Properties

Label 230.3.i.a.19.13
Level $230$
Weight $3$
Character 230.19
Analytic conductor $6.267$
Analytic rank $0$
Dimension $240$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 230 = 2 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 230.i (of order \(22\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.26704608029\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(24\) over \(\Q(\zeta_{22})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 19.13
Character \(\chi\) \(=\) 230.19
Dual form 230.3.i.a.109.13

$q$-expansion

\(f(q)\) \(=\) \(q+(1.28641 - 0.587486i) q^{2} +(-1.62857 - 5.54639i) q^{3} +(1.30972 - 1.51150i) q^{4} +(0.750729 - 4.94332i) q^{5} +(-5.35343 - 6.17819i) q^{6} +(-0.543186 - 3.77794i) q^{7} +(0.796860 - 2.71386i) q^{8} +(-20.5389 + 13.1996i) q^{9} +O(q^{10})\) \(q+(1.28641 - 0.587486i) q^{2} +(-1.62857 - 5.54639i) q^{3} +(1.30972 - 1.51150i) q^{4} +(0.750729 - 4.94332i) q^{5} +(-5.35343 - 6.17819i) q^{6} +(-0.543186 - 3.77794i) q^{7} +(0.796860 - 2.71386i) q^{8} +(-20.5389 + 13.1996i) q^{9} +(-1.93838 - 6.80020i) q^{10} +(15.1678 + 6.92691i) q^{11} +(-10.5163 - 4.80265i) q^{12} +(6.09510 + 0.876343i) q^{13} +(-2.91825 - 4.54088i) q^{14} +(-28.6402 + 3.88669i) q^{15} +(-0.569259 - 3.95929i) q^{16} +(8.15256 + 9.40856i) q^{17} +(-18.6670 + 29.0464i) q^{18} +(18.5815 + 16.1009i) q^{19} +(-6.48858 - 7.60910i) q^{20} +(-20.0693 + 9.16535i) q^{21} +23.5816 q^{22} +(1.00299 - 22.9781i) q^{23} -16.3498 q^{24} +(-23.8728 - 7.42219i) q^{25} +(8.35566 - 2.45344i) q^{26} +(67.3412 + 58.3514i) q^{27} +(-6.42177 - 4.12702i) q^{28} +(-26.1605 - 30.1908i) q^{29} +(-34.5598 + 21.8256i) q^{30} +(-37.5160 - 11.0157i) q^{31} +(-3.05833 - 4.75885i) q^{32} +(13.7175 - 95.4076i) q^{33} +(16.0150 + 7.31379i) q^{34} +(-19.0833 - 0.151069i) q^{35} +(-6.94914 + 48.3323i) q^{36} +(-17.7676 + 11.4186i) q^{37} +(33.3626 + 9.79613i) q^{38} +(-5.06574 - 35.2330i) q^{39} +(-12.8172 - 5.97650i) q^{40} +(29.7061 + 19.0910i) q^{41} +(-20.4329 + 23.5809i) q^{42} +(-3.53813 + 1.03889i) q^{43} +(30.3357 - 13.8538i) q^{44} +(49.8305 + 111.440i) q^{45} +(-12.2091 - 30.1486i) q^{46} +20.2106i q^{47} +(-21.0327 + 9.60530i) q^{48} +(33.0374 - 9.70065i) q^{49} +(-35.0707 + 4.47692i) q^{50} +(38.9065 - 60.5398i) q^{51} +(9.30748 - 8.06498i) q^{52} +(-2.70111 - 18.7866i) q^{53} +(120.909 + 35.5022i) q^{54} +(45.6289 - 69.7792i) q^{55} +(-10.6856 - 1.53636i) q^{56} +(59.0409 - 129.282i) q^{57} +(-51.3899 - 23.4690i) q^{58} +(-7.82910 + 54.4526i) q^{59} +(-31.6359 + 48.3801i) q^{60} +(27.3810 - 93.2510i) q^{61} +(-54.7326 + 7.86937i) q^{62} +(61.0236 + 70.4250i) q^{63} +(-6.73003 - 4.32513i) q^{64} +(8.90782 - 29.4721i) q^{65} +(-38.4042 - 130.793i) q^{66} +(30.8015 + 67.4459i) q^{67} +24.8986 q^{68} +(-129.079 + 31.8584i) q^{69} +(-24.6378 + 11.0169i) q^{70} +(15.0787 + 33.0178i) q^{71} +(19.4551 + 66.2579i) q^{72} +(-22.4766 - 19.4760i) q^{73} +(-16.1483 + 25.1272i) q^{74} +(-2.28788 + 144.495i) q^{75} +(48.6731 - 6.99814i) q^{76} +(17.9305 - 61.0657i) q^{77} +(-27.2155 - 42.3482i) q^{78} +(83.0782 + 11.9448i) q^{79} +(-19.9994 - 0.158321i) q^{80} +(122.690 - 268.654i) q^{81} +(49.4300 + 7.10697i) q^{82} +(-12.2049 + 7.84362i) q^{83} +(-12.4318 + 42.3388i) q^{84} +(52.6299 - 33.2374i) q^{85} +(-3.94117 + 3.41504i) q^{86} +(-124.846 + 194.264i) q^{87} +(30.8853 - 35.6435i) q^{88} +(31.9185 + 108.704i) q^{89} +(129.572 + 114.083i) q^{90} -23.5029i q^{91} +(-33.4178 - 31.6110i) q^{92} +226.018i q^{93} +(11.8734 + 25.9992i) q^{94} +(93.5418 - 79.7668i) q^{95} +(-21.4137 + 24.7128i) q^{96} +(-142.673 - 91.6905i) q^{97} +(36.8007 - 31.8880i) q^{98} +(-402.963 + 57.9373i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240q + 48q^{4} - 8q^{6} + 96q^{9} + O(q^{10}) \) \( 240q + 48q^{4} - 8q^{6} + 96q^{9} + 154q^{15} - 96q^{16} + 44q^{20} + 16q^{24} - 84q^{25} + 32q^{26} - 100q^{29} - 352q^{30} + 124q^{31} + 28q^{35} - 192q^{36} + 72q^{39} + 116q^{41} - 148q^{46} - 188q^{49} + 144q^{50} + 324q^{54} + 796q^{55} - 264q^{56} + 400q^{59} + 176q^{60} - 616q^{61} + 192q^{64} + 462q^{65} - 176q^{66} + 120q^{69} - 504q^{70} + 464q^{71} - 528q^{74} - 934q^{75} - 968q^{79} - 264q^{80} + 664q^{81} - 352q^{84} - 1196q^{85} + 396q^{86} + 376q^{94} + 126q^{95} - 32q^{96} - 3300q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/230\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(-1\) \(e\left(\frac{15}{22}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.28641 0.587486i 0.643207 0.293743i
\(3\) −1.62857 5.54639i −0.542856 1.84880i −0.528556 0.848899i \(-0.677266\pi\)
−0.0143001 0.999898i \(-0.504552\pi\)
\(4\) 1.30972 1.51150i 0.327430 0.377875i
\(5\) 0.750729 4.94332i 0.150146 0.988664i
\(6\) −5.35343 6.17819i −0.892239 1.02970i
\(7\) −0.543186 3.77794i −0.0775980 0.539706i −0.991126 0.132929i \(-0.957562\pi\)
0.913528 0.406777i \(-0.133347\pi\)
\(8\) 0.796860 2.71386i 0.0996075 0.339232i
\(9\) −20.5389 + 13.1996i −2.28210 + 1.46662i
\(10\) −1.93838 6.80020i −0.193838 0.680020i
\(11\) 15.1678 + 6.92691i 1.37889 + 0.629719i 0.960432 0.278515i \(-0.0898423\pi\)
0.418461 + 0.908235i \(0.362570\pi\)
\(12\) −10.5163 4.80265i −0.876361 0.400221i
\(13\) 6.09510 + 0.876343i 0.468854 + 0.0674110i 0.372693 0.927955i \(-0.378434\pi\)
0.0961611 + 0.995366i \(0.469344\pi\)
\(14\) −2.91825 4.54088i −0.208446 0.324349i
\(15\) −28.6402 + 3.88669i −1.90935 + 0.259113i
\(16\) −0.569259 3.95929i −0.0355787 0.247455i
\(17\) 8.15256 + 9.40856i 0.479563 + 0.553445i 0.943047 0.332661i \(-0.107946\pi\)
−0.463484 + 0.886105i \(0.653401\pi\)
\(18\) −18.6670 + 29.0464i −1.03706 + 1.61369i
\(19\) 18.5815 + 16.1009i 0.977973 + 0.847418i 0.988299 0.152528i \(-0.0487416\pi\)
−0.0103263 + 0.999947i \(0.503287\pi\)
\(20\) −6.48858 7.60910i −0.324429 0.380455i
\(21\) −20.0693 + 9.16535i −0.955681 + 0.436445i
\(22\) 23.5816 1.07189
\(23\) 1.00299 22.9781i 0.0436081 0.999049i
\(24\) −16.3498 −0.681243
\(25\) −23.8728 7.42219i −0.954912 0.296888i
\(26\) 8.35566 2.45344i 0.321372 0.0943632i
\(27\) 67.3412 + 58.3514i 2.49412 + 2.16116i
\(28\) −6.42177 4.12702i −0.229349 0.147394i
\(29\) −26.1605 30.1908i −0.902086 1.04106i −0.998952 0.0457649i \(-0.985427\pi\)
0.0968666 0.995297i \(-0.469118\pi\)
\(30\) −34.5598 + 21.8256i −1.15199 + 0.727520i
\(31\) −37.5160 11.0157i −1.21019 0.355345i −0.386451 0.922310i \(-0.626299\pi\)
−0.823742 + 0.566965i \(0.808117\pi\)
\(32\) −3.05833 4.75885i −0.0955727 0.148714i
\(33\) 13.7175 95.4076i 0.415683 2.89114i
\(34\) 16.0150 + 7.31379i 0.471028 + 0.215111i
\(35\) −19.0833 0.151069i −0.545239 0.00431627i
\(36\) −6.94914 + 48.3323i −0.193032 + 1.34256i
\(37\) −17.7676 + 11.4186i −0.480207 + 0.308610i −0.758256 0.651957i \(-0.773948\pi\)
0.278050 + 0.960567i \(0.410312\pi\)
\(38\) 33.3626 + 9.79613i 0.877962 + 0.257793i
\(39\) −5.06574 35.2330i −0.129891 0.903410i
\(40\) −12.8172 5.97650i −0.320431 0.149413i
\(41\) 29.7061 + 19.0910i 0.724539 + 0.465633i 0.850213 0.526438i \(-0.176473\pi\)
−0.125674 + 0.992072i \(0.540109\pi\)
\(42\) −20.4329 + 23.5809i −0.486498 + 0.561449i
\(43\) −3.53813 + 1.03889i −0.0822821 + 0.0241602i −0.322615 0.946530i \(-0.604562\pi\)
0.240332 + 0.970691i \(0.422744\pi\)
\(44\) 30.3357 13.8538i 0.689447 0.314860i
\(45\) 49.8305 + 111.440i 1.10734 + 2.47644i
\(46\) −12.2091 30.1486i −0.265414 0.655405i
\(47\) 20.2106i 0.430012i 0.976613 + 0.215006i \(0.0689771\pi\)
−0.976613 + 0.215006i \(0.931023\pi\)
\(48\) −21.0327 + 9.60530i −0.438180 + 0.200110i
\(49\) 33.0374 9.70065i 0.674232 0.197972i
\(50\) −35.0707 + 4.47692i −0.701415 + 0.0895385i
\(51\) 38.9065 60.5398i 0.762873 1.18705i
\(52\) 9.30748 8.06498i 0.178990 0.155096i
\(53\) −2.70111 18.7866i −0.0509643 0.354464i −0.999307 0.0372173i \(-0.988151\pi\)
0.948343 0.317247i \(-0.102758\pi\)
\(54\) 120.909 + 35.5022i 2.23906 + 0.657447i
\(55\) 45.6289 69.7792i 0.829616 1.26871i
\(56\) −10.6856 1.53636i −0.190815 0.0274350i
\(57\) 59.0409 129.282i 1.03581 2.26810i
\(58\) −51.3899 23.4690i −0.886032 0.404637i
\(59\) −7.82910 + 54.4526i −0.132697 + 0.922925i 0.809322 + 0.587365i \(0.199835\pi\)
−0.942019 + 0.335560i \(0.891074\pi\)
\(60\) −31.6359 + 48.3801i −0.527266 + 0.806335i
\(61\) 27.3810 93.2510i 0.448868 1.52870i −0.355559 0.934654i \(-0.615710\pi\)
0.804427 0.594051i \(-0.202472\pi\)
\(62\) −54.7326 + 7.86937i −0.882785 + 0.126925i
\(63\) 61.0236 + 70.4250i 0.968629 + 1.11786i
\(64\) −6.73003 4.32513i −0.105157 0.0675801i
\(65\) 8.90782 29.4721i 0.137043 0.453418i
\(66\) −38.4042 130.793i −0.581881 1.98171i
\(67\) 30.8015 + 67.4459i 0.459724 + 1.00666i 0.987550 + 0.157303i \(0.0502799\pi\)
−0.527826 + 0.849352i \(0.676993\pi\)
\(68\) 24.8986 0.366156
\(69\) −129.079 + 31.8584i −1.87071 + 0.461717i
\(70\) −24.6378 + 11.0169i −0.351969 + 0.157384i
\(71\) 15.0787 + 33.0178i 0.212377 + 0.465040i 0.985600 0.169094i \(-0.0540841\pi\)
−0.773223 + 0.634134i \(0.781357\pi\)
\(72\) 19.4551 + 66.2579i 0.270209 + 0.920248i
\(73\) −22.4766 19.4760i −0.307898 0.266795i 0.487181 0.873301i \(-0.338025\pi\)
−0.795079 + 0.606506i \(0.792571\pi\)
\(74\) −16.1483 + 25.1272i −0.218220 + 0.339557i
\(75\) −2.28788 + 144.495i −0.0305051 + 1.92661i
\(76\) 48.6731 6.99814i 0.640436 0.0920808i
\(77\) 17.9305 61.0657i 0.232864 0.793061i
\(78\) −27.2155 42.3482i −0.348917 0.542925i
\(79\) 83.0782 + 11.9448i 1.05162 + 0.151200i 0.646385 0.763011i \(-0.276280\pi\)
0.405237 + 0.914212i \(0.367189\pi\)
\(80\) −19.9994 0.158321i −0.249992 0.00197901i
\(81\) 122.690 268.654i 1.51469 3.31672i
\(82\) 49.4300 + 7.10697i 0.602805 + 0.0866703i
\(83\) −12.2049 + 7.84362i −0.147047 + 0.0945014i −0.612096 0.790784i \(-0.709673\pi\)
0.465049 + 0.885285i \(0.346037\pi\)
\(84\) −12.4318 + 42.3388i −0.147998 + 0.504033i
\(85\) 52.6299 33.2374i 0.619175 0.391029i
\(86\) −3.94117 + 3.41504i −0.0458276 + 0.0397098i
\(87\) −124.846 + 194.264i −1.43501 + 2.23292i
\(88\) 30.8853 35.6435i 0.350969 0.405040i
\(89\) 31.9185 + 108.704i 0.358635 + 1.22140i 0.919367 + 0.393400i \(0.128701\pi\)
−0.560733 + 0.827997i \(0.689480\pi\)
\(90\) 129.572 + 114.083i 1.43969 + 1.26759i
\(91\) 23.5029i 0.258274i
\(92\) −33.4178 31.6110i −0.363237 0.343597i
\(93\) 226.018i 2.43030i
\(94\) 11.8734 + 25.9992i 0.126313 + 0.276587i
\(95\) 93.5418 79.7668i 0.984650 0.839650i
\(96\) −21.4137 + 24.7128i −0.223060 + 0.257425i
\(97\) −142.673 91.6905i −1.47086 0.945262i −0.997940 0.0641554i \(-0.979565\pi\)
−0.472917 0.881107i \(-0.656799\pi\)
\(98\) 36.8007 31.8880i 0.375518 0.325388i
\(99\) −402.963 + 57.9373i −4.07033 + 0.585226i
\(100\) −42.4854 + 26.3627i −0.424854 + 0.263627i
\(101\) −65.7583 + 42.2603i −0.651073 + 0.418419i −0.824058 0.566505i \(-0.808295\pi\)
0.172985 + 0.984924i \(0.444659\pi\)
\(102\) 14.4837 100.736i 0.141997 0.987610i
\(103\) −28.4575 + 62.3131i −0.276286 + 0.604982i −0.996006 0.0892822i \(-0.971543\pi\)
0.719720 + 0.694264i \(0.244270\pi\)
\(104\) 7.23521 15.8429i 0.0695694 0.152336i
\(105\) 30.2406 + 106.090i 0.288006 + 1.01038i
\(106\) −14.5116 22.5805i −0.136902 0.213024i
\(107\) 2.53780 + 0.745166i 0.0237178 + 0.00696416i 0.293570 0.955938i \(-0.405157\pi\)
−0.269852 + 0.962902i \(0.586975\pi\)
\(108\) 176.396 25.3620i 1.63330 0.234833i
\(109\) 85.3967 73.9966i 0.783456 0.678868i −0.168296 0.985736i \(-0.553827\pi\)
0.951752 + 0.306868i \(0.0992811\pi\)
\(110\) 17.7034 116.571i 0.160940 1.05974i
\(111\) 92.2676 + 79.9504i 0.831240 + 0.720273i
\(112\) −14.6487 + 4.30126i −0.130792 + 0.0384041i
\(113\) −25.6108 56.0798i −0.226644 0.496281i 0.761810 0.647800i \(-0.224311\pi\)
−0.988454 + 0.151519i \(0.951584\pi\)
\(114\) 200.995i 1.76312i
\(115\) −112.835 22.2084i −0.981176 0.193117i
\(116\) −79.8963 −0.688761
\(117\) −136.754 + 62.4535i −1.16884 + 0.533791i
\(118\) 21.9186 + 74.6480i 0.185751 + 0.632610i
\(119\) 31.1166 35.9105i 0.261484 0.301769i
\(120\) −12.2743 + 80.8225i −0.102286 + 0.673521i
\(121\) 102.843 + 118.687i 0.849939 + 0.980882i
\(122\) −19.5604 136.045i −0.160331 1.11513i
\(123\) 57.5075 195.853i 0.467541 1.59230i
\(124\) −65.7857 + 42.2779i −0.530530 + 0.340951i
\(125\) −54.6123 + 112.439i −0.436898 + 0.899511i
\(126\) 119.875 + 54.7452i 0.951391 + 0.434486i
\(127\) 72.9488 + 33.3146i 0.574400 + 0.262320i 0.681366 0.731943i \(-0.261386\pi\)
−0.106966 + 0.994263i \(0.534114\pi\)
\(128\) −11.1986 1.61011i −0.0874887 0.0125790i
\(129\) 11.5242 + 17.9320i 0.0893346 + 0.139007i
\(130\) −5.85532 43.1466i −0.0450409 0.331897i
\(131\) −1.94305 13.5142i −0.0148324 0.103162i 0.981060 0.193702i \(-0.0620496\pi\)
−0.995893 + 0.0905406i \(0.971141\pi\)
\(132\) −126.242 145.691i −0.956381 1.10372i
\(133\) 50.7352 78.9455i 0.381468 0.593575i
\(134\) 79.2470 + 68.6679i 0.591395 + 0.512447i
\(135\) 339.005 289.083i 2.51115 2.14135i
\(136\) 32.0299 14.6276i 0.235514 0.107556i
\(137\) 20.9822 0.153155 0.0765775 0.997064i \(-0.475601\pi\)
0.0765775 + 0.997064i \(0.475601\pi\)
\(138\) −147.333 + 116.815i −1.06763 + 0.846487i
\(139\) 228.591 1.64454 0.822269 0.569100i \(-0.192708\pi\)
0.822269 + 0.569100i \(0.192708\pi\)
\(140\) −25.2222 + 28.6466i −0.180159 + 0.204619i
\(141\) 112.096 32.9143i 0.795005 0.233434i
\(142\) 38.7950 + 33.6160i 0.273204 + 0.236733i
\(143\) 86.3791 + 55.5125i 0.604050 + 0.388199i
\(144\) 63.9528 + 73.8055i 0.444117 + 0.512538i
\(145\) −168.882 + 106.654i −1.16471 + 0.735548i
\(146\) −40.3560 11.8496i −0.276411 0.0811617i
\(147\) −107.607 167.440i −0.732021 1.13905i
\(148\) −6.01150 + 41.8109i −0.0406183 + 0.282506i
\(149\) −35.3123 16.1266i −0.236995 0.108232i 0.293378 0.955997i \(-0.405221\pi\)
−0.530373 + 0.847765i \(0.677948\pi\)
\(150\) 81.9458 + 187.225i 0.546305 + 1.24817i
\(151\) 0.442458 3.07736i 0.00293019 0.0203799i −0.988304 0.152497i \(-0.951268\pi\)
0.991234 + 0.132117i \(0.0421776\pi\)
\(152\) 58.5025 37.5973i 0.384885 0.247350i
\(153\) −291.634 85.6314i −1.90610 0.559682i
\(154\) −12.8092 89.0897i −0.0831764 0.578505i
\(155\) −82.6184 + 177.184i −0.533022 + 1.14312i
\(156\) −59.8894 38.4885i −0.383906 0.246721i
\(157\) −52.4465 + 60.5265i −0.334054 + 0.385519i −0.897781 0.440442i \(-0.854822\pi\)
0.563727 + 0.825961i \(0.309367\pi\)
\(158\) 113.890 33.4412i 0.720825 0.211653i
\(159\) −99.7989 + 45.5767i −0.627666 + 0.286646i
\(160\) −25.8205 + 11.5457i −0.161378 + 0.0721605i
\(161\) −87.3548 + 8.69216i −0.542576 + 0.0539886i
\(162\) 417.679i 2.57827i
\(163\) 120.572 55.0633i 0.739704 0.337811i −0.00967467 0.999953i \(-0.503080\pi\)
0.749379 + 0.662142i \(0.230352\pi\)
\(164\) 67.7627 19.8969i 0.413187 0.121323i
\(165\) −461.332 139.435i −2.79595 0.845063i
\(166\) −11.0926 + 17.2603i −0.0668226 + 0.103978i
\(167\) −80.8209 + 70.0317i −0.483957 + 0.419351i −0.862365 0.506288i \(-0.831017\pi\)
0.378407 + 0.925639i \(0.376472\pi\)
\(168\) 8.88100 + 61.7687i 0.0528631 + 0.367671i
\(169\) −125.772 36.9300i −0.744213 0.218521i
\(170\) 48.1773 73.6764i 0.283396 0.433391i
\(171\) −594.169 85.4286i −3.47467 0.499583i
\(172\) −3.06369 + 6.70854i −0.0178121 + 0.0390031i
\(173\) 203.244 + 92.8186i 1.17482 + 0.536524i 0.904595 0.426273i \(-0.140174\pi\)
0.270228 + 0.962796i \(0.412901\pi\)
\(174\) −46.4762 + 323.249i −0.267105 + 1.85775i
\(175\) −15.0732 + 94.2217i −0.0861326 + 0.538410i
\(176\) 18.7912 63.9970i 0.106768 0.363619i
\(177\) 314.765 45.2564i 1.77834 0.255686i
\(178\) 104.923 + 121.087i 0.589453 + 0.680265i
\(179\) −38.3478 24.6447i −0.214234 0.137680i 0.429123 0.903246i \(-0.358823\pi\)
−0.643357 + 0.765566i \(0.722459\pi\)
\(180\) 233.705 + 70.6363i 1.29836 + 0.392424i
\(181\) −51.2957 174.697i −0.283402 0.965178i −0.970999 0.239085i \(-0.923152\pi\)
0.687597 0.726093i \(-0.258666\pi\)
\(182\) −13.8076 30.2345i −0.0758662 0.166124i
\(183\) −561.798 −3.06993
\(184\) −61.5601 21.0323i −0.334566 0.114306i
\(185\) 43.1070 + 96.4034i 0.233011 + 0.521099i
\(186\) 132.782 + 290.753i 0.713884 + 1.56319i
\(187\) 58.4844 + 199.180i 0.312751 + 1.06513i
\(188\) 30.5483 + 26.4702i 0.162491 + 0.140799i
\(189\) 183.869 286.107i 0.972854 1.51379i
\(190\) 73.4716 157.568i 0.386693 0.829303i
\(191\) −240.417 + 34.5667i −1.25873 + 0.180978i −0.739206 0.673480i \(-0.764799\pi\)
−0.519521 + 0.854457i \(0.673890\pi\)
\(192\) −13.0285 + 44.3711i −0.0678570 + 0.231100i
\(193\) 145.200 + 225.935i 0.752331 + 1.17065i 0.980402 + 0.197005i \(0.0631217\pi\)
−0.228071 + 0.973644i \(0.573242\pi\)
\(194\) −237.404 34.1335i −1.22373 0.175946i
\(195\) −177.971 1.40887i −0.912672 0.00722497i
\(196\) 28.6072 62.6411i 0.145955 0.319598i
\(197\) −301.100 43.2916i −1.52842 0.219754i −0.673766 0.738945i \(-0.735324\pi\)
−0.854658 + 0.519191i \(0.826233\pi\)
\(198\) −484.340 + 311.266i −2.44616 + 1.57205i
\(199\) 58.6417 199.715i 0.294682 1.00359i −0.670477 0.741930i \(-0.733911\pi\)
0.965159 0.261664i \(-0.0842713\pi\)
\(200\) −39.1660 + 58.8729i −0.195830 + 0.294365i
\(201\) 323.919 280.677i 1.61154 1.39640i
\(202\) −59.7651 + 92.9963i −0.295867 + 0.460378i
\(203\) −99.8490 + 115.232i −0.491867 + 0.567645i
\(204\) −40.5491 138.097i −0.198770 0.676948i
\(205\) 116.674 132.515i 0.569141 0.646413i
\(206\) 96.8788i 0.470286i
\(207\) 282.701 + 485.185i 1.36570 + 2.34389i
\(208\) 24.6311i 0.118419i
\(209\) 170.311 + 372.929i 0.814884 + 1.78435i
\(210\) 101.228 + 118.709i 0.482039 + 0.565283i
\(211\) 137.216 158.356i 0.650315 0.750503i −0.330848 0.943684i \(-0.607335\pi\)
0.981163 + 0.193181i \(0.0618803\pi\)
\(212\) −31.9337 20.5225i −0.150630 0.0968043i
\(213\) 158.573 137.404i 0.744474 0.645090i
\(214\) 3.70244 0.532330i 0.0173011 0.00248752i
\(215\) 2.47938 + 18.2700i 0.0115320 + 0.0849769i
\(216\) 212.019 136.256i 0.981569 0.630816i
\(217\) −21.2385 + 147.717i −0.0978731 + 0.680722i
\(218\) 66.3835 145.360i 0.304511 0.666787i
\(219\) −71.4172 + 156.382i −0.326106 + 0.714072i
\(220\) −45.7100 160.359i −0.207773 0.728906i
\(221\) 41.4456 + 64.4906i 0.187537 + 0.291813i
\(222\) 165.664 + 48.6434i 0.746234 + 0.219114i
\(223\) 372.976 53.6258i 1.67254 0.240475i 0.760134 0.649767i \(-0.225133\pi\)
0.912403 + 0.409292i \(0.134224\pi\)
\(224\) −16.3174 + 14.1391i −0.0728456 + 0.0631210i
\(225\) 588.292 162.667i 2.61463 0.722964i
\(226\) −65.8921 57.0959i −0.291558 0.252637i
\(227\) −141.940 + 41.6774i −0.625288 + 0.183601i −0.579001 0.815327i \(-0.696557\pi\)
−0.0462871 + 0.998928i \(0.514739\pi\)
\(228\) −118.082 258.563i −0.517903 1.13405i
\(229\) 194.730i 0.850351i 0.905111 + 0.425175i \(0.139788\pi\)
−0.905111 + 0.425175i \(0.860212\pi\)
\(230\) −158.200 + 37.7198i −0.687826 + 0.163999i
\(231\) −367.895 −1.59262
\(232\) −102.780 + 46.9379i −0.443016 + 0.202319i
\(233\) −41.9651 142.920i −0.180108 0.613391i −0.999210 0.0397429i \(-0.987346\pi\)
0.819102 0.573648i \(-0.194472\pi\)
\(234\) −139.232 + 160.682i −0.595008 + 0.686676i
\(235\) 99.9073 + 15.1727i 0.425137 + 0.0645645i
\(236\) 72.0511 + 83.1514i 0.305301 + 0.352336i
\(237\) −69.0476 480.237i −0.291340 2.02632i
\(238\) 18.9320 64.4763i 0.0795460 0.270909i
\(239\) 101.483 65.2193i 0.424616 0.272884i −0.310833 0.950465i \(-0.600608\pi\)
0.735449 + 0.677581i \(0.236971\pi\)
\(240\) 31.6922 + 111.182i 0.132051 + 0.463259i
\(241\) −179.755 82.0916i −0.745873 0.340629i 0.00596001 0.999982i \(-0.498103\pi\)
−0.751833 + 0.659353i \(0.770830\pi\)
\(242\) 202.025 + 92.2617i 0.834814 + 0.381247i
\(243\) −896.087 128.838i −3.68760 0.530197i
\(244\) −105.087 163.519i −0.430686 0.670160i
\(245\) −23.1513 170.597i −0.0944950 0.696314i
\(246\) −41.0821 285.732i −0.167000 1.16151i
\(247\) 99.1461 + 114.421i 0.401401 + 0.463242i
\(248\) −59.7900 + 93.0350i −0.241089 + 0.375141i
\(249\) 63.3803 + 54.9193i 0.254539 + 0.220559i
\(250\) −4.19777 + 176.727i −0.0167911 + 0.706907i
\(251\) −130.163 + 59.4434i −0.518578 + 0.236826i −0.657470 0.753481i \(-0.728373\pi\)
0.138892 + 0.990308i \(0.455646\pi\)
\(252\) 186.371 0.739569
\(253\) 174.381 341.581i 0.689251 1.35012i
\(254\) 113.414 0.446513
\(255\) −270.059 237.776i −1.05906 0.932457i
\(256\) −15.3519 + 4.50772i −0.0599683 + 0.0176083i
\(257\) 346.782 + 300.488i 1.34935 + 1.16921i 0.969761 + 0.244058i \(0.0784787\pi\)
0.379585 + 0.925157i \(0.376067\pi\)
\(258\) 25.3596 + 16.2976i 0.0982931 + 0.0631691i
\(259\) 52.7898 + 60.9227i 0.203822 + 0.235223i
\(260\) −32.8804 52.0645i −0.126463 0.200248i
\(261\) 935.814 + 274.780i 3.58549 + 1.05280i
\(262\) −10.4390 16.2433i −0.0398433 0.0619974i
\(263\) −4.68619 + 32.5931i −0.0178182 + 0.123928i −0.996789 0.0800716i \(-0.974485\pi\)
0.978971 + 0.204000i \(0.0653942\pi\)
\(264\) −247.992 113.254i −0.939362 0.428992i
\(265\) −94.8960 0.751225i −0.358098 0.00283481i
\(266\) 18.8871 131.363i 0.0710042 0.493845i
\(267\) 550.935 354.065i 2.06343 1.32608i
\(268\) 142.286 + 41.7789i 0.530917 + 0.155891i
\(269\) 37.2780 + 259.274i 0.138580 + 0.963844i 0.933869 + 0.357614i \(0.116410\pi\)
−0.795289 + 0.606230i \(0.792681\pi\)
\(270\) 266.269 571.040i 0.986180 2.11496i
\(271\) 271.698 + 174.610i 1.00258 + 0.644317i 0.935462 0.353428i \(-0.114984\pi\)
0.0671151 + 0.997745i \(0.478621\pi\)
\(272\) 32.6103 37.6342i 0.119891 0.138361i
\(273\) −130.357 + 38.2761i −0.477496 + 0.140206i
\(274\) 26.9919 12.3268i 0.0985104 0.0449882i
\(275\) −310.686 277.943i −1.12977 1.01070i
\(276\) −120.904 + 236.829i −0.438056 + 0.858074i
\(277\) 144.493i 0.521635i −0.965388 0.260817i \(-0.916008\pi\)
0.965388 0.260817i \(-0.0839920\pi\)
\(278\) 294.062 134.294i 1.05778 0.483071i
\(279\) 915.940 268.944i 3.28294 0.963958i
\(280\) −15.6167 + 51.6691i −0.0557741 + 0.184532i
\(281\) −7.95101 + 12.3720i −0.0282954 + 0.0440285i −0.855113 0.518441i \(-0.826512\pi\)
0.826818 + 0.562470i \(0.190149\pi\)
\(282\) 124.865 108.196i 0.442783 0.383674i
\(283\) 47.6910 + 331.698i 0.168519 + 1.17208i 0.881947 + 0.471349i \(0.156233\pi\)
−0.713427 + 0.700729i \(0.752858\pi\)
\(284\) 69.6554 + 20.4527i 0.245265 + 0.0720164i
\(285\) −594.757 388.914i −2.08687 1.36461i
\(286\) 143.732 + 20.6655i 0.502560 + 0.0722572i
\(287\) 55.9886 122.598i 0.195082 0.427170i
\(288\) 125.629 + 57.3731i 0.436213 + 0.199212i
\(289\) 19.0723 132.651i 0.0659940 0.458999i
\(290\) −154.594 + 236.418i −0.533084 + 0.815233i
\(291\) −276.198 + 940.645i −0.949135 + 3.23246i
\(292\) −58.8761 + 8.46510i −0.201630 + 0.0289901i
\(293\) 166.553 + 192.212i 0.568440 + 0.656015i 0.965079 0.261960i \(-0.0843688\pi\)
−0.396638 + 0.917975i \(0.629823\pi\)
\(294\) −236.796 152.179i −0.805428 0.517617i
\(295\) 263.299 + 79.5809i 0.892539 + 0.269766i
\(296\) 16.8300 + 57.3178i 0.0568582 + 0.193641i
\(297\) 617.223 + 1351.53i 2.07819 + 4.55061i
\(298\) −54.9003 −0.184229
\(299\) 26.2500 139.175i 0.0877928 0.465468i
\(300\) 215.408 + 192.707i 0.718027 + 0.642356i
\(301\) 5.84672 + 12.8025i 0.0194243 + 0.0425334i
\(302\) −1.23872 4.21870i −0.00410173 0.0139692i
\(303\) 341.484 + 295.898i 1.12701 + 0.976560i
\(304\) 53.1706 82.7350i 0.174903 0.272155i
\(305\) −440.414 205.359i −1.44398 0.673308i
\(306\) −425.469 + 61.1732i −1.39042 + 0.199912i
\(307\) 112.595 383.465i 0.366760 1.24907i −0.545030 0.838416i \(-0.683482\pi\)
0.911791 0.410655i \(-0.134700\pi\)
\(308\) −68.8168 107.081i −0.223431 0.347666i
\(309\) 391.958 + 56.3550i 1.26847 + 0.182379i
\(310\) −2.18861 + 276.469i −0.00706002 + 0.891835i
\(311\) −61.3111 + 134.253i −0.197142 + 0.431680i −0.982224 0.187711i \(-0.939893\pi\)
0.785082 + 0.619391i \(0.212621\pi\)
\(312\) −99.6540 14.3281i −0.319404 0.0459233i
\(313\) −101.892 + 65.4819i −0.325533 + 0.209208i −0.693191 0.720753i \(-0.743796\pi\)
0.367658 + 0.929961i \(0.380160\pi\)
\(314\) −31.9095 + 108.674i −0.101623 + 0.346095i
\(315\) 393.945 248.789i 1.25062 0.789807i
\(316\) 126.864 109.928i 0.401468 0.347874i
\(317\) −120.408 + 187.358i −0.379834 + 0.591034i −0.977558 0.210669i \(-0.932436\pi\)
0.597723 + 0.801703i \(0.296072\pi\)
\(318\) −101.607 + 117.261i −0.319519 + 0.368745i
\(319\) −187.669 639.140i −0.588303 2.00357i
\(320\) −26.4329 + 30.0217i −0.0826028 + 0.0938177i
\(321\) 15.2892i 0.0476299i
\(322\) −107.268 + 62.5014i −0.333130 + 0.194104i
\(323\) 306.089i 0.947644i
\(324\) −245.381 537.309i −0.757347 1.65836i
\(325\) −139.003 66.1598i −0.427701 0.203569i
\(326\) 122.756 141.668i 0.376553 0.434565i
\(327\) −549.488 353.135i −1.68039 1.07992i
\(328\) 75.4817 65.4053i 0.230127 0.199406i
\(329\) 76.3543 10.9781i 0.232080 0.0333681i
\(330\) −675.380 + 91.6542i −2.04661 + 0.277740i
\(331\) −412.486 + 265.089i −1.24618 + 0.800872i −0.986331 0.164777i \(-0.947310\pi\)
−0.259851 + 0.965649i \(0.583673\pi\)
\(332\) −4.12941 + 28.7207i −0.0124380 + 0.0865080i
\(333\) 214.208 469.050i 0.643268 1.40856i
\(334\) −62.8265 + 137.571i −0.188103 + 0.411889i
\(335\) 356.530 101.628i 1.06427 0.303367i
\(336\) 47.7129 + 74.2427i 0.142003 + 0.220960i
\(337\) 265.423 + 77.9352i 0.787606 + 0.231262i 0.650713 0.759324i \(-0.274470\pi\)
0.136893 + 0.990586i \(0.456288\pi\)
\(338\) −183.491 + 26.3820i −0.542872 + 0.0780532i
\(339\) −269.332 + 233.377i −0.794488 + 0.688428i
\(340\) 18.6921 123.082i 0.0549768 0.362005i
\(341\) −492.731 426.954i −1.44496 1.25206i
\(342\) −814.536 + 239.169i −2.38168 + 0.699325i
\(343\) −132.286 289.666i −0.385673 0.844507i
\(344\) 10.4298i 0.0303193i
\(345\) 60.5831 + 661.996i 0.175603 + 1.91883i
\(346\) 315.986 0.913254
\(347\) −390.792 + 178.469i −1.12620 + 0.514320i −0.889351 0.457226i \(-0.848843\pi\)
−0.236852 + 0.971546i \(0.576116\pi\)
\(348\) 130.117 + 443.136i 0.373898 + 1.27338i
\(349\) −16.7211 + 19.2972i −0.0479114 + 0.0552927i −0.779199 0.626776i \(-0.784374\pi\)
0.731288 + 0.682069i \(0.238920\pi\)
\(350\) 35.9635 + 130.063i 0.102753 + 0.371610i
\(351\) 359.315 + 414.672i 1.02369 + 1.18140i
\(352\) −13.4240 93.3661i −0.0381364 0.265245i
\(353\) −64.2914 + 218.956i −0.182129 + 0.620273i 0.816924 + 0.576746i \(0.195678\pi\)
−0.999052 + 0.0435271i \(0.986141\pi\)
\(354\) 378.331 243.139i 1.06873 0.686832i
\(355\) 174.538 49.7516i 0.491655 0.140145i
\(356\) 206.111 + 94.1277i 0.578963 + 0.264404i
\(357\) −249.849 114.102i −0.699857 0.319614i
\(358\) −63.8096 9.17443i −0.178239 0.0256269i
\(359\) −37.0027 57.5774i −0.103072 0.160383i 0.785887 0.618370i \(-0.212207\pi\)
−0.888959 + 0.457988i \(0.848570\pi\)
\(360\) 342.139 46.4309i 0.950387 0.128975i
\(361\) 34.6554 + 241.033i 0.0959983 + 0.667683i
\(362\) −168.620 194.597i −0.465800 0.537562i
\(363\) 490.797 763.695i 1.35206 2.10384i
\(364\) −35.5247 30.7823i −0.0975953 0.0845668i
\(365\) −113.150 + 96.4875i −0.310000 + 0.264349i
\(366\) −722.705 + 330.048i −1.97460 + 0.901771i
\(367\) 663.038 1.80664 0.903322 0.428964i \(-0.141121\pi\)
0.903322 + 0.428964i \(0.141121\pi\)
\(368\) −91.5479 + 9.10940i −0.248771 + 0.0247538i
\(369\) −862.124 −2.33638
\(370\) 112.089 + 98.6899i 0.302943 + 0.266730i
\(371\) −69.5075 + 20.4092i −0.187352 + 0.0550114i
\(372\) 341.626 + 296.021i 0.918350 + 0.795755i
\(373\) 120.397 + 77.3744i 0.322780 + 0.207438i 0.691989 0.721908i \(-0.256735\pi\)
−0.369209 + 0.929347i \(0.620371\pi\)
\(374\) 192.250 + 221.869i 0.514038 + 0.593231i
\(375\) 712.570 + 119.787i 1.90019 + 0.319431i
\(376\) 54.8486 + 16.1050i 0.145874 + 0.0428324i
\(377\) −132.993 206.942i −0.352767 0.548917i
\(378\) 68.4488 476.072i 0.181082 1.25945i
\(379\) 418.133 + 190.955i 1.10325 + 0.503839i 0.881939 0.471363i \(-0.156238\pi\)
0.221315 + 0.975202i \(0.428965\pi\)
\(380\) 1.94630 245.861i 0.00512185 0.647001i
\(381\) 65.9738 458.858i 0.173159 1.20435i
\(382\) −288.968 + 185.709i −0.756461 + 0.486148i
\(383\) −161.850 47.5233i −0.422584 0.124082i 0.0635246 0.997980i \(-0.479766\pi\)
−0.486109 + 0.873898i \(0.661584\pi\)
\(384\) 9.30730 + 64.7337i 0.0242378 + 0.168577i
\(385\) −288.406 134.480i −0.749108 0.349299i
\(386\) 319.521 + 205.344i 0.827774 + 0.531978i
\(387\) 58.9565 68.0395i 0.152342 0.175813i
\(388\) −325.452 + 95.5614i −0.838794 + 0.246292i
\(389\) −159.116 + 72.6658i −0.409038 + 0.186802i −0.609298 0.792941i \(-0.708549\pi\)
0.200260 + 0.979743i \(0.435821\pi\)
\(390\) −229.772 + 102.743i −0.589159 + 0.263444i
\(391\) 224.368 177.894i 0.573831 0.454972i
\(392\) 97.3887i 0.248441i
\(393\) −71.7905 + 32.7856i −0.182673 + 0.0834240i
\(394\) −412.772 + 121.201i −1.04764 + 0.307616i
\(395\) 121.416 401.714i 0.307383 1.01700i
\(396\) −440.197 + 684.960i −1.11161 + 1.72970i
\(397\) −578.653 + 501.406i −1.45757 + 1.26299i −0.555409 + 0.831577i \(0.687438\pi\)
−0.902156 + 0.431410i \(0.858016\pi\)
\(398\) −41.8923 291.368i −0.105257 0.732080i
\(399\) −520.488 152.829i −1.30448 0.383031i
\(400\) −15.7967 + 98.7444i −0.0394919 + 0.246861i
\(401\) 137.452 + 19.7626i 0.342774 + 0.0492834i 0.311552 0.950229i \(-0.399151\pi\)
0.0312215 + 0.999512i \(0.490060\pi\)
\(402\) 251.800 551.365i 0.626368 1.37155i
\(403\) −219.010 100.019i −0.543450 0.248185i
\(404\) −22.2487 + 154.743i −0.0550710 + 0.383027i
\(405\) −1235.94 808.184i −3.05170 1.99552i
\(406\) −60.7501 + 206.896i −0.149631 + 0.509596i
\(407\) −348.592 + 50.1200i −0.856491 + 0.123145i
\(408\) −133.293 153.828i −0.326699 0.377031i
\(409\) −530.417 340.878i −1.29686 0.833444i −0.303997 0.952673i \(-0.598321\pi\)
−0.992867 + 0.119229i \(0.961958\pi\)
\(410\) 72.2406 239.013i 0.176196 0.582959i
\(411\) −34.1710 116.376i −0.0831411 0.283153i
\(412\) 56.9149 + 124.626i 0.138143 + 0.302491i
\(413\) 209.971 0.508405
\(414\) 648.709 + 458.066i 1.56693 + 1.10644i
\(415\) 29.6109 + 66.2212i 0.0713516 + 0.159569i
\(416\) −14.4704 31.6858i −0.0347847 0.0761678i
\(417\) −372.275 1267.85i −0.892746 3.04041i
\(418\) 438.180 + 379.686i 1.04828 + 0.908339i
\(419\) −150.391 + 234.014i −0.358930 + 0.558505i −0.973017 0.230733i \(-0.925888\pi\)
0.614088 + 0.789238i \(0.289524\pi\)
\(420\) 199.961 + 93.2393i 0.476098 + 0.221998i
\(421\) −46.9239 + 6.74664i −0.111458 + 0.0160253i −0.197818 0.980239i \(-0.563386\pi\)
0.0863600 + 0.996264i \(0.472476\pi\)
\(422\) 83.4852 284.324i 0.197832 0.673754i
\(423\) −266.771 415.103i −0.630664 0.981332i
\(424\) −53.1366 7.63989i −0.125322 0.0180186i
\(425\) −124.793 285.119i −0.293629 0.670867i
\(426\) 123.267 269.918i 0.289360 0.633611i
\(427\) −367.170 52.7910i −0.859882 0.123632i
\(428\) 4.45013 2.85992i 0.0103975 0.00668207i
\(429\) 167.220 569.498i 0.389789 1.32750i
\(430\) 13.9229 + 22.0462i 0.0323788 + 0.0512703i
\(431\) −91.9213 + 79.6503i −0.213275 + 0.184803i −0.754946 0.655787i \(-0.772337\pi\)
0.541672 + 0.840590i \(0.317792\pi\)
\(432\) 192.695 299.840i 0.446054 0.694074i
\(433\) 525.241 606.160i 1.21303 1.39991i 0.321519 0.946903i \(-0.395807\pi\)
0.891508 0.453005i \(-0.149648\pi\)
\(434\) 59.4600 + 202.502i 0.137005 + 0.466595i
\(435\) 866.583 + 762.993i 1.99215 + 1.75401i
\(436\) 225.992i 0.518330i
\(437\) 388.606 410.819i 0.889260 0.940088i
\(438\) 243.128i 0.555087i
\(439\) 54.2440 + 118.778i 0.123563 + 0.270564i 0.961297 0.275513i \(-0.0888477\pi\)
−0.837735 + 0.546077i \(0.816120\pi\)
\(440\) −153.011 179.434i −0.347752 0.407806i
\(441\) −550.508 + 635.320i −1.24832 + 1.44063i
\(442\) 91.2035 + 58.6129i 0.206343 + 0.132608i
\(443\) 225.655 195.531i 0.509379 0.441379i −0.361864 0.932231i \(-0.617860\pi\)
0.871243 + 0.490851i \(0.163314\pi\)
\(444\) 241.690 34.7497i 0.544346 0.0782652i
\(445\) 561.322 76.1757i 1.26140 0.171181i
\(446\) 448.297 288.103i 1.00515 0.645971i
\(447\) −31.9359 + 222.119i −0.0714449 + 0.496910i
\(448\) −12.6844 + 27.7750i −0.0283134 + 0.0619977i
\(449\) 0.502642 1.10063i 0.00111947 0.00245130i −0.909071 0.416640i \(-0.863207\pi\)
0.910191 + 0.414189i \(0.135935\pi\)
\(450\) 661.222 554.870i 1.46938 1.23304i
\(451\) 318.336 + 495.340i 0.705844 + 1.09832i
\(452\) −118.308 34.7382i −0.261742 0.0768545i
\(453\) −17.7888 + 2.55765i −0.0392689 + 0.00564602i
\(454\) −158.109 + 137.002i −0.348258 + 0.301767i
\(455\) −116.183 17.6444i −0.255346 0.0387788i
\(456\) −303.804 263.248i −0.666238 0.577298i
\(457\) −736.337 + 216.208i −1.61124 + 0.473103i −0.958645 0.284604i \(-0.908138\pi\)
−0.652595 + 0.757707i \(0.726320\pi\)
\(458\) 114.401 + 250.504i 0.249784 + 0.546952i
\(459\) 1109.30i 2.41677i
\(460\) −181.351 + 141.463i −0.394241 + 0.307529i
\(461\) −832.544 −1.80595 −0.902976 0.429692i \(-0.858622\pi\)
−0.902976 + 0.429692i \(0.858622\pi\)
\(462\) −473.266 + 216.133i −1.02438 + 0.467821i
\(463\) −106.190 361.649i −0.229351 0.781099i −0.991088 0.133212i \(-0.957471\pi\)
0.761736 0.647887i \(-0.224347\pi\)
\(464\) −104.642 + 120.763i −0.225521 + 0.260266i
\(465\) 1117.28 + 169.678i 2.40275 + 0.364900i
\(466\) −137.948 159.200i −0.296026 0.341632i
\(467\) −27.2409 189.464i −0.0583316 0.405705i −0.997978 0.0635585i \(-0.979755\pi\)
0.939646 0.342147i \(-0.111154\pi\)
\(468\) −84.7114 + 288.501i −0.181007 + 0.616454i
\(469\) 238.076 153.002i 0.507624 0.326230i
\(470\) 137.436 39.1758i 0.292417 0.0833527i
\(471\) 421.116 + 192.317i 0.894090 + 0.408317i
\(472\) 141.538 + 64.6381i 0.299868 + 0.136945i
\(473\) −60.8621 8.75064i −0.128672 0.0185003i
\(474\) −370.956 577.219i −0.782607 1.21776i
\(475\) −324.088 522.290i −0.682290 1.09956i
\(476\) −13.5246 94.0655i −0.0284130 0.197617i
\(477\) 303.453 + 350.203i 0.636170 + 0.734179i
\(478\) 92.2340 143.519i 0.192958 0.300249i
\(479\) −56.4660 48.9281i −0.117883 0.102146i 0.593925 0.804521i \(-0.297578\pi\)
−0.711808 + 0.702374i \(0.752123\pi\)
\(480\) 106.087 + 124.408i 0.221015 + 0.259182i
\(481\) −118.302 + 54.0268i −0.245950 + 0.112322i
\(482\) −279.467 −0.579808
\(483\) 190.473 + 470.348i 0.394354 + 0.973805i
\(484\) 314.090 0.648947
\(485\) −560.364 + 636.444i −1.15539 + 1.31226i
\(486\) −1228.43 + 360.699i −2.52763 + 0.742180i
\(487\) −360.559 312.426i −0.740368 0.641532i 0.200738 0.979645i \(-0.435666\pi\)
−0.941106 + 0.338113i \(0.890211\pi\)
\(488\) −231.251 148.616i −0.473875 0.304541i
\(489\) −501.761 579.064i −1.02610 1.18418i
\(490\) −130.005 205.857i −0.265317 0.420117i
\(491\) 530.193 + 155.679i 1.07982 + 0.317065i 0.772808 0.634640i \(-0.218852\pi\)
0.307015 + 0.951705i \(0.400670\pi\)
\(492\) −220.712 343.435i −0.448602 0.698038i
\(493\) 70.7770 492.265i 0.143564 0.998509i
\(494\) 194.763 + 88.9455i 0.394258 + 0.180052i
\(495\) −16.1134 + 2035.47i −0.0325523 + 4.11206i
\(496\) −22.2579 + 154.807i −0.0448749 + 0.312112i
\(497\) 116.549 74.9014i 0.234505 0.150707i
\(498\) 113.798 + 33.4140i 0.228509 + 0.0670963i
\(499\) −0.383912 2.67017i −0.000769363 0.00535103i 0.989433 0.144990i \(-0.0463149\pi\)
−0.990203 + 0.139639i \(0.955406\pi\)
\(500\) 98.4244 + 229.810i 0.196849 + 0.459620i
\(501\) 520.045 + 334.213i 1.03801 + 0.667091i
\(502\) −132.521 + 152.938i −0.263987 + 0.304657i
\(503\) 301.464 88.5179i 0.599333 0.175980i 0.0320268 0.999487i \(-0.489804\pi\)
0.567306 + 0.823507i \(0.307986\pi\)
\(504\) 239.751 109.490i 0.475696 0.217243i
\(505\) 159.540 + 356.791i 0.315920 + 0.706516i
\(506\) 23.6520 541.860i 0.0467431 1.07087i
\(507\) 757.724i 1.49452i
\(508\) 145.898 66.6292i 0.287200 0.131160i
\(509\) −689.631 + 202.494i −1.35487 + 0.397827i −0.876953 0.480576i \(-0.840428\pi\)
−0.477921 + 0.878403i \(0.658610\pi\)
\(510\) −487.098 147.223i −0.955094 0.288673i
\(511\) −61.3704 + 95.4942i −0.120099 + 0.186877i
\(512\) −17.1007 + 14.8178i −0.0333997 + 0.0289410i
\(513\) 311.785 + 2168.51i 0.607768 + 4.22712i
\(514\) 622.637 + 182.823i 1.21136 + 0.355686i
\(515\) 286.670 + 187.455i 0.556640 + 0.363989i
\(516\) 42.1976 + 6.06710i 0.0817783 + 0.0117579i
\(517\) −139.997 + 306.550i −0.270787 + 0.592941i
\(518\) 103.701 + 47.3585i 0.200194 + 0.0914257i
\(519\) 183.811 1278.43i 0.354164 2.46326i
\(520\) −72.8849 47.6597i −0.140163 0.0916533i
\(521\) −123.846 + 421.780i −0.237708 + 0.809558i 0.751078 + 0.660214i \(0.229534\pi\)
−0.988785 + 0.149344i \(0.952284\pi\)
\(522\) 1365.27 196.297i 2.61547 0.376047i
\(523\) 161.006 + 185.811i 0.307850 + 0.355278i 0.888501 0.458874i \(-0.151747\pi\)
−0.580651 + 0.814153i \(0.697202\pi\)
\(524\) −22.9715 14.7629i −0.0438388 0.0281735i
\(525\) 547.138 69.8444i 1.04217 0.133037i
\(526\) 13.1196 + 44.6813i 0.0249422 + 0.0849455i
\(527\) −202.210 442.778i −0.383700 0.840185i
\(528\) −385.555 −0.730217
\(529\) −526.988 46.0935i −0.996197 0.0871333i
\(530\) −122.517 + 54.7837i −0.231164 + 0.103365i
\(531\) −557.949 1221.74i −1.05075 2.30082i
\(532\) −52.8771 180.083i −0.0993931 0.338502i
\(533\) 164.332 + 142.394i 0.308314 + 0.267156i
\(534\) 500.723 779.140i 0.937684 1.45906i
\(535\) 5.58879 11.9857i 0.0104463 0.0224033i
\(536\) 207.583 29.8459i 0.387282 0.0556827i
\(537\) −74.2369 + 252.828i −0.138244 + 0.470815i
\(538\) 200.275 + 311.634i 0.372258 + 0.579244i
\(539\) 568.301 + 81.7093i 1.05436 + 0.151594i
\(540\) 7.05360 891.023i 0.0130622 1.65004i
\(541\) −149.182 + 326.664i −0.275753 + 0.603815i −0.995945 0.0899592i \(-0.971326\pi\)
0.720192 + 0.693775i \(0.244054\pi\)
\(542\) 452.097 + 65.0018i 0.834128 + 0.119929i
\(543\) −885.400 + 569.012i −1.63057 + 1.04790i
\(544\) 19.8407 67.5713i 0.0364719 0.124212i
\(545\) −301.679 477.694i −0.553540 0.876503i
\(546\) −145.206 + 125.821i −0.265945 + 0.230442i
\(547\) 89.8439 139.800i 0.164248 0.255575i −0.749367 0.662155i \(-0.769642\pi\)
0.913616 + 0.406579i \(0.133279\pi\)
\(548\) 27.4809 31.7146i 0.0501476 0.0578734i
\(549\) 668.497 + 2276.69i 1.21766 + 4.14698i
\(550\) −562.958 175.027i −1.02356 0.318231i
\(551\) 982.199i 1.78257i
\(552\) −16.3987 + 375.689i −0.0297077 + 0.680595i
\(553\) 320.353i 0.579299i
\(554\) −84.8874 185.878i −0.153226 0.335519i
\(555\) 464.488 396.087i 0.836916 0.713671i
\(556\) 299.390 345.515i 0.538471 0.621429i
\(557\) −319.500 205.330i −0.573608 0.368636i 0.221447 0.975172i \(-0.428922\pi\)
−0.795056 + 0.606537i \(0.792558\pi\)
\(558\) 1020.28 884.075i 1.82845 1.58436i
\(559\) −22.4757 + 3.23152i −0.0402070 + 0.00578089i
\(560\) 10.2652 + 75.6424i 0.0183308 + 0.135076i
\(561\) 1009.48 648.754i 1.79943 1.15642i
\(562\) −2.95991 + 20.5866i −0.00526675 + 0.0366310i
\(563\) −2.72014 + 5.95627i −0.00483150 + 0.0105795i −0.912032 0.410118i \(-0.865487\pi\)
0.907201 + 0.420698i \(0.138215\pi\)
\(564\) 97.0642 212.541i 0.172100 0.376846i
\(565\) −296.447 + 84.5016i −0.524685 + 0.149560i
\(566\) 256.218 + 398.683i 0.452682 + 0.704387i
\(567\) −1081.60 317.587i −1.90759 0.560119i
\(568\) 101.621 14.6109i 0.178911 0.0257235i
\(569\) 443.936 384.672i 0.780203 0.676050i −0.170774 0.985310i \(-0.554627\pi\)
0.950977 + 0.309260i \(0.100081\pi\)
\(570\) −993.584 150.893i −1.74313 0.264725i
\(571\) −738.606 640.006i −1.29353 1.12085i −0.985536 0.169463i \(-0.945797\pi\)
−0.307995 0.951388i \(-0.599658\pi\)
\(572\) 197.040 57.8560i 0.344475 0.101147i
\(573\) 583.255 + 1277.15i 1.01790 + 2.22889i
\(574\) 190.604i 0.332063i
\(575\) −194.492 + 541.108i −0.338247 + 0.941057i
\(576\) 195.317 0.339093
\(577\) 446.167 203.758i 0.773254 0.353133i 0.0106031 0.999944i \(-0.496625\pi\)
0.762651 + 0.646811i \(0.223898\pi\)
\(578\) −53.3955 181.848i −0.0923797 0.314616i
\(579\) 1016.66 1173.29i 1.75589 2.02640i
\(580\) −59.9805 + 394.953i −0.103415 + 0.680954i
\(581\) 36.2622 + 41.8489i 0.0624135 + 0.0720290i
\(582\) 197.310 + 1372.32i 0.339021 + 2.35794i
\(583\) 89.1633 303.662i 0.152939 0.520862i
\(584\) −70.7658 + 45.4784i −0.121174 + 0.0778741i
\(585\) 206.062 + 722.905i 0.352244 + 1.23574i
\(586\) 327.178 + 149.417i 0.558325 + 0.254978i
\(587\) 546.236 + 249.458i 0.930555 + 0.424970i 0.822237 0.569146i \(-0.192726\pi\)
0.108319 + 0.994116i \(0.465453\pi\)
\(588\) −394.021 56.6516i −0.670103 0.0963463i
\(589\) −519.740 808.731i −0.882410 1.37306i
\(590\) 385.464 52.3104i 0.653329 0.0886616i
\(591\) 250.249 + 1740.52i 0.423433 + 2.94504i
\(592\) 55.3238 + 63.8470i 0.0934523 + 0.107850i
\(593\) −431.600 + 671.582i −0.727824 + 1.13252i 0.258229 + 0.966084i \(0.416861\pi\)
−0.986053 + 0.166433i \(0.946775\pi\)
\(594\) 1588.01 + 1376.02i 2.67342 + 2.31653i
\(595\) −154.157 180.778i −0.259087 0.303829i
\(596\) −70.6245 + 32.2531i −0.118498 + 0.0541160i
\(597\) −1203.20 −2.01541
\(598\) −47.9949 194.458i −0.0802591 0.325181i
\(599\) 104.218 0.173986 0.0869930 0.996209i \(-0.472274\pi\)
0.0869930 + 0.996209i \(0.472274\pi\)
\(600\) 390.317 + 121.352i 0.650528 + 0.202253i
\(601\) −546.249 + 160.393i −0.908901 + 0.266877i −0.702578 0.711607i \(-0.747968\pi\)
−0.206323 + 0.978484i \(0.566150\pi\)
\(602\) 15.0426 + 13.0345i 0.0249877 + 0.0216520i
\(603\) −1522.89 978.700i −2.52552 1.62305i
\(604\) −4.07193 4.69926i −0.00674161 0.00778024i
\(605\) 663.913 419.282i 1.09738 0.693029i
\(606\) 613.125 + 180.030i 1.01176 + 0.297079i
\(607\) 312.005 + 485.490i 0.514012 + 0.799819i 0.997128 0.0757380i \(-0.0241312\pi\)
−0.483116 + 0.875557i \(0.660495\pi\)
\(608\) 19.7937 137.668i 0.0325555 0.226428i
\(609\) 801.732 + 366.139i 1.31647 + 0.601213i
\(610\) −687.200 5.44007i −1.12656 0.00891815i
\(611\) −17.7114 + 123.185i −0.0289876 + 0.201613i
\(612\) −511.391 + 328.651i −0.835606 + 0.537011i
\(613\) −101.886 29.9164i −0.166209 0.0488033i 0.197569 0.980289i \(-0.436695\pi\)
−0.363778 + 0.931486i \(0.618513\pi\)
\(614\) −80.4357 559.443i −0.131003 0.911145i
\(615\) −924.989 431.310i −1.50405 0.701318i
\(616\) −151.435 97.3217i −0.245837 0.157990i
\(617\) 774.229 893.508i 1.25483 1.44815i 0.410911 0.911676i \(-0.365211\pi\)
0.843917 0.536473i \(-0.180244\pi\)
\(618\) 537.328 157.774i 0.869462 0.255297i
\(619\) 18.0213 8.23007i 0.0291136 0.0132958i −0.400805 0.916163i \(-0.631270\pi\)
0.429919 + 0.902868i \(0.358542\pi\)
\(620\) 159.606 + 356.939i 0.257429 + 0.575708i
\(621\) 1408.35 1488.85i 2.26787 2.39750i
\(622\) 208.724i 0.335569i
\(623\) 393.341 179.633i 0.631366 0.288335i
\(624\) −136.614 + 40.1134i −0.218932 + 0.0642843i
\(625\) 514.822 + 354.377i 0.823716 + 0.567003i
\(626\) −92.6055 + 144.097i −0.147932 + 0.230187i
\(627\) 1791.05 1551.95i 2.85653 2.47520i
\(628\) 22.7954 + 158.546i 0.0362985 + 0.252461i
\(629\) −252.284 74.0773i −0.401088 0.117770i
\(630\) 360.617 551.483i 0.572408 0.875370i
\(631\) −475.798 68.4094i −0.754038 0.108414i −0.245432 0.969414i \(-0.578930\pi\)
−0.508606 + 0.860999i \(0.669839\pi\)
\(632\) 98.6182 215.944i 0.156041 0.341683i
\(633\) −1101.77 503.162i −1.74056 0.794885i
\(634\) −44.8239 + 311.757i −0.0707002 + 0.491731i
\(635\) 219.450 335.599i 0.345590 0.528502i
\(636\) −61.8198 + 210.539i −0.0972009 + 0.331036i
\(637\) 209.867 30.1744i 0.329462 0.0473695i
\(638\) −616.905 711.946i −0.966936 1.11590i
\(639\) −745.522 479.118i −1.16670 0.749793i
\(640\) −16.3664 + 54.1493i −0.0255724 + 0.0846082i
\(641\) −174.150 593.099i −0.271684 0.925272i −0.976434 0.215816i \(-0.930759\pi\)
0.704750 0.709456i \(-0.251059\pi\)
\(642\) −8.98217 19.6682i −0.0139909 0.0306359i
\(643\) −1157.80 −1.80062 −0.900312 0.435245i \(-0.856662\pi\)
−0.900312 + 0.435245i \(0.856662\pi\)
\(644\) −101.272 + 143.421i −0.157255 + 0.222703i
\(645\) 97.2949 43.5056i 0.150845 0.0674506i
\(646\) 179.823 + 393.757i 0.278364 + 0.609531i
\(647\) 240.219 + 818.111i 0.371282 + 1.26447i 0.907379 + 0.420313i \(0.138080\pi\)
−0.536098 + 0.844156i \(0.680102\pi\)
\(648\) −631.322 547.044i −0.974262 0.844203i
\(649\) −495.939 + 771.696i −0.764158 + 1.18905i
\(650\) −217.683 3.44670i −0.334897 0.00530262i
\(651\) 853.883 122.770i 1.31165 0.188586i
\(652\) 74.6873 254.362i 0.114551 0.390125i
\(653\) 140.786 + 219.068i 0.215599 + 0.335479i 0.932161 0.362045i \(-0.117921\pi\)
−0.716561 + 0.697524i \(0.754285\pi\)
\(654\) −914.331 131.461i −1.39806 0.201011i
\(655\) −68.2636 0.540395i −0.104219 0.000825030i
\(656\) 58.6761 128.483i 0.0894453 0.195858i
\(657\) 718.720 + 103.336i 1.09394 + 0.157285i
\(658\) 91.7738 58.9794i 0.139474 0.0896344i
\(659\) −155.142 + 528.364i −0.235420 + 0.801766i 0.754024 + 0.656847i \(0.228110\pi\)
−0.989444 + 0.144919i \(0.953708\pi\)
\(660\) −814.973 + 514.681i −1.23481 + 0.779820i
\(661\) −548.781 + 475.521i −0.830228 + 0.719397i −0.962343 0.271837i \(-0.912369\pi\)
0.132115 + 0.991234i \(0.457823\pi\)
\(662\) −374.892 + 583.343i −0.566302 + 0.881183i
\(663\) 290.193 334.901i 0.437697 0.505129i
\(664\) 11.5608 + 39.3726i 0.0174109 + 0.0592961i
\(665\) −352.165 310.067i −0.529571 0.466266i
\(666\) 729.237i 1.09495i
\(667\) −719.967 + 570.838i −1.07941 + 0.855829i
\(668\) 213.883i 0.320184i
\(669\) −904.846 1981.34i −1.35253 2.96164i
\(670\) 398.940 340.192i 0.595434 0.507750i
\(671\) 1061.25 1224.75i 1.58160 1.82526i
\(672\) 104.995 + 67.4762i 0.156243 + 0.100411i
\(673\) 182.765 158.367i 0.271568 0.235315i −0.508421 0.861109i \(-0.669770\pi\)
0.779988 + 0.625794i \(0.215225\pi\)
\(674\) 387.230 55.6752i 0.574525 0.0826042i
\(675\) −1174.53 1892.83i −1.74004 2.80420i
\(676\) −220.546 + 141.736i −0.326251 + 0.209669i
\(677\) 44.7074 310.947i 0.0660375 0.459301i −0.929793 0.368082i \(-0.880015\pi\)
0.995831 0.0912188i \(-0.0290763\pi\)
\(678\) −209.366 + 458.448i −0.308800 + 0.676177i
\(679\) −268.903 + 588.815i −0.396028 + 0.867180i
\(680\) −48.2630 169.316i −0.0709750 0.248993i
\(681\) 462.318 + 719.382i 0.678882 + 1.05636i
\(682\) −884.686 259.767i −1.29719 0.380890i
\(683\) 1179.29 169.556i 1.72663 0.248252i 0.793702 0.608306i \(-0.208151\pi\)
0.932931 + 0.360054i \(0.117242\pi\)
\(684\) −907.321 + 786.198i −1.32649 + 1.14941i
\(685\) 15.7520 103.722i 0.0229956 0.151419i
\(686\) −340.349 294.914i −0.496135 0.429904i
\(687\) 1080.05 317.131i 1.57213 0.461618i
\(688\) 6.12737 + 13.4171i 0.00890607 + 0.0195016i
\(689\) 116.873i 0.169628i
\(690\) 466.848 + 816.009i 0.676591 + 1.18262i
\(691\) 430.862 0.623534 0.311767 0.950159i \(-0.399079\pi\)
0.311767 + 0.950159i \(0.399079\pi\)
\(692\) 406.489 185.637i 0.587412 0.268262i
\(693\) 437.768 + 1490.90i 0.631699 + 2.15137i
\(694\) −397.873 + 459.170i −0.573304 + 0.661628i
\(695\) 171.610 1130.00i 0.246920 1.62589i
\(696\) 427.720 + 493.615i 0.614540 + 0.709217i
\(697\) 62.5625 + 435.132i 0.0897598 + 0.624293i
\(698\) −10.1734 + 34.6475i −0.0145751 + 0.0496383i
\(699\) −724.347 + 465.510i −1.03626 + 0.665965i
\(700\) 122.674 + 146.187i 0.175249 + 0.208839i
\(701\) 123.883 + 56.5753i 0.176723 + 0.0807066i 0.501812 0.864977i \(-0.332667\pi\)
−0.325089 + 0.945683i \(0.605394\pi\)
\(702\) 705.842 + 322.347i 1.00547 + 0.459184i
\(703\) −513.999 73.9019i −0.731151 0.105124i
\(704\) −72.1201 112.221i −0.102443 0.159405i
\(705\) −78.5522 578.834i −0.111422 0.821042i
\(706\) 45.9284 + 319.439i 0.0650543 + 0.452463i
\(707\) 195.376 + 225.476i 0.276345 + 0.318919i
\(708\) 343.850 535.041i 0.485664 0.755708i
\(709\) −515.318 446.525i −0.726823 0.629796i 0.210768 0.977536i \(-0.432404\pi\)
−0.937591 + 0.347740i \(0.886949\pi\)
\(710\) 195.299 166.539i 0.275070 0.234563i
\(711\) −1864.00 + 851.261i −2.62166 + 1.19727i
\(712\) 320.443 0.450060
\(713\) −290.748 + 850.998i −0.407781 + 1.19355i
\(714\) −388.443 −0.544037
\(715\) 339.263 385.325i 0.474494 0.538916i
\(716\) −87.4754 + 25.6851i −0.122172 + 0.0358730i
\(717\) −527.004 456.652i −0.735012 0.636892i
\(718\) −81.4267 52.3298i −0.113408 0.0728827i
\(719\) 389.246 + 449.214i 0.541372 + 0.624777i 0.958851 0.283910i \(-0.0916317\pi\)
−0.417479 + 0.908687i \(0.637086\pi\)
\(720\) 412.855 260.731i 0.573410 0.362127i
\(721\) 250.873 + 73.6629i 0.347951 + 0.102168i
\(722\) 186.185 + 289.709i 0.257874 + 0.401259i
\(723\) −162.568 + 1130.69i −0.224852 + 1.56388i
\(724\) −331.238 151.271i −0.457511 0.208938i
\(725\) 400.442 + 914.907i 0.552334 + 1.26194i
\(726\) 182.708 1270.76i 0.251664 1.75036i
\(727\) 152.575 98.0539i 0.209869 0.134875i −0.431484 0.902121i \(-0.642010\pi\)
0.641353 + 0.767246i \(0.278373\pi\)
\(728\) −63.7836 18.7286i −0.0876149 0.0257260i
\(729\) 366.466 + 2548.83i 0.502697 + 3.49634i
\(730\) −88.8728 + 190.597i −0.121744 + 0.261092i
\(731\) −38.6193 24.8191i −0.0528308 0.0339523i
\(732\) −735.799 + 849.157i −1.00519 + 1.16005i
\(733\) −849.216 + 249.352i −1.15855 + 0.340181i −0.803868 0.594807i \(-0.797228\pi\)
−0.354680 + 0.934988i \(0.615410\pi\)
\(734\) 852.941 389.525i 1.16205 0.530688i
\(735\) −908.493 + 406.234i −1.23605 + 0.552700i
\(736\) −112.417 + 65.5015i −0.152740 + 0.0889966i
\(737\) 1236.37i 1.67757i
\(738\) −1109.05 + 506.485i −1.50278 + 0.686295i
\(739\) −253.550 + 74.4490i −0.343099 + 0.100743i −0.448742 0.893661i \(-0.648128\pi\)
0.105644 + 0.994404i \(0.466310\pi\)
\(740\) 202.172 + 61.1055i 0.273205 + 0.0825749i
\(741\) 473.156 736.245i 0.638537 0.993582i
\(742\) −77.4253 + 67.0894i −0.104347 + 0.0904170i
\(743\) 68.6066 + 477.169i 0.0923373 + 0.642220i 0.982456 + 0.186492i \(0.0597119\pi\)
−0.890119 + 0.455728i \(0.849379\pi\)
\(744\) 613.380 + 180.105i 0.824436 + 0.242076i
\(745\) −106.229 + 162.453i −0.142589 + 0.218058i
\(746\) 200.337 + 28.8041i 0.268548 + 0.0386114i
\(747\) 147.143 322.199i 0.196979 0.431324i
\(748\) 377.658 + 172.471i 0.504890 + 0.230576i
\(749\) 1.43669 9.99242i 0.00191815 0.0133410i
\(750\) 987.032 264.529i 1.31604 0.352705i
\(751\) −163.258 + 556.005i −0.217387 + 0.740352i 0.776516 + 0.630097i \(0.216985\pi\)
−0.993903 + 0.110255i \(0.964833\pi\)
\(752\) 80.0194 11.5051i 0.106409 0.0152993i
\(753\) 541.676 + 625.127i 0.719357 + 0.830182i
\(754\) −292.660 188.081i −0.388143 0.249444i
\(755\) −14.8802 4.49748i −0.0197089 0.00595692i
\(756\) −191.632 652.638i −0.253481 0.863278i
\(757\) −135.016 295.645i −0.178357 0.390548i 0.799246 0.601004i \(-0.205232\pi\)
−0.977603 + 0.210456i \(0.932505\pi\)
\(758\) 650.076 0.857620
\(759\) −2178.53 410.896i −2.87026 0.541365i
\(760\) −141.936 317.422i −0.186758 0.417660i
\(761\) 204.228 + 447.198i 0.268368 + 0.587645i 0.995055 0.0993240i \(-0.0316680\pi\)
−0.726687 + 0.686969i \(0.758941\pi\)
\(762\) −184.703 629.039i −0.242392 0.825511i
\(763\) −325.941 282.430i −0.427184 0.370157i
\(764\) −262.632 + 408.663i −0.343759 + 0.534899i
\(765\) −642.241 + 1377.35i −0.839531 + 1.80046i
\(766\) −236.125 + 33.9496i −0.308257 + 0.0443207i
\(767\) −95.4383 + 325.033i −0.124431 + 0.423772i
\(768\) 50.0032 + 77.8064i 0.0651083 + 0.101310i
\(769\) 1211.35 + 174.166i 1.57523 + 0.226484i 0.873811 0.486266i \(-0.161641\pi\)
0.701418 + 0.712750i \(0.252550\pi\)
\(770\) −450.015 3.56245i −0.584435 0.00462656i
\(771\) 1101.87 2412.75i 1.42914 3.12938i
\(772\) 531.673 + 76.4430i 0.688695 + 0.0990194i
\(773\) 172.996 111.178i 0.223798 0.143827i −0.423938 0.905691i \(-0.639352\pi\)
0.647736 + 0.761865i