69.0023i 0.741960i
\(94\) −7.73065 16.9278i −0.0822410 0.180083i
\(95\) −45.6160 30.1947i −0.480169 0.317839i
\(96\) 10.6547 12.2962i 0.110986 0.128085i
\(97\) 115.919 + 74.4964i 1.19504 + 0.768004i 0.978091 0.208180i \(-0.0667538\pi\)
0.216947 + 0.976183i \(0.430390\pi\)
\(98\) −2.03286 + 1.76148i −0.0207435 + 0.0179743i
\(99\) 11.9645 1.72023i 0.120853 0.0173761i
\(100\) 21.9928 44.9034i 0.219928 0.449034i
\(101\) 120.978 77.7481i 1.19781 0.769783i 0.219231 0.975673i \(-0.429645\pi\)
0.978575 + 0.205889i \(0.0660087\pi\)
\(102\) −4.55797 + 31.7014i −0.0446859 + 0.310798i
\(103\) 7.68593 16.8298i 0.0746207 0.163397i −0.868645 0.495434i \(-0.835009\pi\)
0.943266 + 0.332038i \(0.107736\pi\)
\(104\) 19.4969 42.6923i 0.187470 0.410503i
\(105\) −83.7398 + 52.2303i −0.797522 + 0.497431i
\(106\) −56.6414 88.1358i −0.534353 0.831470i
\(107\) 137.191 + 40.2829i 1.28216 + 0.376476i 0.850697 0.525656i \(-0.176180\pi\)
0.431461 + 0.902132i \(0.357998\pi\)
\(108\) −55.3870 + 7.96345i −0.512843 + 0.0737356i
\(109\) 34.8051 30.1588i 0.319312 0.276686i −0.480425 0.877036i \(-0.659518\pi\)
0.799737 + 0.600350i \(0.204972\pi\)
\(110\) −116.494 + 15.1448i −1.05904 + 0.137680i
\(111\) 58.4820 + 50.6749i 0.526865 + 0.456531i
\(112\) −26.3392 + 7.73389i −0.235172 + 0.0690526i
\(113\) −16.9586 37.1342i −0.150076 0.328621i 0.819631 0.572892i \(-0.194179\pi\)
−0.969707 + 0.244271i \(0.921451\pi\)
\(114\) 44.5022i 0.390370i
\(115\) 32.9280 110.185i 0.286330 0.958131i
\(116\) −90.9240 −0.783828
\(117\) −10.9820 + 5.01533i −0.0938636 + 0.0428661i
\(118\) 20.3243 + 69.2183i 0.172240 + 0.586596i
\(119\) 35.3867 40.8384i 0.297367 0.343180i
\(120\) 40.3359 5.24388i 0.336133 0.0436990i
\(121\) 101.506 + 117.144i 0.838894 + 0.968135i
\(122\) −23.0179 160.093i −0.188671 1.31224i
\(123\) −56.7664 + 193.329i −0.461516 + 1.57178i
\(124\) 40.3649 25.9409i 0.325523 0.209201i
\(125\) 115.716 47.2737i 0.925728 0.378190i
\(126\) 6.42334 + 2.93344i 0.0509789 + 0.0232813i
\(127\) 137.090 + 62.6069i 1.07945 + 0.492968i 0.874112 0.485724i \(-0.161444\pi\)
0.205337 + 0.978691i \(0.434171\pi\)
\(128\) 11.1986 + 1.61011i 0.0874887 + 0.0125790i
\(129\) −119.656 186.188i −0.927566 1.44332i
\(130\) 107.380 47.2949i 0.825999 0.363807i
\(131\) 4.58232 + 31.8707i 0.0349796 + 0.243288i 0.999808 0.0195920i \(-0.00623672\pi\)
−0.964829 + 0.262880i \(0.915328\pi\)
\(132\) −62.5825 72.2241i −0.474110 0.547152i
\(133\) −40.5938 + 63.1653i −0.305217 + 0.474927i
\(134\) −32.1159 27.8286i −0.239671 0.207676i
\(135\) −116.651 77.2151i −0.864081 0.571964i
\(136\) −20.2582 + 9.25160i −0.148957 + 0.0680265i
\(137\) 118.780 0.867010 0.433505 0.901151i \(-0.357277\pi\)
0.433505 + 0.901151i \(0.357277\pi\)
\(138\) 89.5304 27.1391i 0.648771 0.196660i
\(139\) 68.0035 0.489234 0.244617 0.969620i \(-0.421338\pi\)
0.244617 + 0.969620i \(0.421338\pi\)
\(140\) −62.0351 29.3504i −0.443108 0.209646i
\(141\) 36.3143 10.6628i 0.257548 0.0756229i
\(142\) −65.0970 56.4069i −0.458430 0.397232i
\(143\) −231.912 149.041i −1.62176 1.04224i
\(144\) −1.90585 2.19946i −0.0132350 0.0152740i
\(145\) −169.761 151.165i −1.17077 1.04252i
\(146\) 76.1396 + 22.3566i 0.521504 + 0.153128i
\(147\) −2.95760 4.60212i −0.0201197 0.0313069i
\(148\) −7.65787 + 53.2617i −0.0517424 + 0.359876i
\(149\) 37.5292 + 17.1390i 0.251874 + 0.115027i 0.537351 0.843359i \(-0.319425\pi\)
−0.285478 + 0.958385i \(0.592152\pi\)
\(150\) 84.0281 + 57.2696i 0.560187 + 0.381797i
\(151\) 12.2211 84.9995i 0.0809343 0.562911i −0.908495 0.417895i \(-0.862768\pi\)
0.989429 0.145015i \(-0.0463231\pi\)
\(152\) 26.0329 16.7303i 0.171269 0.110068i
\(153\) 5.49680 + 1.61401i 0.0359268 + 0.0105491i
\(154\) 22.9469 + 159.599i 0.149006 + 1.03636i
\(155\) 118.492 + 18.6749i 0.764464 + 0.120483i
\(156\) 80.2993 + 51.6053i 0.514739 + 0.330803i
\(157\) −20.9203 + 24.1433i −0.133250 + 0.153779i −0.818453 0.574573i \(-0.805168\pi\)
0.685203 + 0.728352i \(0.259714\pi\)
\(158\) 117.848 34.6033i 0.745873 0.219008i
\(159\) 193.817 88.5134i 1.21898 0.556688i
\(160\) 18.2316 + 21.6243i 0.113947 + 0.135152i
\(161\) −151.833 43.1469i −0.943060 0.267993i
\(162\) 104.542i 0.645322i
\(163\) −37.7878 + 17.2571i −0.231827 + 0.105872i −0.527942 0.849280i \(-0.677036\pi\)
0.296115 + 0.955152i \(0.404309\pi\)
\(164\) −134.434 + 39.4735i −0.819721 + 0.240692i
\(165\) 3.22994 238.894i 0.0195754 1.44784i
\(166\) −6.35267 + 9.88495i −0.0382691 + 0.0595479i
\(167\) −21.2300 + 18.3959i −0.127126 + 0.110155i −0.716103 0.697994i \(-0.754076\pi\)
0.588978 + 0.808149i \(0.299531\pi\)
\(168\) −7.94534 55.2611i −0.0472937 0.328935i
\(169\) 102.037 + 29.9609i 0.603772 + 0.177283i
\(170\) −53.2046 16.4068i −0.312968 0.0965103i
\(171\) −7.87927 1.13287i −0.0460776 0.00662496i
\(172\) 63.9325 139.993i 0.371700 0.813911i
\(173\) −173.001 79.0069i −1.00001 0.456687i −0.152974 0.988230i \(-0.548885\pi\)
−0.847031 + 0.531543i \(0.821612\pi\)
\(174\) 26.3166 183.036i 0.151245 1.05193i
\(175\) −67.0273 157.935i −0.383013 0.902488i
\(176\) 18.7221 63.7617i 0.106376 0.362282i
\(177\) −145.224 + 20.8800i −0.820472 + 0.117966i
\(178\) −84.2657 97.2478i −0.473403 0.546336i
\(179\) −22.8023 14.6541i −0.127387 0.0818666i 0.475396 0.879772i \(-0.342305\pi\)
−0.602782 + 0.797906i \(0.705941\pi\)
\(180\) 0.0983622 7.27510i 0.000546457 0.0404172i
\(181\) 71.2894 + 242.789i 0.393864 + 1.34138i 0.883083 + 0.469217i \(0.155464\pi\)
−0.489219 + 0.872161i \(0.662718\pi\)
\(182\) −66.9017 146.494i −0.367592 0.804913i
\(183\) 328.940 1.79748
\(184\) 49.5342 + 42.1706i 0.269208 + 0.229188i
\(185\) −102.848 + 86.7116i −0.555933 + 0.468711i
\(186\) 40.5378 + 88.7655i 0.217945 + 0.477234i
\(187\) 36.8540 + 125.513i 0.197080 + 0.671193i
\(188\) 19.8896 + 17.2345i 0.105796 + 0.0916727i
\(189\) −103.808 + 161.528i −0.549249 + 0.854648i
\(190\) 76.4201 + 12.0442i 0.402211 + 0.0633905i
\(191\) 230.757 33.1778i 1.20815 0.173706i 0.491336 0.870970i \(-0.336509\pi\)
0.716814 + 0.697264i \(0.245600\pi\)
\(192\) −6.48251 + 22.0774i −0.0337631 + 0.114987i
\(193\) 91.4883 + 142.359i 0.474033 + 0.737609i 0.993119 0.117113i \(-0.0373639\pi\)
−0.519086 + 0.854722i \(0.673728\pi\)
\(194\) −192.885 27.7327i −0.994252 0.142952i
\(195\) 64.1283 + 229.852i 0.328863 + 1.17873i
\(196\) 1.58025 3.46027i 0.00806251 0.0176544i
\(197\) −328.042 47.1654i −1.66519 0.239418i −0.755632 0.654997i \(-0.772670\pi\)
−0.909557 + 0.415579i \(0.863579\pi\)
\(198\) −14.3806 + 9.24188i −0.0726295 + 0.0466762i
\(199\) −29.0191 + 98.8300i −0.145825 + 0.496633i −0.999716 0.0238177i \(-0.992418\pi\)
0.853892 + 0.520451i \(0.174236\pi\)
\(200\) −1.91172 + 70.6848i −0.00955862 + 0.353424i
\(201\) 65.3162 56.5968i 0.324956 0.281576i
\(202\) −109.952 + 171.089i −0.544319 + 0.846977i
\(203\) −204.314 + 235.791i −1.00647 + 1.16153i
\(204\) −12.7607 43.4588i −0.0625522 0.213033i
\(205\) −316.624 149.803i −1.54451 0.730748i
\(206\) 26.1655i 0.127017i
\(207\) −2.52595 16.5425i −0.0122027 0.0799156i
\(208\) 66.3741i 0.319106i
\(209\) −75.5075 165.338i −0.361280 0.791093i
\(210\) 77.0395 116.386i 0.366855 0.554218i
\(211\) −120.851 + 139.470i −0.572755 + 0.660994i −0.966031 0.258426i \(-0.916796\pi\)
0.393276 + 0.919420i \(0.371342\pi\)
\(212\) 124.643 + 80.1031i 0.587938 + 0.377845i
\(213\) 132.392 114.719i 0.621560 0.538585i
\(214\) −200.150 + 28.7772i −0.935280 + 0.134473i
\(215\) 352.110 155.085i 1.63772 0.721326i
\(216\) 66.5722 42.7834i 0.308205 0.198071i
\(217\) 23.4314 162.969i 0.107979 0.751009i
\(218\) −27.0559 + 59.2441i −0.124110 + 0.271762i
\(219\) −67.0429 + 146.803i −0.306132 + 0.670335i
\(220\) 140.962 87.9210i 0.640737 0.399641i
\(221\) −70.6378 109.915i −0.319628 0.497351i
\(222\) −105.003 30.8316i −0.472986 0.138881i
\(223\) −151.496 + 21.7818i −0.679353 + 0.0976762i −0.473349 0.880875i \(-0.656955\pi\)
−0.206004 + 0.978551i \(0.566046\pi\)
\(224\) 29.3396 25.4229i 0.130980 0.113495i
\(225\) 12.2788 13.4196i 0.0545726 0.0596426i
\(226\) 43.6316 + 37.8070i 0.193060 + 0.167288i
\(227\) 131.011 38.4684i 0.577142 0.169464i 0.0198823 0.999802i \(-0.493671\pi\)
0.557260 + 0.830338i \(0.311853\pi\)
\(228\) 26.1444 + 57.2483i 0.114668 + 0.251089i
\(229\) 252.367i 1.10204i 0.834493 + 0.551019i \(0.185761\pi\)
−0.834493 + 0.551019i \(0.814239\pi\)
\(230\) 22.3731 + 161.088i 0.0972745 + 0.700384i
\(231\) −327.926 −1.41959
\(232\) 116.966 53.4166i 0.504164 0.230244i
\(233\) 16.1146 + 54.8814i 0.0691616 + 0.235543i 0.986819 0.161831i \(-0.0517399\pi\)
−0.917657 + 0.397374i \(0.869922\pi\)
\(234\) 11.1810 12.9036i 0.0477821 0.0551435i
\(235\) 8.48223 + 65.2454i 0.0360946 + 0.277640i
\(236\) −66.8102 77.1031i −0.283094 0.326708i
\(237\) 35.5494 + 247.251i 0.149997 + 1.04325i
\(238\) −21.5299 + 73.3242i −0.0904619 + 0.308085i
\(239\) 380.129 244.294i 1.59050 1.02215i 0.618911 0.785461i \(-0.287574\pi\)
0.971586 0.236688i \(-0.0760621\pi\)
\(240\) −48.8080 + 30.4426i −0.203367 + 0.126844i
\(241\) −119.045 54.3662i −0.493964 0.225586i 0.152827 0.988253i \(-0.451162\pi\)
−0.646791 + 0.762667i \(0.723890\pi\)
\(242\) −199.400 91.0627i −0.823965 0.376292i
\(243\) −38.7912 5.57734i −0.159635 0.0229520i
\(244\) 123.663 + 192.423i 0.506814 + 0.788619i
\(245\) 8.70329 3.83332i 0.0355237 0.0156462i
\(246\) −40.5527 282.050i −0.164848 1.14655i
\(247\) 118.888 + 137.204i 0.481328 + 0.555482i
\(248\) −36.6860 + 57.0846i −0.147928 + 0.230180i
\(249\) −18.0604 15.6494i −0.0725317 0.0628491i
\(250\) −121.086 + 128.795i −0.484344 + 0.515180i
\(251\) −215.634 + 98.4770i −0.859101 + 0.392338i −0.795730 0.605652i \(-0.792913\pi\)
−0.0633714 + 0.997990i \(0.520185\pi\)
\(252\) −9.98642 −0.0396287
\(253\) 286.584 252.737i 1.13274 0.998961i
\(254\) −213.135 −0.839115
\(255\) 48.4272 102.356i 0.189911 0.401395i
\(256\) −15.3519 + 4.50772i −0.0599683 + 0.0176083i
\(257\) 45.8450 + 39.7249i 0.178385 + 0.154572i 0.739477 0.673182i \(-0.235073\pi\)
−0.561092 + 0.827754i \(0.689618\pi\)
\(258\) 263.310 + 169.219i 1.02058 + 0.655888i
\(259\) 120.914 + 139.543i 0.466851 + 0.538775i
\(260\) −110.350 + 123.925i −0.424423 + 0.476635i
\(261\) −31.7372 9.31890i −0.121599 0.0357046i
\(262\) −24.6184 38.3069i −0.0939632 0.146210i
\(263\) −54.5595 + 379.470i −0.207451 + 1.44285i 0.573985 + 0.818866i \(0.305397\pi\)
−0.781436 + 0.623986i \(0.785512\pi\)
\(264\) 122.938 + 56.1437i 0.465673 + 0.212666i
\(265\) 99.5417 + 356.782i 0.375629 + 1.34635i
\(266\) 15.1118 105.105i 0.0568113 0.395131i
\(267\) 220.156 141.486i 0.824554 0.529908i
\(268\) 57.6632 + 16.9314i 0.215161 + 0.0631770i
\(269\) 23.5686 + 163.923i 0.0876157 + 0.609380i 0.985567 + 0.169286i \(0.0541461\pi\)
−0.897951 + 0.440095i \(0.854945\pi\)
\(270\) 195.424 + 30.7998i 0.723793 + 0.114073i
\(271\) −125.702 80.7841i −0.463847 0.298096i 0.287766 0.957701i \(-0.407087\pi\)
−0.751613 + 0.659605i \(0.770724\pi\)
\(272\) 20.6252 23.8028i 0.0758280 0.0875102i
\(273\) 314.266 92.2770i 1.15116 0.338011i
\(274\) −152.801 + 69.7818i −0.557667 + 0.254678i
\(275\) 409.359 + 70.2013i 1.48858 + 0.255277i
\(276\) −99.2293 + 87.5100i −0.359526 + 0.317065i
\(277\) 190.670i 0.688339i 0.938908 + 0.344169i \(0.111839\pi\)
−0.938908 + 0.344169i \(0.888161\pi\)
\(278\) −87.4807 + 39.9511i −0.314679 + 0.143709i
\(279\) 16.7482 4.91771i 0.0600293 0.0176262i
\(280\) 97.0457 + 1.31210i 0.346592 + 0.00468606i
\(281\) 207.713 323.208i 0.739194 1.15021i −0.244376 0.969680i \(-0.578583\pi\)
0.983570 0.180527i \(-0.0577804\pi\)
\(282\) −40.4509 + 35.0509i −0.143443 + 0.124294i
\(283\) 8.71697 + 60.6279i 0.0308020 + 0.214233i 0.999409 0.0343627i \(-0.0109401\pi\)
−0.968607 + 0.248595i \(0.920031\pi\)
\(284\) 116.880 + 34.3190i 0.411549 + 0.120842i
\(285\) −46.3644 + 150.353i −0.162682 + 0.527553i
\(286\) 385.894 + 55.4832i 1.34928 + 0.193997i
\(287\) −199.720 + 437.326i −0.695888 + 1.52378i
\(288\) 3.74386 + 1.70976i 0.0129995 + 0.00593668i
\(289\) 32.3057 224.691i 0.111785 0.777478i
\(290\) 307.191 + 94.7288i 1.05928 + 0.326651i
\(291\) 111.655 380.263i 0.383696 1.30675i
\(292\) −111.081 + 15.9711i −0.380415 + 0.0546955i
\(293\) 0.889714 + 1.02678i 0.00303657 + 0.00350438i 0.757266 0.653107i \(-0.226535\pi\)
−0.754229 + 0.656611i \(0.771989\pi\)
\(294\) 6.50838 + 4.18268i 0.0221373 + 0.0142268i
\(295\) 3.44813 255.032i 0.0116886 0.864515i
\(296\) −21.4393 73.0154i −0.0724300 0.246674i
\(297\) −193.091 422.809i −0.650137 1.42360i
\(298\) −58.3470 −0.195795
\(299\) −203.527 + 322.853i −0.680693 + 1.07978i
\(300\) −141.740 24.3071i −0.472467 0.0810237i
\(301\) −219.378 480.370i −0.728830 1.59592i
\(302\) 34.2146 + 116.524i 0.113293 + 0.385842i
\(303\) −312.590 270.861i −1.03165 0.893931i
\(304\) −23.6602 + 36.8160i −0.0778297 + 0.121105i
\(305\) −89.0250 + 564.862i −0.291885 + 1.85201i
\(306\) −8.01937 + 1.15301i −0.0262071 + 0.00376801i
\(307\) 8.37712 28.5299i 0.0272870 0.0929311i −0.944724 0.327868i \(-0.893670\pi\)
0.972011 + 0.234936i \(0.0754882\pi\)
\(308\) −123.281 191.830i −0.400265 0.622824i
\(309\) −52.6729 7.57323i −0.170463 0.0245088i
\(310\) −163.401 + 45.5886i −0.527100 + 0.147060i
\(311\) −211.026 + 462.082i −0.678539 + 1.48579i 0.185644 + 0.982617i \(0.440563\pi\)
−0.864183 + 0.503177i \(0.832164\pi\)
\(312\) −133.616 19.2110i −0.428255 0.0615738i
\(313\) 88.6784 56.9902i 0.283318 0.182077i −0.391262 0.920279i \(-0.627961\pi\)
0.674579 + 0.738202i \(0.264325\pi\)
\(314\) 12.7283 43.3487i 0.0405361 0.138053i
\(315\) −18.6453 16.6029i −0.0591915 0.0527075i
\(316\) −131.272 + 113.748i −0.415419 + 0.359962i
\(317\) 179.850 279.852i 0.567349 0.882812i −0.432474 0.901647i \(-0.642359\pi\)
0.999823 + 0.0188343i \(0.00599549\pi\)
\(318\) −197.329 + 227.730i −0.620531 + 0.716131i
\(319\) −212.786 724.683i −0.667042 2.27173i
\(320\) −36.1573 17.1070i −0.112992 0.0534593i
\(321\) 411.244i 1.28113i
\(322\) 220.668 33.6948i 0.685304 0.104642i
\(323\) 86.1469i 0.266709i
\(324\) 61.4170 + 134.484i 0.189559 + 0.415075i
\(325\) −412.062 + 47.9147i −1.26788 + 0.147430i
\(326\) 38.4724 44.3996i 0.118014 0.136195i
\(327\) −111.431 71.6126i −0.340769 0.218999i
\(328\) 149.748 129.757i 0.456549 0.395602i
\(329\) 89.3876 12.8520i 0.271695 0.0390638i
\(330\) 136.192 + 309.214i 0.412702 + 0.937011i
\(331\) −348.145 + 223.739i −1.05180 + 0.675949i −0.947877 0.318637i \(-0.896775\pi\)
−0.103920 + 0.994586i \(0.533139\pi\)
\(332\) 2.36490 16.4482i 0.00712320 0.0495429i
\(333\) −8.13184 + 17.8062i −0.0244199 + 0.0534722i
\(334\) 16.5033 36.1371i 0.0494110 0.108195i
\(335\) 79.5118 + 127.480i 0.237349 + 0.380537i
\(336\) 42.6861 + 66.4208i 0.127042 + 0.197681i
\(337\) 204.127 + 59.9371i 0.605718 + 0.177855i 0.570189 0.821514i \(-0.306870\pi\)
0.0355293 + 0.999369i \(0.488688\pi\)
\(338\) −148.864 + 21.4034i −0.440426 + 0.0633237i
\(339\) −88.7365 + 76.8906i −0.261760 + 0.226816i
\(340\) 78.0819 10.1510i 0.229653 0.0298560i
\(341\) 301.219 + 261.008i 0.883341 + 0.765419i
\(342\) 10.8015 3.17162i 0.0315835 0.00927374i
\(343\) −145.117 317.762i −0.423082 0.926420i
\(344\) 217.648i 0.632697i
\(345\) −330.757 1.58604i −0.958716 0.00459722i
\(346\) 268.966 0.777359
\(347\) 56.6059 25.8510i 0.163129 0.0744987i −0.332177 0.943217i \(-0.607783\pi\)
0.495306 + 0.868718i \(0.335056\pi\)
\(348\) 73.6770 + 250.921i 0.211716 + 0.721037i
\(349\) −165.652 + 191.173i −0.474648 + 0.547773i −0.941699 0.336458i \(-0.890771\pi\)
0.467051 + 0.884231i \(0.345317\pi\)
\(350\) 179.010 + 163.793i 0.511456 + 0.467979i
\(351\) 304.025 + 350.863i 0.866167 + 0.999610i
\(352\) 13.3747 + 93.0229i 0.0379962 + 0.264269i
\(353\) 45.6408 155.438i 0.129294 0.440335i −0.869244 0.494383i \(-0.835394\pi\)
0.998538 + 0.0540479i \(0.0172124\pi\)
\(354\) 174.551 112.177i 0.493082 0.316884i
\(355\) 161.166 + 258.394i 0.453988 + 0.727871i
\(356\) 165.532 + 75.5960i 0.464978 + 0.212348i
\(357\) −141.375 64.5638i −0.396009 0.180851i
\(358\) 37.9422 + 5.45527i 0.105984 + 0.0152382i
\(359\) −200.974 312.722i −0.559817 0.871092i 0.439818 0.898087i \(-0.355043\pi\)
−0.999636 + 0.0269943i \(0.991406\pi\)
\(360\) 4.14748 + 9.41658i 0.0115208 + 0.0261572i
\(361\) −34.3403 238.842i −0.0951255 0.661613i
\(362\) −234.343 270.446i −0.647356 0.747089i
\(363\) 241.029 375.048i 0.663991 1.03319i
\(364\) 172.127 + 149.148i 0.472875 + 0.409749i
\(365\) −233.949 154.859i −0.640956 0.424270i
\(366\) −423.153 + 193.247i −1.15615 + 0.527998i
\(367\) 27.8878 0.0759886 0.0379943 0.999278i \(-0.487903\pi\)
0.0379943 + 0.999278i \(0.487903\pi\)
\(368\) −88.4961 25.1483i −0.240479 0.0683377i
\(369\) −50.9703 −0.138131
\(370\) 81.3629 171.969i 0.219900 0.464780i
\(371\) 487.813 143.235i 1.31486 0.386078i
\(372\) −104.297 90.3737i −0.280368 0.242940i
\(373\) 136.837 + 87.9399i 0.366856 + 0.235764i 0.711061 0.703131i \(-0.248215\pi\)
−0.344205 + 0.938895i \(0.611852\pi\)
\(374\) −121.147 139.811i −0.323921 0.373825i
\(375\) −224.227 281.032i −0.597938 0.749419i
\(376\) −35.7113 10.4858i −0.0949769 0.0278877i
\(377\) 407.846 + 634.621i 1.08182 + 1.68334i
\(378\) 38.6445 268.778i 0.102234 0.711053i
\(379\) 314.600 + 143.673i 0.830078 + 0.379084i 0.784692 0.619885i \(-0.212821\pi\)
0.0453860 + 0.998970i \(0.485548\pi\)
\(380\) −105.384 + 29.4019i −0.277325 + 0.0773733i
\(381\) 61.6889 429.055i 0.161913 1.12613i
\(382\) −277.357 + 178.247i −0.726066 + 0.466614i
\(383\) 9.17927 + 2.69528i 0.0239667 + 0.00703727i 0.293694 0.955900i \(-0.405115\pi\)
−0.269727 + 0.962937i \(0.586934\pi\)
\(384\) −4.63097 32.2091i −0.0120598 0.0838778i
\(385\) 88.7506 563.120i 0.230521 1.46265i
\(386\) −201.325 129.384i −0.521568 0.335192i
\(387\) 36.6638 42.3122i 0.0947384 0.109334i
\(388\) 264.422 77.6414i 0.681501 0.200107i
\(389\) −385.561 + 176.080i −0.991160 + 0.452647i −0.843929 0.536455i \(-0.819763\pi\)
−0.147231 + 0.989102i \(0.547036\pi\)
\(390\) −217.530 258.010i −0.557770 0.661564i
\(391\) 173.312 52.5357i 0.443253 0.134362i
\(392\) 5.37972i 0.0137238i
\(393\) 84.2398 38.4710i 0.214351 0.0978907i
\(394\) 449.707 132.046i 1.14139 0.335142i
\(395\) −434.206 5.87063i −1.09926 0.0148624i
\(396\) 13.0700 20.3373i 0.0330050 0.0513568i
\(397\) −422.391 + 366.004i −1.06396 + 0.921923i −0.997120 0.0758407i \(-0.975836\pi\)
−0.0668363 + 0.997764i \(0.521291\pi\)
\(398\) −20.7306 144.185i −0.0520869 0.362273i
\(399\) 207.209 + 60.8422i 0.519322 + 0.152487i
\(400\) −39.0670 92.0531i −0.0976676 0.230133i
\(401\) −76.6528 11.0210i −0.191154 0.0274838i 0.0460728 0.998938i \(-0.485329\pi\)
−0.237227 + 0.971454i \(0.576238\pi\)
\(402\) −50.7739 + 111.179i −0.126303 + 0.276565i
\(403\) −362.119 165.374i −0.898558 0.410358i
\(404\) 40.9318 284.687i 0.101316 0.704671i
\(405\) −108.917 + 353.200i −0.268930 + 0.872099i
\(406\) 124.309 423.357i 0.306179 1.04275i
\(407\) −442.428 + 63.6115i −1.08705 + 0.156294i
\(408\) 41.9469 + 48.4093i 0.102811 + 0.118650i
\(409\) 551.434 + 354.385i 1.34825 + 0.866467i 0.997546 0.0700196i \(-0.0223062\pi\)
0.350703 + 0.936487i \(0.385943\pi\)
\(410\) 495.317 + 6.69689i 1.20809 + 0.0163339i
\(411\) −96.2494 327.795i −0.234184 0.797556i
\(412\) −15.3719 33.6597i −0.0373103 0.0816983i
\(413\) −350.078 −0.847647
\(414\) 12.9679 + 19.7966i 0.0313235 + 0.0478178i
\(415\) 31.7614 26.7782i 0.0765335 0.0645259i
\(416\) −38.9938 85.3846i −0.0937352 0.205251i
\(417\) −55.1042 187.668i −0.132144 0.450043i
\(418\) 194.268 + 168.334i 0.464756 + 0.402713i
\(419\) 189.258 294.491i 0.451689 0.702842i −0.538492 0.842630i \(-0.681006\pi\)
0.990181 + 0.139789i \(0.0446423\pi\)
\(420\) −30.7298 + 194.980i −0.0731662 + 0.464238i
\(421\) −469.308 + 67.4763i −1.11475 + 0.160276i −0.674980 0.737836i \(-0.735848\pi\)
−0.439766 + 0.898112i \(0.644939\pi\)
\(422\) 73.5282 250.414i 0.174238 0.593399i
\(423\) 5.17615 + 8.05424i 0.0122368 + 0.0190408i
\(424\) −207.402 29.8199i −0.489155 0.0703299i
\(425\) 162.661 + 110.862i 0.382731 + 0.260852i
\(426\) −102.916 + 225.354i −0.241586 + 0.529000i
\(427\) 776.887 + 111.700i 1.81941 + 0.261591i
\(428\) 240.569 154.605i 0.562078 0.361226i
\(429\) −223.383 + 760.772i −0.520706 + 1.77336i
\(430\) −361.849 + 406.363i −0.841510 + 0.945031i
\(431\) 610.138 528.687i 1.41563 1.22665i 0.478310 0.878191i \(-0.341250\pi\)
0.937323 0.348461i \(-0.113296\pi\)
\(432\) −60.5048 + 94.1473i −0.140057 + 0.217934i
\(433\) −298.225 + 344.170i −0.688741 + 0.794850i −0.987185 0.159577i \(-0.948987\pi\)
0.298444 + 0.954427i \(0.403532\pi\)
\(434\) 65.5994 + 223.411i 0.151151 + 0.514772i
\(435\) −279.607 + 590.978i −0.642775 + 1.35857i
\(436\) 92.1074i 0.211255i
\(437\) −227.978 + 106.528i −0.521689 + 0.243770i
\(438\) 228.237i 0.521088i
\(439\) 161.042 + 352.633i 0.366838 + 0.803264i 0.999582 + 0.0289027i \(0.00920129\pi\)
−0.632744 + 0.774361i \(0.718071\pi\)
\(440\) −129.683 + 195.916i −0.294735 + 0.445264i
\(441\) 0.906237 1.04585i 0.00205496 0.00237155i
\(442\) 155.443 + 99.8969i 0.351680 + 0.226011i
\(443\) 108.622 94.1219i 0.245198 0.212465i −0.523588 0.851972i \(-0.675407\pi\)
0.768785 + 0.639507i \(0.220861\pi\)
\(444\) 153.190 22.0254i 0.345023 0.0496068i
\(445\) 183.378 + 416.348i 0.412086 + 0.935613i
\(446\) 182.090 117.022i 0.408273 0.262381i
\(447\) 16.8877 117.456i 0.0377800 0.262766i
\(448\) −22.8073 + 49.9410i −0.0509091 + 0.111475i
\(449\) 169.665 371.514i 0.377873 0.827426i −0.621170 0.783676i \(-0.713342\pi\)
0.999043 0.0437499i \(-0.0139305\pi\)
\(450\) −7.91185 + 24.4768i −0.0175819 + 0.0543928i
\(451\) −629.223 979.091i −1.39517 2.17093i
\(452\) −78.3393 23.0025i −0.173317 0.0508905i
\(453\) −244.474 + 35.1501i −0.539678 + 0.0775939i
\(454\) −145.935 + 126.454i −0.321443 + 0.278532i
\(455\) 73.4059 + 564.638i 0.161332 + 1.24096i
\(456\) −67.2651 58.2855i −0.147511 0.127819i
\(457\) 330.188 96.9520i 0.722513 0.212149i 0.100255 0.994962i \(-0.468034\pi\)
0.622257 + 0.782813i \(0.286216\pi\)
\(458\) −148.262 324.648i −0.323716 0.708838i
\(459\) 220.298i 0.479952i
\(460\) −123.418 194.082i −0.268300 0.421918i
\(461\) 307.244 0.666473 0.333237 0.942843i \(-0.391859\pi\)
0.333237 + 0.942843i \(0.391859\pi\)
\(462\) 421.848 192.652i 0.913091 0.416995i
\(463\) −254.619 867.153i −0.549933 1.87290i −0.483983 0.875077i \(-0.660810\pi\)
−0.0659504 0.997823i \(-0.521008\pi\)
\(464\) −119.085 + 137.432i −0.256649 + 0.296189i
\(465\) −44.4789 342.132i −0.0956537 0.735768i
\(466\) −52.9722 61.1331i −0.113674 0.131187i
\(467\) −65.3197 454.309i −0.139871 0.972824i −0.931997 0.362466i \(-0.881935\pi\)
0.792126 0.610358i \(-0.208974\pi\)
\(468\) −6.80275 + 23.1680i −0.0145358 + 0.0495044i
\(469\) 173.482 111.490i 0.369898 0.237719i
\(470\) −49.2424 78.9494i −0.104771 0.167977i
\(471\) 83.5798 + 38.1696i 0.177452 + 0.0810396i
\(472\) 131.243 + 59.9365i 0.278056 + 0.126984i
\(473\) 1265.39 + 181.935i 2.67524 + 0.384642i
\(474\) −190.988 297.183i −0.402928 0.626968i
\(475\) −245.640 120.310i −0.517138 0.253284i
\(476\) −15.3805 106.974i −0.0323120 0.224735i
\(477\) 35.2970 + 40.7349i 0.0739980 + 0.0853982i
\(478\) −345.484 + 537.583i −0.722769 + 1.12465i
\(479\) −501.641 434.674i −1.04727 0.907462i −0.0514352 0.998676i \(-0.516380\pi\)
−0.995831 + 0.0912148i \(0.970925\pi\)
\(480\) 44.9027 67.8357i 0.0935473 0.141324i
\(481\) 406.099 185.459i 0.844281 0.385570i
\(482\) 185.081 0.383985
\(483\) 3.96074 + 453.972i 0.00820030 + 0.939900i
\(484\) 310.008 0.640513
\(485\) 622.777 + 294.652i 1.28408 + 0.607530i
\(486\) 53.1782 15.6145i 0.109420 0.0321286i
\(487\) −289.510 250.861i −0.594475 0.515116i 0.304847 0.952401i \(-0.401395\pi\)
−0.899323 + 0.437285i \(0.855940\pi\)
\(488\) −272.127 174.885i −0.557638 0.358372i
\(489\) 78.2440 + 90.2984i 0.160008 + 0.184659i
\(490\) −8.94402 + 10.0443i −0.0182531 + 0.0204986i
\(491\) −533.343 156.604i −1.08624 0.318948i −0.310866 0.950454i \(-0.600619\pi\)
−0.775371 + 0.631506i \(0.782437\pi\)
\(492\) 217.868 + 339.009i 0.442821 + 0.689043i
\(493\) 50.9435 354.320i 0.103334 0.718701i
\(494\) −233.545 106.656i −0.472762 0.215903i
\(495\) 58.2143 16.2417i 0.117605 0.0328115i
\(496\) 13.6571 94.9869i 0.0275344 0.191506i
\(497\) 351.638 225.984i 0.707522 0.454697i
\(498\) 32.4269 + 9.52141i 0.0651143 + 0.0191193i
\(499\) 122.764 + 853.840i 0.246019 + 1.71110i 0.620783 + 0.783982i \(0.286815\pi\)
−0.374764 + 0.927120i \(0.622276\pi\)
\(500\) 80.1015 236.820i 0.160203 0.473640i
\(501\) 67.9698 + 43.6815i 0.135668 + 0.0871887i
\(502\) 219.541 253.364i 0.437333 0.504710i
\(503\) −732.928 + 215.207i −1.45711 + 0.427847i −0.911887 0.410442i \(-0.865374\pi\)
−0.545226 + 0.838289i \(0.683556\pi\)
\(504\) 12.8467 5.86688i 0.0254894 0.0116406i
\(505\) 549.728 463.479i 1.08857 0.917781i
\(506\) −220.186 + 493.488i −0.435150 + 0.975273i
\(507\) 305.868i 0.603290i
\(508\) 274.180 125.214i 0.539724 0.246484i
\(509\) 47.9295 14.0734i 0.0941640 0.0276490i −0.234311 0.972162i \(-0.575283\pi\)
0.328475 + 0.944513i \(0.393465\pi\)
\(510\) −2.16491 + 160.122i −0.00424493 + 0.313965i
\(511\) −208.192 + 323.953i −0.407421 + 0.633959i
\(512\) 17.1007 14.8178i 0.0333997 0.0289410i
\(513\) 43.5634 + 302.990i 0.0849189 + 0.590624i
\(514\) −82.3135 24.1694i −0.160143 0.0470222i
\(515\) 27.2604 88.4013i 0.0529329 0.171653i
\(516\) −438.140 62.9950i −0.849108 0.122083i
\(517\) −90.8153 + 198.858i −0.175658 + 0.384638i
\(518\) −237.525 108.474i −0.458543 0.209410i
\(519\) −77.8483 + 541.447i −0.149997 + 1.04325i
\(520\) 69.1516 224.248i 0.132984 0.431246i
\(521\) 25.9215 88.2805i 0.0497533 0.169444i −0.930869 0.365354i \(-0.880948\pi\)
0.980622 + 0.195910i \(0.0627660\pi\)
\(522\) 46.3020 6.65722i 0.0887011 0.0127533i
\(523\) −432.240 498.832i −0.826463 0.953789i 0.173053 0.984913i \(-0.444637\pi\)
−0.999516 + 0.0311236i \(0.990091\pi\)
\(524\) 54.1742 + 34.8156i 0.103386 + 0.0664420i
\(525\) −381.537 + 312.951i −0.726738 + 0.596097i
\(526\) −152.747 520.208i −0.290393 0.988989i
\(527\) 78.4727 + 171.831i 0.148905 + 0.326056i
\(528\) −191.132 −0.361993
\(529\) −353.344 393.686i −0.667947 0.744209i
\(530\) −337.656 400.490i −0.637087 0.755642i
\(531\) −15.4179 33.7605i −0.0290356 0.0635790i
\(532\) 42.3076 + 144.086i 0.0795256 + 0.270839i
\(533\) 878.526 + 761.247i 1.64827 + 1.42823i
\(534\) −200.091 + 311.347i −0.374702 + 0.583047i
\(535\) 706.197 + 111.300i 1.31999 + 0.208038i
\(536\) −84.1257 + 12.0954i −0.156951 + 0.0225661i
\(537\) −21.9637 + 74.8013i −0.0409007 + 0.139295i
\(538\) −126.622 197.027i −0.235356 0.366221i
\(539\) 31.2773 + 4.49699i 0.0580284 + 0.00834322i
\(540\) −269.491 + 75.1875i −0.499057 + 0.139236i
\(541\) −356.865 + 781.426i −0.659640 + 1.44441i 0.223217 + 0.974769i \(0.428344\pi\)
−0.882857 + 0.469642i \(0.844383\pi\)
\(542\) 209.165 + 30.0734i 0.385913 + 0.0554859i
\(543\) 612.253 393.471i 1.12754 0.724625i
\(544\) −12.5488 + 42.7372i −0.0230676 + 0.0785611i
\(545\) 153.133 171.971i 0.280977 0.315543i
\(546\) −350.065 + 303.333i −0.641145 + 0.555556i
\(547\) 101.141 157.378i 0.184900 0.287711i −0.736412 0.676533i \(-0.763482\pi\)
0.921313 + 0.388822i \(0.127118\pi\)
\(548\) 155.569 179.536i 0.283885 0.327621i
\(549\) 23.4431 + 79.8400i 0.0427015 + 0.145428i
\(550\) −567.847 + 150.184i −1.03245 + 0.273062i
\(551\) 497.392i 0.902708i
\(552\) 76.2391 170.870i 0.138114 0.309547i
\(553\) 596.028i 1.07781i
\(554\) −112.016 245.280i −0.202195 0.442744i
\(555\) 322.635 + 213.563i 0.581324 + 0.384798i
\(556\) 89.0657 102.787i 0.160190 0.184869i
\(557\) −318.074 204.414i −0.571049 0.366991i 0.223025 0.974813i \(-0.428407\pi\)
−0.794073 + 0.607822i \(0.792043\pi\)
\(558\) −18.6560 + 16.1655i −0.0334337 + 0.0289705i
\(559\) −1263.88 + 181.718i −2.26096 + 0.325077i
\(560\) −125.612 + 55.3251i −0.224307 + 0.0987948i
\(561\) 316.512 203.410i 0.564193 0.362585i
\(562\) −77.3252 + 537.808i −0.137589 + 0.956954i
\(563\) −166.121 + 363.754i −0.295063 + 0.646099i −0.997867 0.0652855i \(-0.979204\pi\)
0.702803 + 0.711384i \(0.251931\pi\)
\(564\) 31.4447 68.8543i 0.0557530 0.122082i
\(565\) −108.022 173.190i −0.191190 0.306531i
\(566\) −46.8316 72.8715i −0.0827414 0.128748i
\(567\) 486.765 + 142.927i 0.858492 + 0.252076i
\(568\) −170.518 + 24.5168i −0.300208 + 0.0431633i
\(569\) −271.448 + 235.211i −0.477061 + 0.413376i −0.859918 0.510432i \(-0.829486\pi\)
0.382857 + 0.923808i \(0.374940\pi\)
\(570\) −28.6862 220.654i −0.0503266 0.387113i
\(571\) 536.451 + 464.837i 0.939493 + 0.814075i 0.982741 0.184989i \(-0.0592249\pi\)
−0.0432474 + 0.999064i \(0.513770\pi\)
\(572\) −529.015 + 155.333i −0.924852 + 0.271561i
\(573\) −278.545 609.929i −0.486117 1.06445i
\(574\) 679.915i 1.18452i
\(575\) 92.2405 567.553i 0.160418 0.987049i
\(576\) −5.82061 −0.0101052
\(577\) −578.655 + 264.263i −1.00287 + 0.457994i −0.848032 0.529946i \(-0.822212\pi\)
−0.154836 + 0.987940i \(0.549485\pi\)
\(578\) 90.4443 + 308.025i 0.156478 + 0.532915i
\(579\) 318.729 367.833i 0.550482 0.635291i
\(580\) −450.826 + 58.6098i −0.777287 + 0.101051i
\(581\) −37.3407 43.0935i −0.0642698 0.0741713i
\(582\) 79.7642 + 554.772i 0.137052 + 0.953217i
\(583\) −346.741 + 1180.89i −0.594753 + 2.02554i
\(584\) 133.514 85.8041i 0.228619 0.146925i
\(585\) −51.2191 + 31.9464i −0.0875540 + 0.0546093i
\(586\) −1.74776 0.798176i −0.00298253 0.00136208i
\(587\) −134.389 61.3736i −0.228943 0.104555i 0.297641 0.954678i \(-0.403800\pi\)
−0.526584 + 0.850123i \(0.676527\pi\)
\(588\) −10.8297 1.55708i −0.0184179 0.00264809i
\(589\) −141.908 220.813i −0.240930 0.374894i
\(590\) 145.392 + 330.102i 0.246427 + 0.559495i
\(591\) 135.656 + 943.509i 0.229537 + 1.59646i
\(592\) 70.4753 + 81.3328i 0.119046 + 0.137387i
\(593\) −307.280 + 478.137i −0.518179 + 0.806302i −0.997450 0.0713646i \(-0.977265\pi\)
0.479271 + 0.877667i \(0.340901\pi\)
\(594\) 496.789 + 430.470i 0.836345 + 0.724697i
\(595\) 149.132 225.298i 0.250643 0.378653i
\(596\) 75.0584 34.2780i 0.125937 0.0575134i
\(597\) 296.253 0.496237
\(598\) 72.1486 534.892i 0.120650 0.894469i
\(599\) −374.061 −0.624476 −0.312238 0.950004i \(-0.601079\pi\)
−0.312238 + 0.950004i \(0.601079\pi\)
\(600\) 196.616 52.0012i 0.327694 0.0866686i
\(601\) 778.384 228.554i 1.29515 0.380290i 0.439685 0.898152i \(-0.355090\pi\)
0.855464 + 0.517862i \(0.173272\pi\)
\(602\) 564.421 + 489.074i 0.937577 + 0.812415i
\(603\) 18.3921 + 11.8199i 0.0305011 + 0.0196019i
\(604\) −112.470 129.798i −0.186209 0.214897i
\(605\) 578.807 + 515.403i 0.956706 + 0.851906i
\(606\) 561.247 + 164.797i 0.926151 + 0.271942i
\(607\) 204.984 + 318.961i 0.337699 + 0.525471i 0.968023 0.250862i \(-0.0807141\pi\)
−0.630323 + 0.776333i \(0.717078\pi\)
\(608\) 8.80796 61.2607i 0.0144868 0.100758i
\(609\) 816.266 + 372.776i 1.34034 + 0.612112i
\(610\) −217.325 778.947i −0.356270 1.27696i
\(611\) 31.0748 216.130i 0.0508589 0.353731i
\(612\) 9.63885 6.19451i 0.0157498 0.0101218i
\(613\) −524.902 154.125i −0.856285 0.251428i −0.176013 0.984388i \(-0.556320\pi\)
−0.680272 + 0.732960i \(0.738138\pi\)
\(614\) 5.98443 + 41.6226i 0.00974663 + 0.0677893i
\(615\) −156.844 + 995.169i −0.255030 + 1.61816i
\(616\) 271.288 + 174.346i 0.440403 + 0.283030i
\(617\) −502.369 + 579.764i −0.814212 + 0.939651i −0.999070 0.0431147i \(-0.986272\pi\)
0.184858 + 0.982765i \(0.440817\pi\)
\(618\) 72.2084 21.2023i 0.116842 0.0343079i
\(619\) 51.0793 23.3271i 0.0825190 0.0376852i −0.373728 0.927538i \(-0.621921\pi\)
0.456247 + 0.889853i \(0.349193\pi\)
\(620\) 183.419 154.642i 0.295837 0.249422i
\(621\) −582.994 + 272.416i −0.938799 + 0.438674i
\(622\) 718.403i 1.15499i
\(623\) 568.007 259.400i 0.911729 0.416373i
\(624\) 183.171 53.7839i 0.293543 0.0861921i
\(625\) 543.279 308.987i 0.869246 0.494379i
\(626\) −80.5962 + 125.410i −0.128748 + 0.200336i
\(627\) −395.096 + 342.352i −0.630137 + 0.546017i
\(628\) 9.09284 + 63.2421i 0.0144790 + 0.100704i
\(629\) −203.263 59.6835i −0.323153 0.0948864i
\(630\) 33.7396 + 10.4043i 0.0535549 + 0.0165148i
\(631\) 296.687 + 42.6572i 0.470186 + 0.0676025i 0.373335 0.927696i \(-0.378214\pi\)
0.0968505 + 0.995299i \(0.469123\pi\)
\(632\) 102.045 223.448i 0.161464 0.353557i
\(633\) 482.819 + 220.496i 0.762747 + 0.348335i
\(634\) −66.9524 + 465.664i −0.105603 + 0.734486i
\(635\) 720.087 + 222.054i 1.13399 + 0.349691i
\(636\) 120.059 408.883i 0.188772 0.642897i
\(637\) −31.2399 + 4.49162i −0.0490423 + 0.00705121i
\(638\) 699.472 + 807.234i 1.09635 + 1.26526i
\(639\) 37.2798 + 23.9583i 0.0583409 + 0.0374934i
\(640\) 56.5634 + 0.764759i 0.0883803 + 0.00119494i
\(641\) 169.016 + 575.616i 0.263676 + 0.897997i 0.979793 + 0.200016i \(0.0640995\pi\)
−0.716117 + 0.697980i \(0.754082\pi\)
\(642\) 241.600 + 529.030i 0.376324 + 0.824035i
\(643\) −808.183 −1.25689 −0.628447 0.777852i \(-0.716309\pi\)
−0.628447 + 0.777852i \(0.716309\pi\)
\(644\) −264.075 + 172.985i −0.410054 + 0.268610i
\(645\) −713.305 846.043i −1.10590 1.31169i
\(646\) 50.6101 + 110.821i 0.0783438 + 0.171549i
\(647\) −278.716 949.219i −0.430782 1.46711i −0.833877 0.551950i \(-0.813884\pi\)
0.403095 0.915158i \(-0.367934\pi\)
\(648\) −158.015 136.921i −0.243851 0.211298i
\(649\) 458.174 712.933i 0.705970 1.09851i
\(650\) 501.933 303.718i 0.772204 0.467259i
\(651\) −468.728 + 67.3930i −0.720013 + 0.103522i
\(652\) −23.4074 + 79.7182i −0.0359009 + 0.122267i
\(653\) 649.194 + 1010.16i 0.994171 + 1.54696i 0.827897 + 0.560881i \(0.189537\pi\)
0.166274 + 0.986080i \(0.446826\pi\)
\(654\) 185.418 + 26.6591i 0.283514 + 0.0407632i
\(655\) 43.2643 + 155.070i 0.0660524 + 0.236748i
\(656\) −116.407 + 254.897i −0.177450 + 0.388562i
\(657\) −40.4101 5.81009i −0.0615070 0.00884337i
\(658\) −107.439 + 69.0469i −0.163281 + 0.104934i
\(659\) −215.743 + 734.754i −0.327380 + 1.11495i 0.617237 + 0.786777i \(0.288252\pi\)
−0.944617 + 0.328175i \(0.893566\pi\)
\(660\) −356.857 317.766i −0.540693 0.481464i
\(661\) 136.091 117.924i 0.205887 0.178402i −0.545814 0.837907i \(-0.683779\pi\)
0.751701 + 0.659505i \(0.229234\pi\)
\(662\) 316.415 492.351i 0.477968 0.743733i
\(663\) −246.090 + 284.003i −0.371176 + 0.428360i
\(664\) 6.62087 + 22.5486i 0.00997118 + 0.0339587i
\(665\) −160.559 + 339.358i −0.241442 + 0.510312i
\(666\) 27.6835i 0.0415669i
\(667\) −1000.66 + 303.329i −1.50024 + 0.454766i
\(668\) 56.1827i 0.0841058i
\(669\) 182.870 + 400.429i 0.273348 + 0.598549i
\(670\) −177.178 117.280i −0.264444 0.175044i
\(671\) −1244.25 + 1435.94i −1.85432 + 2.14000i
\(672\) −93.9333 60.3672i −0.139782 0.0898322i
\(673\) −17.3890 + 15.0676i −0.0258380 + 0.0223888i −0.667684 0.744445i \(-0.732714\pi\)
0.641846 + 0.766834i \(0.278169\pi\)
\(674\) −297.804 + 42.8177i −0.441846 + 0.0635278i
\(675\) −628.160 307.660i −0.930608 0.455793i
\(676\) 178.926 114.989i 0.264684 0.170102i
\(677\) 110.586 769.143i 0.163347 1.13611i −0.728920 0.684599i \(-0.759978\pi\)
0.892268 0.451507i \(-0.149113\pi\)
\(678\) 68.9798 151.045i 0.101740 0.222780i
\(679\) 392.835 860.188i 0.578549 1.26684i
\(680\) −94.4820 + 58.9304i −0.138944 + 0.0866624i
\(681\) −212.321 330.377i −0.311778 0.485136i
\(682\) −540.831 158.802i −0.793007 0.232848i
\(683\) 471.147 67.7407i 0.689820 0.0991811i 0.211515 0.977375i \(-0.432160\pi\)
0.478305 + 0.878194i \(0.341251\pi\)
\(684\) −12.0320 + 10.4258i −0.0175906 + 0.0152423i
\(685\) 588.946 76.5660i 0.859775 0.111775i
\(686\) 373.361 + 323.519i 0.544258 + 0.471602i
\(687\) 696.450 204.496i 1.01376 0.297666i
\(688\) −127.865 279.985i −0.185850 0.406955i
\(689\) 1229.28i 1.78414i
\(690\) 426.422 192.275i 0.618003 0.278659i
\(691\) 358.460 0.518755 0.259378 0.965776i \(-0.416483\pi\)
0.259378 + 0.965776i \(0.416483\pi\)
\(692\) −346.002 + 158.014i −0.500003 + 0.228344i
\(693\) −23.3709 79.5939i −0.0337242 0.114854i
\(694\) −57.6315 + 66.5103i −0.0830425 + 0.0958361i
\(695\) 337.180 43.8352i 0.485151 0.0630722i
\(696\) −242.192 279.504i −0.347976 0.401586i
\(697\) −78.5015 545.990i −0.112628 0.783343i
\(698\) 100.786 343.246i 0.144393 0.491756i
\(699\) 138.397 88.9424i 0.197993 0.127242i
\(700\) −326.506 105.540i −0.466438 0.150771i
\(701\) −20.7816 9.49065i −0.0296457 0.0135387i 0.400537 0.916281i \(-0.368824\pi\)
−0.430183 + 0.902742i \(0.641551\pi\)
\(702\) −597.228 272.745i −0.850753 0.388526i
\(703\) 291.363 + 41.8917i 0.414457 + 0.0595899i
\(704\) −71.8549 111.808i −0.102067 0.158819i
\(705\) 173.183 76.2775i 0.245649 0.108195i
\(706\) 32.6048 + 226.771i 0.0461824 + 0.321205i
\(707\) −646.296 745.865i −0.914138 1.05497i
\(708\) −158.642 + 246.852i −0.224071 + 0.348662i
\(709\) 326.953 + 283.306i 0.461146 + 0.399586i 0.854212 0.519925i \(-0.174040\pi\)
−0.393066 + 0.919510i \(0.628585\pi\)
\(710\) −359.129 237.719i −0.505815 0.334816i
\(711\) −57.4791 + 26.2498i −0.0808426 + 0.0369196i
\(712\) −257.355 −0.361453
\(713\) 357.694 420.153i 0.501675 0.589274i
\(714\) 219.797 0.307839
\(715\) −1245.96 589.495i −1.74260 0.824468i
\(716\) −52.0143 + 15.2728i −0.0726457 + 0.0213307i
\(717\) −982.195 851.077i −1.36987 1.18700i
\(718\) 442.256 + 284.221i 0.615955 + 0.395850i
\(719\) −461.614 532.731i −0.642023 0.740934i 0.337708 0.941251i \(-0.390348\pi\)
−0.979731 + 0.200317i \(0.935803\pi\)
\(720\) −10.8675 9.67703i −0.0150937 0.0134403i
\(721\) −121.831 35.7728i −0.168975 0.0496155i
\(722\) 184.492 + 287.075i 0.255529 + 0.397611i
\(723\) −53.5690 + 372.580i −0.0740926 + 0.515326i
\(724\) 460.345 + 210.233i 0.635836 + 0.290377i
\(725\) −939.165 640.091i −1.29540 0.882884i
\(726\) −89.7274 + 624.068i −0.123591 + 0.859597i
\(727\) 480.300 308.670i 0.660660 0.424580i −0.166888 0.985976i \(-0.553372\pi\)
0.827547 + 0.561396i \(0.189735\pi\)
\(728\) −309.049 90.7448i −0.424517 0.124649i
\(729\) 110.724 + 770.101i 0.151884 + 1.05638i
\(730\) 391.932 + 61.7705i 0.536894 + 0.0846172i
\(731\) 509.713 + 327.573i 0.697282 + 0.448116i
\(732\) 430.819 497.192i 0.588551 0.679224i
\(733\) −554.047 + 162.683i −0.755862 + 0.221941i −0.636888 0.770956i \(-0.719779\pi\)
−0.118974 + 0.992897i \(0.537960\pi\)
\(734\) −35.8753 + 16.3837i −0.0488764 + 0.0223211i
\(735\) −17.6311 20.9121i −0.0239879 0.0284518i
\(736\) 128.617 19.6391i 0.174751 0.0266835i
\(737\) 499.212i 0.677356i
\(738\) 65.5689 29.9443i 0.0888467 0.0405749i
\(739\) 258.543 75.9150i 0.349855 0.102727i −0.102084 0.994776i \(-0.532551\pi\)
0.451938 + 0.892049i \(0.350733\pi\)
\(740\) −3.63729 + 269.022i −0.00491525 + 0.363544i
\(741\) 282.302 439.271i 0.380975 0.592808i
\(742\) −543.381 + 470.842i −0.732319 + 0.634558i
\(743\) −133.250 926.774i −0.179340 1.24734i −0.858294 0.513159i \(-0.828475\pi\)
0.678953 0.734182i \(-0.262434\pi\)
\(744\) 187.262 + 54.9851i 0.251696 + 0.0739048i
\(745\) 197.128 + 60.7885i 0.264601 + 0.0815953i
\(746\) −227.693 32.7373i −0.305218 0.0438837i
\(747\) 2.51127 5.49892i 0.00336181 0.00736134i
\(748\) 237.981 + 108.682i 0.318157 + 0.145297i
\(749\) 139.648 971.273i 0.186446 1.29676i
\(750\) 453.550 + 229.794i 0.604734 + 0.306392i
\(751\) 347.315 1182.85i 0.462470 1.57503i −0.316896 0.948460i \(-0.602641\pi\)
0.779366 0.626569i \(-0.215541\pi\)
\(752\) 52.0998 7.49082i 0.0692816 0.00996119i
\(753\) 446.496 + 515.284i 0.592956 + 0.684308i
\(754\) −897.489 576.781i −1.19030 0.764962i
\(755\) 5.80469 429.329i 0.00768833 0.568647i
\(756\) 108.191 + 368.463i 0.143109 + 0.487385i
\(757\) −206.287 451.705i −0.272506 0.596704i 0.723059 0.690787i \(-0.242736\pi\)
−0.995564 + 0.0940822i \(0.970008\pi\)
\(758\) −489.111 −0.645265
\(759\) −929.695 586.082i −1.22490 0.772176i
\(760\) 118.294 99.7343i 0.155650 0.131229i
\(761\) −223.619 489.657i −0.293849 0.643439i 0.703914 0.710285i \(-0.251434\pi\)
−0.997763 + 0.0668454i \(0.978707\pi\)
\(762\) 172.706 + 588.184i 0.226649 + 0.771895i
\(763\) −238.860 206.973i −0.313054 0.271263i
\(764\) 252.079 392.242i 0.329946 0.513406i
\(765\) 28.2950 + 4.45944i 0.0369870 + 0.00582934i
\(766\) −13.3918 + 1.92545i −0.0174827 + 0.00251364i
\(767\) −238.473 + 812.165i −0.310917 + 1.05889i
\(768\) 24.8797 + 38.7136i 0.0323954 + 0.0504083i
\(769\) −1354.35 194.726i −1.76118 0.253220i −0.815602 0.578613i \(-0.803594\pi\)
−0.945579 + 0.325394i \(0.894503\pi\)
\(770\) 216.655 + 776.545i 0.281370 + 1.00850i
\(771\) 72.4791 158.707i 0.0940066 0.205846i
\(772\) 334.999 + 48.1656i 0.433937 + 0.0623907i
\(773\) 327.614 210.545i 0.423821 0.272373i −0.311296 0.950313i \(-0.600763\pi\)
0.735118 + 0.677939i </