Properties

Label 230.3.i.a.19.11
Level $230$
Weight $3$
Character 230.19
Analytic conductor $6.267$
Analytic rank $0$
Dimension $240$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 230 = 2 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 230.i (of order \(22\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.26704608029\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(24\) over \(\Q(\zeta_{22})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 19.11
Character \(\chi\) \(=\) 230.19
Dual form 230.3.i.a.109.11

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.28641 + 0.587486i) q^{2} +(1.23261 + 4.19789i) q^{3} +(1.30972 - 1.51150i) q^{4} +(-2.21082 + 4.48467i) q^{5} +(-4.05185 - 4.67609i) q^{6} +(0.828200 + 5.76026i) q^{7} +(-0.796860 + 2.71386i) q^{8} +(-8.53169 + 5.48298i) q^{9} +O(q^{10})\) \(q+(-1.28641 + 0.587486i) q^{2} +(1.23261 + 4.19789i) q^{3} +(1.30972 - 1.51150i) q^{4} +(-2.21082 + 4.48467i) q^{5} +(-4.05185 - 4.67609i) q^{6} +(0.828200 + 5.76026i) q^{7} +(-0.796860 + 2.71386i) q^{8} +(-8.53169 + 5.48298i) q^{9} +(0.209350 - 7.06797i) q^{10} +(-9.75571 - 4.45528i) q^{11} +(7.95949 + 3.63498i) q^{12} +(7.82709 + 1.12537i) q^{13} +(-4.44948 - 6.92352i) q^{14} +(-21.5513 - 3.75292i) q^{15} +(-0.569259 - 3.95929i) q^{16} +(6.38126 + 7.36437i) q^{17} +(7.75411 - 12.0656i) q^{18} +(10.2733 + 8.90189i) q^{19} +(3.88302 + 9.21532i) q^{20} +(-23.1601 + 10.5769i) q^{21} +15.1673 q^{22} +(-7.56911 - 21.7189i) q^{23} -12.3747 q^{24} +(-15.2245 - 19.8296i) q^{25} +(-10.7300 + 3.15062i) q^{26} +(-3.77481 - 3.27089i) q^{27} +(9.79134 + 6.29251i) q^{28} +(-21.9342 - 25.3134i) q^{29} +(29.9286 - 7.83323i) q^{30} +(27.3144 + 8.02023i) q^{31} +(3.05833 + 4.75885i) q^{32} +(6.67779 - 46.4451i) q^{33} +(-12.5354 - 5.72473i) q^{34} +(-27.6639 - 9.02069i) q^{35} +(-2.88661 + 20.0768i) q^{36} +(-31.7003 + 20.3725i) q^{37} +(-18.4455 - 5.41609i) q^{38} +(4.92360 + 34.2444i) q^{39} +(-10.4090 - 9.57350i) q^{40} +(-26.8368 - 17.2470i) q^{41} +(23.5797 - 27.2124i) q^{42} +(-25.0414 + 7.35281i) q^{43} +(-19.5114 + 8.91057i) q^{44} +(-5.72734 - 50.3837i) q^{45} +(22.4965 + 23.4927i) q^{46} +75.4595i q^{47} +(15.9190 - 7.26995i) q^{48} +(14.5205 - 4.26360i) q^{49} +(31.2347 + 16.5649i) q^{50} +(-23.0492 + 35.8653i) q^{51} +(11.9523 - 10.3567i) q^{52} +(4.70391 + 32.7164i) q^{53} +(6.77756 + 1.99007i) q^{54} +(41.5486 - 33.9013i) q^{55} +(-16.2925 - 2.34250i) q^{56} +(-24.7062 + 54.0989i) q^{57} +(43.0877 + 19.6775i) q^{58} +(10.5183 - 73.1563i) q^{59} +(-33.8987 + 27.6594i) q^{60} +(-5.39902 + 18.3874i) q^{61} +(-39.8494 + 5.72948i) q^{62} +(-38.6493 - 44.6037i) q^{63} +(-6.73003 - 4.32513i) q^{64} +(-22.3512 + 32.6139i) q^{65} +(18.6954 + 63.6707i) q^{66} +(36.6744 + 80.3057i) q^{67} +19.4889 q^{68} +(81.8436 - 58.5452i) q^{69} +(40.8867 - 4.64778i) q^{70} +(24.0951 + 52.7609i) q^{71} +(-8.08146 - 27.5229i) q^{72} +(26.6733 + 23.1125i) q^{73} +(28.8111 - 44.8310i) q^{74} +(64.4766 - 88.3532i) q^{75} +(26.9104 - 3.86913i) q^{76} +(17.5839 - 59.8853i) q^{77} +(-26.4519 - 41.1600i) q^{78} +(154.891 + 22.2700i) q^{79} +(19.0146 + 6.20033i) q^{80} +(-28.8389 + 63.1484i) q^{81} +(44.6556 + 6.42051i) q^{82} +(77.0186 - 49.4968i) q^{83} +(-14.3464 + 48.8592i) q^{84} +(-47.1346 + 12.3366i) q^{85} +(27.8939 - 24.1702i) q^{86} +(79.2266 - 123.279i) q^{87} +(19.8649 - 22.9254i) q^{88} +(38.1221 + 129.832i) q^{89} +(36.9674 + 61.4495i) q^{90} +46.0181i q^{91} +(-42.7415 - 17.0049i) q^{92} +124.549i q^{93} +(-44.3313 - 97.0721i) q^{94} +(-62.6346 + 26.3920i) q^{95} +(-16.2074 + 18.7043i) q^{96} +(-25.6629 - 16.4926i) q^{97} +(-16.1746 + 14.0153i) q^{98} +(107.661 - 15.4793i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240q + 48q^{4} - 8q^{6} + 96q^{9} + O(q^{10}) \) \( 240q + 48q^{4} - 8q^{6} + 96q^{9} + 154q^{15} - 96q^{16} + 44q^{20} + 16q^{24} - 84q^{25} + 32q^{26} - 100q^{29} - 352q^{30} + 124q^{31} + 28q^{35} - 192q^{36} + 72q^{39} + 116q^{41} - 148q^{46} - 188q^{49} + 144q^{50} + 324q^{54} + 796q^{55} - 264q^{56} + 400q^{59} + 176q^{60} - 616q^{61} + 192q^{64} + 462q^{65} - 176q^{66} + 120q^{69} - 504q^{70} + 464q^{71} - 528q^{74} - 934q^{75} - 968q^{79} - 264q^{80} + 664q^{81} - 352q^{84} - 1196q^{85} + 396q^{86} + 376q^{94} + 126q^{95} - 32q^{96} - 3300q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/230\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(-1\) \(e\left(\frac{15}{22}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.28641 + 0.587486i −0.643207 + 0.293743i
\(3\) 1.23261 + 4.19789i 0.410871 + 1.39930i 0.862031 + 0.506855i \(0.169192\pi\)
−0.451161 + 0.892443i \(0.648990\pi\)
\(4\) 1.30972 1.51150i 0.327430 0.377875i
\(5\) −2.21082 + 4.48467i −0.442164 + 0.896934i
\(6\) −4.05185 4.67609i −0.675308 0.779348i
\(7\) 0.828200 + 5.76026i 0.118314 + 0.822894i 0.959411 + 0.282010i \(0.0910011\pi\)
−0.841097 + 0.540884i \(0.818090\pi\)
\(8\) −0.796860 + 2.71386i −0.0996075 + 0.339232i
\(9\) −8.53169 + 5.48298i −0.947965 + 0.609220i
\(10\) 0.209350 7.06797i 0.0209350 0.706797i
\(11\) −9.75571 4.45528i −0.886883 0.405026i −0.0807319 0.996736i \(-0.525726\pi\)
−0.806151 + 0.591710i \(0.798453\pi\)
\(12\) 7.95949 + 3.63498i 0.663291 + 0.302915i
\(13\) 7.82709 + 1.12537i 0.602084 + 0.0865666i 0.436615 0.899648i \(-0.356177\pi\)
0.165469 + 0.986215i \(0.447086\pi\)
\(14\) −4.44948 6.92352i −0.317820 0.494537i
\(15\) −21.5513 3.75292i −1.43675 0.250195i
\(16\) −0.569259 3.95929i −0.0355787 0.247455i
\(17\) 6.38126 + 7.36437i 0.375369 + 0.433198i 0.911730 0.410790i \(-0.134747\pi\)
−0.536361 + 0.843988i \(0.680202\pi\)
\(18\) 7.75411 12.0656i 0.430784 0.670313i
\(19\) 10.2733 + 8.90189i 0.540702 + 0.468521i 0.881877 0.471479i \(-0.156280\pi\)
−0.341176 + 0.940000i \(0.610825\pi\)
\(20\) 3.88302 + 9.21532i 0.194151 + 0.460766i
\(21\) −23.1601 + 10.5769i −1.10286 + 0.503660i
\(22\) 15.1673 0.689423
\(23\) −7.56911 21.7189i −0.329092 0.944298i
\(24\) −12.3747 −0.515612
\(25\) −15.2245 19.8296i −0.608982 0.793184i
\(26\) −10.7300 + 3.15062i −0.412693 + 0.121178i
\(27\) −3.77481 3.27089i −0.139808 0.121144i
\(28\) 9.79134 + 6.29251i 0.349691 + 0.224733i
\(29\) −21.9342 25.3134i −0.756352 0.872876i 0.238816 0.971065i \(-0.423241\pi\)
−0.995168 + 0.0981884i \(0.968695\pi\)
\(30\) 29.9286 7.83323i 0.997621 0.261108i
\(31\) 27.3144 + 8.02023i 0.881109 + 0.258717i 0.690834 0.723014i \(-0.257244\pi\)
0.190276 + 0.981731i \(0.439062\pi\)
\(32\) 3.05833 + 4.75885i 0.0955727 + 0.148714i
\(33\) 6.67779 46.4451i 0.202357 1.40743i
\(34\) −12.5354 5.72473i −0.368689 0.168374i
\(35\) −27.6639 9.02069i −0.790396 0.257734i
\(36\) −2.88661 + 20.0768i −0.0801836 + 0.557689i
\(37\) −31.7003 + 20.3725i −0.856764 + 0.550609i −0.893678 0.448709i \(-0.851884\pi\)
0.0369133 + 0.999318i \(0.488247\pi\)
\(38\) −18.4455 5.41609i −0.485408 0.142529i
\(39\) 4.92360 + 34.2444i 0.126246 + 0.878062i
\(40\) −10.4090 9.57350i −0.260226 0.239338i
\(41\) −26.8368 17.2470i −0.654557 0.420658i 0.170772 0.985311i \(-0.445374\pi\)
−0.825329 + 0.564652i \(0.809010\pi\)
\(42\) 23.5797 27.2124i 0.561422 0.647915i
\(43\) −25.0414 + 7.35281i −0.582357 + 0.170996i −0.559625 0.828746i \(-0.689055\pi\)
−0.0227324 + 0.999742i \(0.507237\pi\)
\(44\) −19.5114 + 8.91057i −0.443441 + 0.202513i
\(45\) −5.72734 50.3837i −0.127274 1.11964i
\(46\) 22.4965 + 23.4927i 0.489055 + 0.510711i
\(47\) 75.4595i 1.60552i 0.596302 + 0.802760i \(0.296636\pi\)
−0.596302 + 0.802760i \(0.703364\pi\)
\(48\) 15.9190 7.26995i 0.331645 0.151457i
\(49\) 14.5205 4.26360i 0.296337 0.0870123i
\(50\) 31.2347 + 16.5649i 0.624694 + 0.331297i
\(51\) −23.0492 + 35.8653i −0.451945 + 0.703241i
\(52\) 11.9523 10.3567i 0.229852 0.199168i
\(53\) 4.70391 + 32.7164i 0.0887530 + 0.617291i 0.984847 + 0.173426i \(0.0554838\pi\)
−0.896094 + 0.443865i \(0.853607\pi\)
\(54\) 6.77756 + 1.99007i 0.125510 + 0.0368532i
\(55\) 41.5486 33.9013i 0.755429 0.616388i
\(56\) −16.2925 2.34250i −0.290937 0.0418304i
\(57\) −24.7062 + 54.0989i −0.433441 + 0.949104i
\(58\) 43.0877 + 19.6775i 0.742892 + 0.339267i
\(59\) 10.5183 73.1563i 0.178276 1.23994i −0.682474 0.730910i \(-0.739096\pi\)
0.860750 0.509027i \(-0.169995\pi\)
\(60\) −33.8987 + 27.6594i −0.564978 + 0.460990i
\(61\) −5.39902 + 18.3874i −0.0885085 + 0.301432i −0.991836 0.127519i \(-0.959299\pi\)
0.903328 + 0.428951i \(0.141117\pi\)
\(62\) −39.8494 + 5.72948i −0.642732 + 0.0924109i
\(63\) −38.6493 44.6037i −0.613482 0.707995i
\(64\) −6.73003 4.32513i −0.105157 0.0675801i
\(65\) −22.3512 + 32.6139i −0.343864 + 0.501753i
\(66\) 18.6954 + 63.6707i 0.283264 + 0.964707i
\(67\) 36.6744 + 80.3057i 0.547379 + 1.19859i 0.957995 + 0.286785i \(0.0925865\pi\)
−0.410616 + 0.911808i \(0.634686\pi\)
\(68\) 19.4889 0.286602
\(69\) 81.8436 58.5452i 1.18614 0.848482i
\(70\) 40.8867 4.64778i 0.584096 0.0663968i
\(71\) 24.0951 + 52.7609i 0.339368 + 0.743112i 0.999971 0.00762351i \(-0.00242666\pi\)
−0.660603 + 0.750735i \(0.729699\pi\)
\(72\) −8.08146 27.5229i −0.112243 0.382263i
\(73\) 26.6733 + 23.1125i 0.365387 + 0.316610i 0.818132 0.575030i \(-0.195010\pi\)
−0.452745 + 0.891640i \(0.649555\pi\)
\(74\) 28.8111 44.8310i 0.389339 0.605824i
\(75\) 64.4766 88.3532i 0.859688 1.17804i
\(76\) 26.9104 3.86913i 0.354084 0.0509096i
\(77\) 17.5839 59.8853i 0.228362 0.777731i
\(78\) −26.4519 41.1600i −0.339127 0.527692i
\(79\) 154.891 + 22.2700i 1.96065 + 0.281899i 0.999991 + 0.00415955i \(0.00132403\pi\)
0.960657 + 0.277739i \(0.0895851\pi\)
\(80\) 19.0146 + 6.20033i 0.237683 + 0.0775041i
\(81\) −28.8389 + 63.1484i −0.356036 + 0.779610i
\(82\) 44.6556 + 6.42051i 0.544581 + 0.0782989i
\(83\) 77.0186 49.4968i 0.927934 0.596347i 0.0129850 0.999916i \(-0.495867\pi\)
0.914949 + 0.403568i \(0.132230\pi\)
\(84\) −14.3464 + 48.8592i −0.170790 + 0.581657i
\(85\) −47.1346 + 12.3366i −0.554525 + 0.145136i
\(86\) 27.8939 24.1702i 0.324348 0.281049i
\(87\) 79.2266 123.279i 0.910651 1.41700i
\(88\) 19.8649 22.9254i 0.225738 0.260515i
\(89\) 38.1221 + 129.832i 0.428338 + 1.45878i 0.837558 + 0.546349i \(0.183983\pi\)
−0.409220 + 0.912436i \(0.634199\pi\)
\(90\) 36.9674 + 61.4495i 0.410749 + 0.682773i
\(91\) 46.0181i 0.505693i
\(92\) −42.7415 17.0049i −0.464581 0.184836i
\(93\) 124.549i 1.33923i
\(94\) −44.3313 97.0721i −0.471610 1.03268i
\(95\) −62.6346 + 26.3920i −0.659311 + 0.277811i
\(96\) −16.2074 + 18.7043i −0.168827 + 0.194837i
\(97\) −25.6629 16.4926i −0.264566 0.170027i 0.401632 0.915801i \(-0.368443\pi\)
−0.666198 + 0.745775i \(0.732080\pi\)
\(98\) −16.1746 + 14.0153i −0.165047 + 0.143014i
\(99\) 107.661 15.4793i 1.08748 0.156357i
\(100\) −49.9123 2.95937i −0.499123 0.0295937i
\(101\) −69.6961 + 44.7910i −0.690061 + 0.443475i −0.838107 0.545505i \(-0.816338\pi\)
0.148047 + 0.988980i \(0.452701\pi\)
\(102\) 8.58050 59.6787i 0.0841225 0.585085i
\(103\) 25.8385 56.5784i 0.250859 0.549305i −0.741748 0.670679i \(-0.766003\pi\)
0.992607 + 0.121374i \(0.0387301\pi\)
\(104\) −9.29118 + 20.3448i −0.0893382 + 0.195623i
\(105\) 3.76906 127.249i 0.0358959 1.21189i
\(106\) −25.2716 39.3234i −0.238411 0.370975i
\(107\) −177.329 52.0684i −1.65728 0.486620i −0.686605 0.727031i \(-0.740900\pi\)
−0.970671 + 0.240410i \(0.922718\pi\)
\(108\) −9.88789 + 1.42166i −0.0915545 + 0.0131636i
\(109\) −19.2327 + 16.6653i −0.176447 + 0.152892i −0.738607 0.674136i \(-0.764516\pi\)
0.562160 + 0.827029i \(0.309971\pi\)
\(110\) −33.5322 + 68.0203i −0.304838 + 0.618367i
\(111\) −124.596 107.963i −1.12249 0.972639i
\(112\) 22.3350 6.55816i 0.199420 0.0585550i
\(113\) 43.4211 + 95.0789i 0.384257 + 0.841406i 0.998627 + 0.0523876i \(0.0166831\pi\)
−0.614370 + 0.789018i \(0.710590\pi\)
\(114\) 84.1081i 0.737791i
\(115\) 114.136 + 14.0715i 0.992486 + 0.122361i
\(116\) −66.9889 −0.577491
\(117\) −72.9486 + 33.3145i −0.623493 + 0.284740i
\(118\) 29.4474 + 100.289i 0.249554 + 0.849903i
\(119\) −37.1357 + 42.8569i −0.312065 + 0.360142i
\(120\) 27.3582 55.4964i 0.227985 0.462470i
\(121\) −3.91382 4.51679i −0.0323456 0.0373288i
\(122\) −3.85694 26.8256i −0.0316143 0.219882i
\(123\) 39.3216 133.917i 0.319688 1.08876i
\(124\) 47.8968 30.7814i 0.386265 0.248237i
\(125\) 122.588 24.4374i 0.980704 0.195499i
\(126\) 75.9231 + 34.6729i 0.602564 + 0.275182i
\(127\) 18.1233 + 8.27662i 0.142703 + 0.0651703i 0.485487 0.874244i \(-0.338642\pi\)
−0.342784 + 0.939414i \(0.611370\pi\)
\(128\) 11.1986 + 1.61011i 0.0874887 + 0.0125790i
\(129\) −61.7326 96.0578i −0.478547 0.744634i
\(130\) 9.59265 55.0860i 0.0737896 0.423739i
\(131\) 31.0372 + 215.868i 0.236925 + 1.64785i 0.667001 + 0.745057i \(0.267578\pi\)
−0.430076 + 0.902793i \(0.641513\pi\)
\(132\) −61.4556 70.9236i −0.465573 0.537300i
\(133\) −42.7688 + 66.5496i −0.321570 + 0.500373i
\(134\) −94.3569 81.7607i −0.704156 0.610155i
\(135\) 23.0143 9.69742i 0.170476 0.0718327i
\(136\) −25.0708 + 11.4495i −0.184344 + 0.0841872i
\(137\) −64.4920 −0.470745 −0.235372 0.971905i \(-0.575631\pi\)
−0.235372 + 0.971905i \(0.575631\pi\)
\(138\) −70.8903 + 123.395i −0.513698 + 0.894169i
\(139\) −39.2235 −0.282184 −0.141092 0.989997i \(-0.545061\pi\)
−0.141092 + 0.989997i \(0.545061\pi\)
\(140\) −49.8667 + 29.9993i −0.356191 + 0.214281i
\(141\) −316.771 + 93.0123i −2.24660 + 0.659662i
\(142\) −61.9926 53.7169i −0.436567 0.378288i
\(143\) −71.3450 45.8506i −0.498916 0.320634i
\(144\) 26.5654 + 30.6581i 0.184482 + 0.212904i
\(145\) 162.015 42.4043i 1.11734 0.292443i
\(146\) −47.8911 14.0621i −0.328021 0.0963158i
\(147\) 35.7963 + 55.7001i 0.243512 + 0.378912i
\(148\) −10.7255 + 74.5973i −0.0724694 + 0.504036i
\(149\) 25.1142 + 11.4693i 0.168552 + 0.0769751i 0.497904 0.867232i \(-0.334103\pi\)
−0.329352 + 0.944207i \(0.606830\pi\)
\(150\) −31.0373 + 151.538i −0.206915 + 1.01025i
\(151\) 27.2284 189.378i 0.180321 1.25416i −0.675685 0.737190i \(-0.736152\pi\)
0.856006 0.516966i \(-0.172939\pi\)
\(152\) −32.3449 + 20.7868i −0.212795 + 0.136755i
\(153\) −94.8217 27.8422i −0.619749 0.181975i
\(154\) 12.5616 + 87.3675i 0.0815685 + 0.567322i
\(155\) −96.3553 + 104.765i −0.621647 + 0.675902i
\(156\) 58.2090 + 37.4086i 0.373134 + 0.239799i
\(157\) −36.9239 + 42.6124i −0.235184 + 0.271417i −0.861057 0.508508i \(-0.830197\pi\)
0.625873 + 0.779925i \(0.284743\pi\)
\(158\) −212.337 + 62.3479i −1.34391 + 0.394607i
\(159\) −131.542 + 60.0732i −0.827308 + 0.377819i
\(160\) −28.1033 + 3.19463i −0.175646 + 0.0199664i
\(161\) 118.837 61.5876i 0.738121 0.382532i
\(162\) 98.1775i 0.606034i
\(163\) 75.5111 34.4848i 0.463259 0.211563i −0.170092 0.985428i \(-0.554406\pi\)
0.633350 + 0.773865i \(0.281679\pi\)
\(164\) −61.2176 + 17.9751i −0.373278 + 0.109604i
\(165\) 193.527 + 132.629i 1.17289 + 0.803814i
\(166\) −69.9991 + 108.921i −0.421681 + 0.656149i
\(167\) 52.1798 45.2141i 0.312454 0.270743i −0.484489 0.874797i \(-0.660994\pi\)
0.796943 + 0.604054i \(0.206449\pi\)
\(168\) −10.2487 71.2814i −0.0610043 0.424294i
\(169\) −102.157 29.9961i −0.604482 0.177492i
\(170\) 53.3871 43.5608i 0.314042 0.256240i
\(171\) −136.458 19.6197i −0.797999 0.114735i
\(172\) −21.6834 + 47.4801i −0.126067 + 0.276047i
\(173\) 253.761 + 115.889i 1.46683 + 0.669877i 0.979148 0.203147i \(-0.0651169\pi\)
0.487678 + 0.873024i \(0.337844\pi\)
\(174\) −29.4936 + 205.132i −0.169503 + 1.17892i
\(175\) 101.615 104.120i 0.580655 0.594973i
\(176\) −12.0862 + 41.1619i −0.0686717 + 0.233874i
\(177\) 320.067 46.0187i 1.80829 0.259993i
\(178\) −125.315 144.621i −0.704017 0.812479i
\(179\) −273.089 175.503i −1.52563 0.980466i −0.990774 0.135526i \(-0.956728\pi\)
−0.534861 0.844940i \(-0.679636\pi\)
\(180\) −83.6561 57.3317i −0.464756 0.318510i
\(181\) −7.36602 25.0864i −0.0406962 0.138599i 0.936639 0.350296i \(-0.113919\pi\)
−0.977335 + 0.211697i \(0.932101\pi\)
\(182\) −27.0350 59.1983i −0.148544 0.325265i
\(183\) −83.8430 −0.458159
\(184\) 64.9734 3.23459i 0.353116 0.0175793i
\(185\) −21.2805 187.205i −0.115030 1.01192i
\(186\) −73.1706 160.221i −0.393390 0.861404i
\(187\) −29.4434 100.275i −0.157451 0.536230i
\(188\) 114.057 + 98.8309i 0.606686 + 0.525696i
\(189\) 15.7149 24.4528i 0.0831474 0.129380i
\(190\) 65.0690 70.7480i 0.342469 0.372358i
\(191\) 365.585 52.5632i 1.91406 0.275200i 0.920701 0.390269i \(-0.127618\pi\)
0.993358 + 0.115069i \(0.0367088\pi\)
\(192\) 9.86090 33.5831i 0.0513589 0.174912i
\(193\) −76.7289 119.392i −0.397559 0.618614i 0.583548 0.812078i \(-0.301664\pi\)
−0.981107 + 0.193465i \(0.938027\pi\)
\(194\) 42.7023 + 6.13967i 0.220115 + 0.0316478i
\(195\) −164.460 53.6275i −0.843385 0.275013i
\(196\) 12.5734 27.5318i 0.0641499 0.140469i
\(197\) −248.252 35.6932i −1.26016 0.181184i −0.520324 0.853969i \(-0.674189\pi\)
−0.739838 + 0.672785i \(0.765098\pi\)
\(198\) −129.403 + 83.1620i −0.653549 + 0.420010i
\(199\) 38.0942 129.737i 0.191428 0.651945i −0.806710 0.590948i \(-0.798754\pi\)
0.998138 0.0609970i \(-0.0194280\pi\)
\(200\) 65.9465 25.5158i 0.329733 0.127579i
\(201\) −291.910 + 252.941i −1.45229 + 1.25841i
\(202\) 63.3440 98.5652i 0.313584 0.487946i
\(203\) 127.646 147.311i 0.628798 0.725671i
\(204\) 24.0223 + 81.8124i 0.117756 + 0.401041i
\(205\) 136.678 82.2244i 0.666724 0.401095i
\(206\) 87.9630i 0.427005i
\(207\) 183.661 + 143.797i 0.887253 + 0.694672i
\(208\) 31.6303i 0.152069i
\(209\) −60.5632 132.615i −0.289776 0.634521i
\(210\) 69.9083 + 165.909i 0.332897 + 0.790043i
\(211\) 102.242 117.994i 0.484559 0.559211i −0.459844 0.888000i \(-0.652095\pi\)
0.944404 + 0.328788i \(0.106640\pi\)
\(212\) 55.6117 + 35.7394i 0.262319 + 0.168582i
\(213\) −191.785 + 166.182i −0.900398 + 0.780199i
\(214\) 258.707 37.1965i 1.20891 0.173815i
\(215\) 22.3870 128.558i 0.104126 0.597944i
\(216\) 11.8847 7.63784i 0.0550218 0.0353604i
\(217\) −23.5768 + 163.980i −0.108649 + 0.755670i
\(218\) 14.9507 32.7374i 0.0685810 0.150171i
\(219\) −64.1461 + 140.460i −0.292904 + 0.641371i
\(220\) 3.17528 107.202i 0.0144331 0.487282i
\(221\) 41.6591 + 64.8229i 0.188503 + 0.293316i
\(222\) 223.709 + 65.6868i 1.00770 + 0.295886i
\(223\) 152.453 21.9195i 0.683647 0.0982936i 0.208264 0.978073i \(-0.433219\pi\)
0.475383 + 0.879779i \(0.342310\pi\)
\(224\) −24.8793 + 21.5580i −0.111068 + 0.0962412i
\(225\) 238.616 + 85.7040i 1.06052 + 0.380907i
\(226\) −111.715 96.8015i −0.494314 0.428325i
\(227\) 268.976 78.9784i 1.18492 0.347923i 0.370849 0.928693i \(-0.379067\pi\)
0.814067 + 0.580771i \(0.197249\pi\)
\(228\) 49.4123 + 108.198i 0.216721 + 0.474552i
\(229\) 9.55994i 0.0417465i 0.999782 + 0.0208732i \(0.00664464\pi\)
−0.999782 + 0.0208732i \(0.993355\pi\)
\(230\) −155.093 + 48.9514i −0.674316 + 0.212832i
\(231\) 273.066 1.18210
\(232\) 86.1755 39.3550i 0.371446 0.169634i
\(233\) −121.334 413.226i −0.520747 1.77350i −0.626844 0.779145i \(-0.715654\pi\)
0.106098 0.994356i \(-0.466164\pi\)
\(234\) 74.2703 85.7125i 0.317395 0.366293i
\(235\) −338.411 166.827i −1.44005 0.709904i
\(236\) −96.7996 111.713i −0.410168 0.473359i
\(237\) 97.4338 + 677.667i 0.411113 + 2.85935i
\(238\) 22.5941 76.9484i 0.0949332 0.323313i
\(239\) 158.013 101.549i 0.661142 0.424890i −0.166580 0.986028i \(-0.553273\pi\)
0.827723 + 0.561138i \(0.189636\pi\)
\(240\) −2.59065 + 87.4639i −0.0107944 + 0.364433i
\(241\) 242.655 + 110.817i 1.00687 + 0.459820i 0.849425 0.527709i \(-0.176949\pi\)
0.157440 + 0.987529i \(0.449676\pi\)
\(242\) 7.68834 + 3.51115i 0.0317700 + 0.0145089i
\(243\) −345.133 49.6226i −1.42030 0.204208i
\(244\) 20.7213 + 32.2429i 0.0849232 + 0.132143i
\(245\) −12.9814 + 74.5457i −0.0529851 + 0.304268i
\(246\) 28.0905 + 195.374i 0.114189 + 0.794201i
\(247\) 70.3924 + 81.2372i 0.284990 + 0.328895i
\(248\) −43.5315 + 67.7363i −0.175530 + 0.273130i
\(249\) 302.716 + 262.305i 1.21573 + 1.05343i
\(250\) −143.342 + 103.455i −0.573369 + 0.413821i
\(251\) −302.907 + 138.333i −1.20680 + 0.551128i −0.914261 0.405125i \(-0.867228\pi\)
−0.292540 + 0.956253i \(0.594501\pi\)
\(252\) −118.038 −0.468406
\(253\) −22.9216 + 245.605i −0.0905992 + 0.970772i
\(254\) −28.1764 −0.110931
\(255\) −109.886 182.660i −0.430927 0.716313i
\(256\) −15.3519 + 4.50772i −0.0599683 + 0.0176083i
\(257\) −30.6235 26.5354i −0.119157 0.103251i 0.593244 0.805023i \(-0.297847\pi\)
−0.712401 + 0.701772i \(0.752392\pi\)
\(258\) 135.846 + 87.3031i 0.526536 + 0.338384i
\(259\) −143.605 165.729i −0.554460 0.639881i
\(260\) 20.0221 + 76.4990i 0.0770082 + 0.294227i
\(261\) 325.929 + 95.7013i 1.24877 + 0.366672i
\(262\) −166.746 259.462i −0.636436 0.990313i
\(263\) −46.8734 + 326.011i −0.178226 + 1.23959i 0.682640 + 0.730755i \(0.260832\pi\)
−0.860866 + 0.508832i \(0.830077\pi\)
\(264\) 120.724 + 55.1328i 0.457288 + 0.208836i
\(265\) −157.122 51.2346i −0.592913 0.193338i
\(266\) 15.9215 110.736i 0.0598552 0.416302i
\(267\) −498.030 + 320.065i −1.86528 + 1.19874i
\(268\) 169.415 + 49.7448i 0.632147 + 0.185615i
\(269\) 10.4205 + 72.4765i 0.0387381 + 0.269429i 0.999980 0.00627600i \(-0.00199773\pi\)
−0.961242 + 0.275705i \(0.911089\pi\)
\(270\) −23.9088 + 25.9954i −0.0885511 + 0.0962794i
\(271\) 363.616 + 233.682i 1.34176 + 0.862295i 0.997075 0.0764240i \(-0.0243503\pi\)
0.344682 + 0.938719i \(0.387987\pi\)
\(272\) 25.5251 29.4575i 0.0938421 0.108300i
\(273\) −193.179 + 56.7225i −0.707615 + 0.207775i
\(274\) 82.9634 37.8881i 0.302786 0.138278i
\(275\) 60.1798 + 261.282i 0.218836 + 0.950115i
\(276\) 18.7013 200.385i 0.0677583 0.726031i
\(277\) 445.651i 1.60885i 0.594056 + 0.804423i \(0.297526\pi\)
−0.594056 + 0.804423i \(0.702474\pi\)
\(278\) 50.4577 23.0433i 0.181503 0.0828894i
\(279\) −277.013 + 81.3382i −0.992876 + 0.291535i
\(280\) 46.5251 67.8875i 0.166161 0.242455i
\(281\) −71.3567 + 111.033i −0.253939 + 0.395136i −0.944694 0.327952i \(-0.893642\pi\)
0.690756 + 0.723088i \(0.257278\pi\)
\(282\) 352.855 305.751i 1.25126 1.08422i
\(283\) −61.5742 428.258i −0.217577 1.51328i −0.746945 0.664886i \(-0.768480\pi\)
0.529368 0.848392i \(-0.322429\pi\)
\(284\) 111.306 + 32.6824i 0.391923 + 0.115079i
\(285\) −187.995 230.402i −0.659632 0.808428i
\(286\) 118.716 + 17.0688i 0.415090 + 0.0596810i
\(287\) 77.1208 168.871i 0.268714 0.588401i
\(288\) −52.1854 23.8323i −0.181199 0.0827509i
\(289\) 27.6156 192.070i 0.0955555 0.664603i
\(290\) −183.506 + 149.731i −0.632781 + 0.516313i
\(291\) 37.6016 128.059i 0.129215 0.440066i
\(292\) 69.8691 10.0457i 0.239278 0.0344029i
\(293\) 291.037 + 335.875i 0.993301 + 1.14633i 0.989235 + 0.146339i \(0.0467490\pi\)
0.00406671 + 0.999992i \(0.498706\pi\)
\(294\) −78.7718 50.6236i −0.267931 0.172189i
\(295\) 304.828 + 208.906i 1.03331 + 0.708157i
\(296\) −30.0274 102.264i −0.101444 0.345487i
\(297\) 22.2532 + 48.7277i 0.0749265 + 0.164066i
\(298\) −39.0453 −0.131025
\(299\) −34.8025 178.513i −0.116396 0.597035i
\(300\) −49.0995 213.174i −0.163665 0.710581i
\(301\) −63.0933 138.155i −0.209612 0.458987i
\(302\) 76.2297 + 259.614i 0.252416 + 0.859650i
\(303\) −273.936 237.367i −0.904079 0.783389i
\(304\) 29.3970 45.7426i 0.0967005 0.150469i
\(305\) −70.5250 64.8640i −0.231230 0.212669i
\(306\) 138.337 19.8898i 0.452081 0.0649994i
\(307\) −47.4767 + 161.691i −0.154647 + 0.526680i −0.999971 0.00757358i \(-0.997589\pi\)
0.845324 + 0.534254i \(0.179407\pi\)
\(308\) −67.4865 105.011i −0.219112 0.340945i
\(309\) 269.359 + 38.7280i 0.871712 + 0.125333i
\(310\) 62.4050 191.378i 0.201306 0.617349i
\(311\) 205.332 449.615i 0.660233 1.44571i −0.222072 0.975030i \(-0.571282\pi\)
0.882305 0.470678i \(-0.155991\pi\)
\(312\) −96.8579 13.9261i −0.310442 0.0446348i
\(313\) −36.2020 + 23.2656i −0.115661 + 0.0743310i −0.597192 0.802098i \(-0.703717\pi\)
0.481531 + 0.876429i \(0.340081\pi\)
\(314\) 22.4652 76.5095i 0.0715452 0.243661i
\(315\) 285.480 74.7188i 0.906285 0.237202i
\(316\) 236.525 204.950i 0.748498 0.648577i
\(317\) 224.843 349.863i 0.709284 1.10367i −0.280328 0.959904i \(-0.590443\pi\)
0.989612 0.143763i \(-0.0459204\pi\)
\(318\) 133.925 154.558i 0.421149 0.486031i
\(319\) 101.205 + 344.673i 0.317258 + 1.08048i
\(320\) 34.2757 20.6199i 0.107111 0.0644371i
\(321\) 808.586i 2.51896i
\(322\) −116.692 + 149.042i −0.362399 + 0.462865i
\(323\) 132.462i 0.410099i
\(324\) 57.6778 + 126.297i 0.178018 + 0.389805i
\(325\) −96.8484 172.341i −0.297995 0.530281i
\(326\) −76.8793 + 88.7234i −0.235826 + 0.272158i
\(327\) −93.6655 60.1952i −0.286439 0.184083i
\(328\) 68.1910 59.0879i 0.207899 0.180146i
\(329\) −434.666 + 62.4955i −1.32117 + 0.189956i
\(330\) −326.874 56.9217i −0.990528 0.172490i
\(331\) 302.080 194.135i 0.912629 0.586511i 0.00211891 0.999998i \(-0.499326\pi\)
0.910510 + 0.413487i \(0.135689\pi\)
\(332\) 26.0585 181.241i 0.0784893 0.545905i
\(333\) 158.755 347.624i 0.476741 1.04392i
\(334\) −40.5623 + 88.8190i −0.121444 + 0.265925i
\(335\) −441.225 13.0689i −1.31709 0.0390117i
\(336\) 55.0609 + 85.6765i 0.163872 + 0.254989i
\(337\) −53.1558 15.6079i −0.157732 0.0463144i 0.201913 0.979403i \(-0.435284\pi\)
−0.359645 + 0.933089i \(0.617102\pi\)
\(338\) 149.039 21.4286i 0.440944 0.0633982i
\(339\) −345.610 + 299.472i −1.01950 + 0.883399i
\(340\) −43.0865 + 87.4014i −0.126725 + 0.257063i
\(341\) −230.739 199.936i −0.676654 0.586324i
\(342\) 187.067 54.9280i 0.546981 0.160608i
\(343\) 155.043 + 339.497i 0.452021 + 0.989787i
\(344\) 73.8178i 0.214587i
\(345\) 81.6146 + 496.475i 0.236564 + 1.43906i
\(346\) −394.524 −1.14024
\(347\) 74.2261 33.8979i 0.213908 0.0976886i −0.305579 0.952167i \(-0.598850\pi\)
0.519488 + 0.854478i \(0.326123\pi\)
\(348\) −82.5714 281.212i −0.237274 0.808081i
\(349\) −58.5662 + 67.5890i −0.167811 + 0.193665i −0.833426 0.552631i \(-0.813624\pi\)
0.665615 + 0.746295i \(0.268169\pi\)
\(350\) −69.5494 + 193.639i −0.198713 + 0.553254i
\(351\) −25.8648 29.8496i −0.0736889 0.0850415i
\(352\) −8.63413 60.0517i −0.0245288 0.170601i
\(353\) 125.673 428.003i 0.356014 1.21247i −0.565703 0.824609i \(-0.691395\pi\)
0.921717 0.387863i \(-0.126787\pi\)
\(354\) −384.704 + 247.234i −1.08673 + 0.698401i
\(355\) −289.885 8.58629i −0.816579 0.0241867i
\(356\) 246.170 + 112.422i 0.691489 + 0.315792i
\(357\) −225.683 103.066i −0.632164 0.288700i
\(358\) 454.411 + 65.3344i 1.26930 + 0.182498i
\(359\) 145.527 + 226.444i 0.405366 + 0.630762i 0.982582 0.185829i \(-0.0594972\pi\)
−0.577216 + 0.816592i \(0.695861\pi\)
\(360\) 141.298 + 24.6056i 0.392494 + 0.0683488i
\(361\) −25.0780 174.421i −0.0694681 0.483161i
\(362\) 24.2136 + 27.9440i 0.0668885 + 0.0771934i
\(363\) 14.1368 21.9972i 0.0389443 0.0605985i
\(364\) 69.5563 + 60.2709i 0.191089 + 0.165579i
\(365\) −162.622 + 68.5232i −0.445539 + 0.187735i
\(366\) 107.857 49.2566i 0.294691 0.134581i
\(367\) −476.514 −1.29840 −0.649201 0.760617i \(-0.724897\pi\)
−0.649201 + 0.760617i \(0.724897\pi\)
\(368\) −81.6824 + 42.3319i −0.221963 + 0.115032i
\(369\) 323.528 0.876770
\(370\) 137.356 + 228.322i 0.371232 + 0.617085i
\(371\) −184.559 + 54.1915i −0.497464 + 0.146069i
\(372\) 188.255 + 163.124i 0.506062 + 0.438506i
\(373\) 392.776 + 252.422i 1.05302 + 0.676735i 0.948173 0.317754i \(-0.102929\pi\)
0.104847 + 0.994488i \(0.466565\pi\)
\(374\) 96.7865 + 111.698i 0.258788 + 0.298657i
\(375\) 253.689 + 484.489i 0.676504 + 1.29197i
\(376\) −204.786 60.1306i −0.544644 0.159922i
\(377\) −143.194 222.814i −0.379825 0.591020i
\(378\) −5.85015 + 40.6887i −0.0154766 + 0.107642i
\(379\) 81.4124 + 37.1798i 0.214809 + 0.0980998i 0.519913 0.854219i \(-0.325964\pi\)
−0.305105 + 0.952319i \(0.598691\pi\)
\(380\) −42.1423 + 129.238i −0.110901 + 0.340101i
\(381\) −12.4054 + 86.2814i −0.0325601 + 0.226460i
\(382\) −439.414 + 282.394i −1.15030 + 0.739251i
\(383\) 326.617 + 95.9033i 0.852785 + 0.250400i 0.678778 0.734344i \(-0.262510\pi\)
0.174008 + 0.984744i \(0.444328\pi\)
\(384\) 7.04441 + 48.9950i 0.0183448 + 0.127591i
\(385\) 229.691 + 211.254i 0.596600 + 0.548711i
\(386\) 168.846 + 108.511i 0.437426 + 0.281117i
\(387\) 173.330 200.033i 0.447880 0.516882i
\(388\) −58.5398 + 17.1888i −0.150876 + 0.0443011i
\(389\) −100.199 + 45.7593i −0.257581 + 0.117633i −0.540021 0.841652i \(-0.681584\pi\)
0.282440 + 0.959285i \(0.408856\pi\)
\(390\) 243.069 27.6308i 0.623254 0.0708482i
\(391\) 111.645 194.336i 0.285538 0.497022i
\(392\) 42.8040i 0.109194i
\(393\) −867.935 + 396.373i −2.20849 + 1.00858i
\(394\) 340.324 99.9282i 0.863767 0.253625i
\(395\) −442.310 + 645.401i −1.11977 + 1.63393i
\(396\) 117.609 183.003i 0.296992 0.462129i
\(397\) −289.521 + 250.871i −0.729272 + 0.631918i −0.938232 0.346006i \(-0.887538\pi\)
0.208960 + 0.977924i \(0.432992\pi\)
\(398\) 27.2137 + 189.275i 0.0683761 + 0.475566i
\(399\) −332.085 97.5091i −0.832294 0.244384i
\(400\) −69.8443 + 71.5665i −0.174611 + 0.178916i
\(401\) −287.071 41.2746i −0.715889 0.102929i −0.225261 0.974298i \(-0.572323\pi\)
−0.490628 + 0.871369i \(0.663233\pi\)
\(402\) 226.917 496.880i 0.564471 1.23602i
\(403\) 204.766 + 93.5137i 0.508105 + 0.232044i
\(404\) −23.5810 + 164.009i −0.0583688 + 0.405964i
\(405\) −219.442 268.943i −0.541833 0.664057i
\(406\) −77.6623 + 264.493i −0.191286 + 0.651461i
\(407\) 400.024 57.5148i 0.982860 0.141314i
\(408\) −78.9662 91.1319i −0.193545 0.223362i
\(409\) −297.439 191.153i −0.727235 0.467366i 0.123912 0.992293i \(-0.460456\pi\)
−0.851147 + 0.524927i \(0.824092\pi\)
\(410\) −127.519 + 186.071i −0.311023 + 0.453832i
\(411\) −79.4937 270.731i −0.193415 0.658712i
\(412\) −51.6770 113.157i −0.125430 0.274652i
\(413\) 430.110 1.04143
\(414\) −320.743 77.0843i −0.774742 0.186194i
\(415\) 51.7028 + 454.831i 0.124585 + 1.09598i
\(416\) 18.5824 + 40.6897i 0.0446691 + 0.0978117i
\(417\) −48.3474 164.656i −0.115941 0.394859i
\(418\) 155.819 + 135.018i 0.372772 + 0.323009i
\(419\) 156.379 243.330i 0.373219 0.580740i −0.602943 0.797784i \(-0.706005\pi\)
0.976162 + 0.217045i \(0.0696417\pi\)
\(420\) −187.400 172.358i −0.446191 0.410375i
\(421\) −731.667 + 105.198i −1.73793 + 0.249876i −0.937110 0.349035i \(-0.886510\pi\)
−0.800816 + 0.598911i \(0.795600\pi\)
\(422\) −62.2061 + 211.854i −0.147408 + 0.502025i
\(423\) −413.743 643.797i −0.978116 1.52198i
\(424\) −92.5360 13.3047i −0.218245 0.0313789i
\(425\) 48.8807 238.657i 0.115013 0.561546i
\(426\) 149.085 326.450i 0.349964 0.766315i
\(427\) −110.387 15.8713i −0.258519 0.0371693i
\(428\) −310.952 + 199.837i −0.726524 + 0.466909i
\(429\) 104.535 356.015i 0.243672 0.829871i
\(430\) 46.7270 + 178.531i 0.108667 + 0.415188i
\(431\) 543.201 470.686i 1.26033 1.09208i 0.268661 0.963235i \(-0.413419\pi\)
0.991665 0.128844i \(-0.0411267\pi\)
\(432\) −10.8015 + 16.8075i −0.0250036 + 0.0389063i
\(433\) 127.721 147.398i 0.294968 0.340411i −0.588850 0.808243i \(-0.700419\pi\)
0.883818 + 0.467831i \(0.154964\pi\)
\(434\) −66.0065 224.798i −0.152089 0.517967i
\(435\) 377.710 + 627.853i 0.868299 + 1.44334i
\(436\) 50.8971i 0.116737i
\(437\) 115.579 290.504i 0.264483 0.664770i
\(438\) 218.375i 0.498573i
\(439\) 75.5986 + 165.538i 0.172206 + 0.377079i 0.975981 0.217854i \(-0.0699057\pi\)
−0.803775 + 0.594933i \(0.797178\pi\)
\(440\) 58.8949 + 139.772i 0.133852 + 0.317663i
\(441\) −100.507 + 115.991i −0.227907 + 0.263019i
\(442\) −91.6734 58.9149i −0.207406 0.133292i
\(443\) −167.105 + 144.797i −0.377212 + 0.326856i −0.822746 0.568409i \(-0.807559\pi\)
0.445534 + 0.895265i \(0.353014\pi\)
\(444\) −326.372 + 46.9252i −0.735072 + 0.105687i
\(445\) −666.534 116.070i −1.49783 0.260831i
\(446\) −183.241 + 117.762i −0.410853 + 0.264039i
\(447\) −17.1907 + 119.564i −0.0384580 + 0.267481i
\(448\) 19.3400 42.3488i 0.0431697 0.0945285i
\(449\) 262.180 574.094i 0.583919 1.27860i −0.355128 0.934818i \(-0.615563\pi\)
0.939048 0.343787i \(-0.111710\pi\)
\(450\) −357.309 + 29.9328i −0.794021 + 0.0665174i
\(451\) 184.972 + 287.822i 0.410138 + 0.638187i
\(452\) 200.581 + 58.8959i 0.443764 + 0.130301i
\(453\) 828.549 119.127i 1.82903 0.262974i
\(454\) −299.616 + 259.618i −0.659946 + 0.571847i
\(455\) −206.376 101.738i −0.453574 0.223599i
\(456\) −127.129 110.158i −0.278792 0.241575i
\(457\) −326.766 + 95.9473i −0.715025 + 0.209950i −0.618957 0.785425i \(-0.712445\pi\)
−0.0960676 + 0.995375i \(0.530626\pi\)
\(458\) −5.61633 12.2980i −0.0122627 0.0268516i
\(459\) 48.6715i 0.106038i
\(460\) 170.755 154.086i 0.371207 0.334971i
\(461\) 8.47630 0.0183868 0.00919339 0.999958i \(-0.497074\pi\)
0.00919339 + 0.999958i \(0.497074\pi\)
\(462\) −351.276 + 160.422i −0.760338 + 0.347235i
\(463\) −155.777 530.527i −0.336451 1.14585i −0.937891 0.346929i \(-0.887224\pi\)
0.601440 0.798918i \(-0.294594\pi\)
\(464\) −87.7368 + 101.254i −0.189088 + 0.218219i
\(465\) −558.560 275.355i −1.20120 0.592161i
\(466\) 398.850 + 460.297i 0.855901 + 0.987762i
\(467\) 49.7779 + 346.213i 0.106591 + 0.741355i 0.971089 + 0.238719i \(0.0767273\pi\)
−0.864498 + 0.502636i \(0.832364\pi\)
\(468\) −45.1875 + 153.895i −0.0965545 + 0.328835i
\(469\) −432.208 + 277.763i −0.921552 + 0.592246i
\(470\) 533.345 + 15.7975i 1.13478 + 0.0336117i
\(471\) −224.395 102.478i −0.476423 0.217575i
\(472\) 190.154 + 86.8404i 0.402869 + 0.183984i
\(473\) 277.055 + 39.8345i 0.585740 + 0.0842167i
\(474\) −523.460 814.519i −1.10435 1.71839i
\(475\) 20.1142 339.243i 0.0423456 0.714197i
\(476\) 16.1407 + 112.261i 0.0339091 + 0.235843i
\(477\) −219.516 253.335i −0.460201 0.531100i
\(478\) −143.612 + 223.464i −0.300443 + 0.467498i
\(479\) 233.280 + 202.138i 0.487014 + 0.422000i 0.863444 0.504445i \(-0.168303\pi\)
−0.376430 + 0.926445i \(0.622848\pi\)
\(480\) −48.0512 114.037i −0.100107 0.237577i
\(481\) −271.048 + 123.783i −0.563508 + 0.257346i
\(482\) −377.257 −0.782692
\(483\) 405.019 + 422.953i 0.838548 + 0.875680i
\(484\) −11.9531 −0.0246966
\(485\) 130.700 78.6277i 0.269484 0.162119i
\(486\) 473.137 138.925i 0.973532 0.285855i
\(487\) −121.936 105.659i −0.250383 0.216958i 0.520622 0.853787i \(-0.325700\pi\)
−0.771005 + 0.636829i \(0.780246\pi\)
\(488\) −45.5984 29.3043i −0.0934393 0.0600498i
\(489\) 237.839 + 274.481i 0.486379 + 0.561311i
\(490\) −27.0951 103.523i −0.0552962 0.211271i
\(491\) 790.444 + 232.095i 1.60987 + 0.472699i 0.958269 0.285867i \(-0.0922816\pi\)
0.651596 + 0.758566i \(0.274100\pi\)
\(492\) −150.915 234.828i −0.306738 0.477294i
\(493\) 46.4495 323.063i 0.0942180 0.655301i
\(494\) −138.279 63.1501i −0.279918 0.127834i
\(495\) −168.599 + 517.046i −0.340605 + 1.04454i
\(496\) 16.2054 112.711i 0.0326722 0.227240i
\(497\) −283.961 + 182.491i −0.571350 + 0.367184i
\(498\) −543.519 159.592i −1.09140 0.320465i
\(499\) 57.9502 + 403.052i 0.116133 + 0.807720i 0.961750 + 0.273930i \(0.0883237\pi\)
−0.845617 + 0.533790i \(0.820767\pi\)
\(500\) 123.619 217.298i 0.247238 0.434596i
\(501\) 254.121 + 163.314i 0.507228 + 0.325976i
\(502\) 308.395 355.907i 0.614333 0.708979i
\(503\) −172.418 + 50.6264i −0.342778 + 0.100649i −0.448591 0.893737i \(-0.648074\pi\)
0.105812 + 0.994386i \(0.466256\pi\)
\(504\) 151.846 69.3458i 0.301282 0.137591i
\(505\) −46.7872 411.589i −0.0926479 0.815028i
\(506\) −114.803 329.416i −0.226883 0.651020i
\(507\) 465.819i 0.918776i
\(508\) 36.2465 16.5532i 0.0713515 0.0325851i
\(509\) 563.843 165.559i 1.10775 0.325264i 0.323821 0.946118i \(-0.395032\pi\)
0.783926 + 0.620854i \(0.213214\pi\)
\(510\) 248.669 + 170.420i 0.487587 + 0.334156i
\(511\) −111.043 + 172.787i −0.217306 + 0.338134i
\(512\) 17.1007 14.8178i 0.0333997 0.0289410i
\(513\) −9.66274 67.2058i −0.0188358 0.131006i
\(514\) 54.9836 + 16.1446i 0.106972 + 0.0314098i
\(515\) 196.611 + 240.962i 0.381770 + 0.467887i
\(516\) −226.044 32.5002i −0.438069 0.0629849i
\(517\) 336.193 736.161i 0.650277 1.42391i
\(518\) 282.099 + 128.830i 0.544593 + 0.248707i
\(519\) −173.700 + 1208.11i −0.334681 + 2.32776i
\(520\) −70.6988 86.6466i −0.135959 0.166628i
\(521\) −268.318 + 913.808i −0.515006 + 1.75395i 0.131779 + 0.991279i \(0.457931\pi\)
−0.646786 + 0.762672i \(0.723887\pi\)
\(522\) −475.502 + 68.3669i −0.910924 + 0.130971i
\(523\) −68.0577 78.5427i −0.130129 0.150177i 0.686945 0.726709i \(-0.258951\pi\)
−0.817075 + 0.576532i \(0.804406\pi\)
\(524\) 366.935 + 235.815i 0.700257 + 0.450028i
\(525\) 562.337 + 298.228i 1.07112 + 0.568053i
\(526\) −131.228 446.923i −0.249484 0.849664i
\(527\) 115.236 + 252.333i 0.218665 + 0.478809i
\(528\) −187.691 −0.355475
\(529\) −414.417 + 328.785i −0.783397 + 0.621521i
\(530\) 232.223 26.3979i 0.438157 0.0498074i
\(531\) 311.376 + 681.818i 0.586395 + 1.28403i
\(532\) 44.5744 + 151.807i 0.0837865 + 0.285351i
\(533\) −190.645 165.195i −0.357683 0.309934i
\(534\) 452.640 704.321i 0.847640 1.31895i
\(535\) 625.551 680.147i 1.16925 1.27130i
\(536\) −247.163 + 35.5366i −0.461124 + 0.0662997i
\(537\) 400.132 1362.72i 0.745125 2.53766i
\(538\) −55.9840 87.1128i −0.104059 0.161920i
\(539\) −160.653 23.0985i −0.298058 0.0428543i
\(540\) 15.4846 47.4870i 0.0286753 0.0879388i
\(541\) 379.767 831.574i 0.701973 1.53711i −0.135590 0.990765i \(-0.543293\pi\)
0.837563 0.546341i \(-0.183980\pi\)
\(542\) −605.046 86.9925i −1.11632 0.160503i
\(543\) 96.2304 61.8435i 0.177220 0.113892i
\(544\) −15.5299 + 52.8901i −0.0285477 + 0.0972245i
\(545\) −32.2181 123.096i −0.0591158 0.225865i
\(546\) 215.185 186.458i 0.394111 0.341499i
\(547\) −196.709 + 306.085i −0.359614 + 0.559571i −0.973172 0.230079i \(-0.926101\pi\)
0.613558 + 0.789650i \(0.289738\pi\)
\(548\) −84.4666 + 97.4796i −0.154136 + 0.177883i
\(549\) −54.7548 186.478i −0.0997356 0.339668i
\(550\) −230.915 300.761i −0.419846 0.546839i
\(551\) 455.309i 0.826332i
\(552\) 93.6654 + 268.764i 0.169684 + 0.486892i
\(553\) 910.657i 1.64676i
\(554\) −261.813 573.291i −0.472587 1.03482i
\(555\) 759.637 320.085i 1.36872 0.576729i
\(556\) −51.3719 + 59.2864i −0.0923955 + 0.106630i
\(557\) 322.227 + 207.083i 0.578505 + 0.371782i 0.796930 0.604071i \(-0.206456\pi\)
−0.218426 + 0.975854i \(0.570092\pi\)
\(558\) 308.568 267.375i 0.552989 0.479168i
\(559\) −204.276 + 29.3704i −0.365430 + 0.0525410i
\(560\) −19.9676 + 114.664i −0.0356564 + 0.204758i
\(561\) 384.651 247.200i 0.685653 0.440643i
\(562\) 26.5639 184.756i 0.0472667 0.328747i
\(563\) 49.7672 108.975i 0.0883965 0.193561i −0.860271 0.509838i \(-0.829705\pi\)
0.948667 + 0.316276i \(0.102433\pi\)
\(564\) −274.293 + 600.619i −0.486336 + 1.06493i
\(565\) −522.394 15.4731i −0.924591 0.0273860i
\(566\) 330.805 + 514.743i 0.584461 + 0.909439i
\(567\) −387.636 113.820i −0.683661 0.200741i
\(568\) −162.386 + 23.3476i −0.285891 + 0.0411049i
\(569\) 497.586 431.161i 0.874492 0.757752i −0.0968846 0.995296i \(-0.530888\pi\)
0.971377 + 0.237544i \(0.0763423\pi\)
\(570\) 377.197 + 185.948i 0.661750 + 0.326224i
\(571\) 105.030 + 91.0089i 0.183940 + 0.159385i 0.741964 0.670440i \(-0.233895\pi\)
−0.558023 + 0.829825i \(0.688440\pi\)
\(572\) −162.745 + 47.7863i −0.284520 + 0.0835425i
\(573\) 671.280 + 1469.90i 1.17152 + 2.56527i
\(574\) 262.545i 0.457396i
\(575\) −315.440 + 480.752i −0.548591 + 0.836091i
\(576\) 81.1331 0.140856
\(577\) −307.553 + 140.455i −0.533021 + 0.243422i −0.663695 0.748003i \(-0.731013\pi\)
0.130675 + 0.991425i \(0.458286\pi\)
\(578\) 77.3135 + 263.306i 0.133760 + 0.455546i
\(579\) 406.620 469.264i 0.702279 0.810473i
\(580\) 148.100 300.423i 0.255346 0.517971i
\(581\) 348.901 + 402.654i 0.600519 + 0.693035i
\(582\) 26.8617 + 186.828i 0.0461542 + 0.321010i
\(583\) 99.8709 340.129i 0.171305 0.583412i
\(584\) −83.9789 + 53.9700i −0.143799 + 0.0924143i
\(585\) 11.8716 400.803i 0.0202934 0.685133i
\(586\) −571.716 261.094i −0.975625 0.445553i
\(587\) 676.775 + 309.073i 1.15294 + 0.526529i 0.897812 0.440378i \(-0.145156\pi\)
0.255126 + 0.966908i \(0.417883\pi\)
\(588\) 131.074 + 18.8456i 0.222915 + 0.0320503i
\(589\) 209.215 + 325.544i 0.355203 + 0.552707i
\(590\) −514.864 89.6582i −0.872651 0.151963i
\(591\) −156.162 1086.13i −0.264234 1.83779i
\(592\) 98.7064 + 113.913i 0.166734 + 0.192421i
\(593\) −5.82225 + 9.05960i −0.00981830 + 0.0152776i −0.846128 0.532980i \(-0.821072\pi\)
0.836310 + 0.548257i \(0.184709\pi\)
\(594\) −57.2536 49.6105i −0.0963865 0.0835194i
\(595\) −110.099 261.290i −0.185040 0.439144i
\(596\) 50.2285 22.9386i 0.0842759 0.0384875i
\(597\) 591.578 0.990917
\(598\) 149.644 + 209.196i 0.250242 + 0.349826i
\(599\) 123.555 0.206270 0.103135 0.994667i \(-0.467113\pi\)
0.103135 + 0.994667i \(0.467113\pi\)
\(600\) 188.399 + 245.385i 0.313999 + 0.408975i
\(601\) 569.125 167.110i 0.946964 0.278054i 0.228442 0.973558i \(-0.426637\pi\)
0.718522 + 0.695504i \(0.244819\pi\)
\(602\) 162.328 + 140.658i 0.269648 + 0.233652i
\(603\) −753.209 484.058i −1.24910 0.802750i
\(604\) −250.583 289.188i −0.414872 0.478788i
\(605\) 28.9091 7.56638i 0.0477836 0.0125064i
\(606\) 491.845 + 144.419i 0.811625 + 0.238315i
\(607\) 502.720 + 782.248i 0.828205 + 1.28871i 0.954947 + 0.296776i \(0.0959115\pi\)
−0.126742 + 0.991936i \(0.540452\pi\)
\(608\) −10.9436 + 76.1141i −0.0179993 + 0.125188i
\(609\) 775.735 + 354.266i 1.27378 + 0.581718i
\(610\) 128.831 + 42.0095i 0.211198 + 0.0688680i
\(611\) −84.9195 + 590.628i −0.138984 + 0.966658i
\(612\) −166.273 + 106.857i −0.271689 + 0.174604i
\(613\) −131.298 38.5526i −0.214189 0.0628917i 0.172877 0.984943i \(-0.444694\pi\)
−0.387067 + 0.922052i \(0.626512\pi\)
\(614\) −33.9163 235.893i −0.0552383 0.384191i
\(615\) 513.641 + 472.411i 0.835188 + 0.768147i
\(616\) 148.508 + 95.4404i 0.241085 + 0.154936i
\(617\) 403.220 465.341i 0.653518 0.754200i −0.328186 0.944613i \(-0.606437\pi\)
0.981704 + 0.190413i \(0.0609829\pi\)
\(618\) −369.259 + 108.424i −0.597507 + 0.175444i
\(619\) 110.536 50.4803i 0.178573 0.0815514i −0.324123 0.946015i \(-0.605069\pi\)
0.502695 + 0.864464i \(0.332342\pi\)
\(620\) 32.1533 + 282.854i 0.0518601 + 0.456215i
\(621\) −42.4680 + 106.742i −0.0683865 + 0.171888i
\(622\) 699.021i 1.12383i
\(623\) −716.292 + 327.120i −1.14975 + 0.525072i
\(624\) 132.781 38.9879i 0.212789 0.0624806i
\(625\) −161.426 + 603.793i −0.258282 + 0.966070i
\(626\) 32.9025 51.1973i 0.0525599 0.0817848i
\(627\) 482.052 417.701i 0.768823 0.666189i
\(628\) 16.0487 + 111.621i 0.0255552 + 0.177740i
\(629\) −352.319 103.450i −0.560125 0.164468i
\(630\) −323.349 + 263.834i −0.513252 + 0.418785i
\(631\) −692.551 99.5737i −1.09754 0.157803i −0.430332 0.902671i \(-0.641604\pi\)
−0.667212 + 0.744868i \(0.732513\pi\)
\(632\) −183.864 + 402.606i −0.290924 + 0.637035i
\(633\) 621.349 + 283.761i 0.981595 + 0.448279i
\(634\) −83.7020 + 582.160i −0.132022 + 0.918234i
\(635\) −77.1852 + 62.9788i −0.121552 + 0.0991792i
\(636\) −81.4827 + 277.505i −0.128117 + 0.436328i
\(637\) 118.451 17.0307i 0.185952 0.0267358i
\(638\) −332.683 383.936i −0.521446 0.601781i
\(639\) −494.859 318.027i −0.774427 0.497694i
\(640\) −31.9788 + 46.6622i −0.0499669 + 0.0729096i
\(641\) −326.151 1110.77i −0.508815 1.73287i −0.666622 0.745396i \(-0.732260\pi\)
0.157806 0.987470i \(-0.449558\pi\)
\(642\) 475.033 + 1040.18i 0.739927 + 1.62021i
\(643\) −1186.17 −1.84475 −0.922373 0.386301i \(-0.873753\pi\)
−0.922373 + 0.386301i \(0.873753\pi\)
\(644\) 62.5544 260.285i 0.0971342 0.404170i
\(645\) 567.267 64.4839i 0.879484 0.0999750i
\(646\) −77.8195 170.401i −0.120464 0.263779i
\(647\) 222.607 + 758.130i 0.344060 + 1.17176i 0.931879 + 0.362769i \(0.118169\pi\)
−0.587819 + 0.808993i \(0.700013\pi\)
\(648\) −148.395 128.585i −0.229005 0.198434i
\(649\) −428.545 + 666.830i −0.660316 + 1.02747i
\(650\) 225.835 + 164.805i 0.347439 + 0.253546i
\(651\) −717.433 + 103.151i −1.10205 + 0.158450i
\(652\) 46.7748 159.300i 0.0717406 0.244326i
\(653\) −252.104 392.281i −0.386070 0.600737i 0.592768 0.805373i \(-0.298035\pi\)
−0.978838 + 0.204637i \(0.934399\pi\)
\(654\) 155.856 + 22.4088i 0.238313 + 0.0342642i
\(655\) −1036.72 338.054i −1.58277 0.516114i
\(656\) −53.0086 + 116.073i −0.0808058 + 0.176940i
\(657\) −354.293 50.9397i −0.539259 0.0775338i
\(658\) 522.445 335.755i 0.793990 0.510266i
\(659\) 321.083 1093.51i 0.487227 1.65934i −0.238332 0.971184i \(-0.576601\pi\)
0.725559 0.688160i \(-0.241581\pi\)
\(660\) 453.936 118.809i 0.687782 0.180014i
\(661\) −135.908 + 117.765i −0.205609 + 0.178162i −0.751578 0.659644i \(-0.770707\pi\)
0.545969 + 0.837805i \(0.316162\pi\)
\(662\) −274.549 + 427.206i −0.414726 + 0.645326i
\(663\) −220.770 + 254.782i −0.332986 + 0.384287i
\(664\) 72.9542 + 248.459i 0.109871 + 0.374186i
\(665\) −203.899 338.933i −0.306615 0.509674i
\(666\) 540.455i 0.811493i
\(667\) −383.756 + 667.986i −0.575346 + 1.00148i
\(668\) 138.088i 0.206718i
\(669\) 279.931 + 612.964i 0.418433 + 0.916240i
\(670\) 575.276 242.401i 0.858621 0.361793i
\(671\) 134.592 155.328i 0.200584 0.231487i
\(672\) −121.165 77.8679i −0.180305 0.115875i
\(673\) 416.137 360.585i 0.618332 0.535787i −0.288392 0.957512i \(-0.593121\pi\)
0.906724 + 0.421725i \(0.138575\pi\)
\(674\) 77.5498 11.1500i 0.115059 0.0165430i
\(675\) −7.39069 + 124.651i −0.0109492 + 0.184668i
\(676\) −179.137 + 115.124i −0.264995 + 0.170302i
\(677\) 121.155 842.650i 0.178958 1.24468i −0.680220 0.733008i \(-0.738116\pi\)
0.859179 0.511675i \(-0.170975\pi\)
\(678\) 268.661 588.286i 0.396256 0.867679i
\(679\) 73.7474 161.484i 0.108612 0.237827i
\(680\) 4.08002 137.747i 0.00600002 0.202569i
\(681\) 663.086 + 1031.78i 0.973695 + 1.51510i
\(682\) 414.285 + 121.645i 0.607457 + 0.178365i
\(683\) −81.0014 + 11.6462i −0.118596 + 0.0170516i −0.201357 0.979518i \(-0.564535\pi\)
0.0827610 + 0.996569i \(0.473626\pi\)
\(684\) −208.377 + 180.560i −0.304644 + 0.263976i
\(685\) 142.580 289.226i 0.208146 0.422227i
\(686\) −398.899 345.648i −0.581486 0.503860i
\(687\) −40.1316 + 11.7837i −0.0584157 + 0.0171524i
\(688\) 43.3669 + 94.9603i 0.0630333 + 0.138024i
\(689\) 261.368i 0.379344i
\(690\) −396.662 590.725i −0.574872 0.856123i
\(691\) −1178.94 −1.70614 −0.853068 0.521800i \(-0.825261\pi\)
−0.853068 + 0.521800i \(0.825261\pi\)
\(692\) 507.522 231.777i 0.733413 0.334938i
\(693\) 178.330 + 607.335i 0.257330 + 0.876385i
\(694\) −75.5710 + 87.2136i −0.108892 + 0.125668i
\(695\) 86.7162 175.905i 0.124772 0.253100i
\(696\) 271.429 + 313.246i 0.389984 + 0.450066i
\(697\) −44.2397 307.694i −0.0634716 0.441455i
\(698\) 35.6328 121.354i 0.0510498 0.173860i
\(699\) 1585.12 1018.69i 2.26769 1.45736i
\(700\) −24.2907 289.959i −0.0347010 0.414227i
\(701\) 275.650 + 125.885i 0.393224 + 0.179579i 0.602207 0.798340i \(-0.294288\pi\)
−0.208983 + 0.977919i \(0.567015\pi\)
\(702\) 50.8090 + 23.2037i 0.0723775 + 0.0330537i
\(703\) −507.022 72.8987i −0.721226 0.103697i
\(704\) 46.3865 + 72.1789i 0.0658900 + 0.102527i
\(705\) 283.194 1626.25i 0.401693 2.30673i
\(706\) 89.7780 + 624.420i 0.127164 + 0.884447i
\(707\) −315.730 364.372i −0.446577 0.515377i
\(708\) 349.642 544.053i 0.493844 0.768436i
\(709\) 880.124 + 762.631i 1.24136 + 1.07564i 0.994297 + 0.106644i \(0.0340105\pi\)
0.247062 + 0.969000i \(0.420535\pi\)
\(710\) 377.957 159.258i 0.532334 0.224307i
\(711\) −1443.59 + 659.265i −2.03036 + 0.927236i
\(712\) −382.723 −0.537532
\(713\) −32.5555 653.943i −0.0456598 0.917171i
\(714\) 350.871 0.491416
\(715\) 363.356 218.591i 0.508190 0.305722i
\(716\) −622.943 + 182.913i −0.870033 + 0.255465i
\(717\) 621.060 + 538.151i 0.866192 + 0.750560i
\(718\) −320.240 205.806i −0.446016 0.286637i
\(719\) −335.702 387.421i −0.466902 0.538834i 0.472645 0.881253i \(-0.343299\pi\)
−0.939547 + 0.342419i \(0.888754\pi\)
\(720\) −196.223 + 51.3576i −0.272532 + 0.0713300i
\(721\) 347.306 + 101.978i 0.481700 + 0.141440i
\(722\) 134.731 + 209.645i 0.186608 + 0.290367i
\(723\) −166.097 + 1155.23i −0.229733 + 1.59783i
\(724\) −47.5654 21.7224i −0.0656981 0.0300033i
\(725\) −168.017 + 820.332i −0.231747 + 1.13149i
\(726\) −5.26267 + 36.6027i −0.00724886 + 0.0504169i
\(727\) 507.937 326.431i 0.698675 0.449011i −0.142486 0.989797i \(-0.545509\pi\)
0.841160 + 0.540786i \(0.181873\pi\)
\(728\) −124.886 36.6700i −0.171547 0.0503708i
\(729\) −128.187 891.559i −0.175839 1.22299i
\(730\) 168.943 183.687i 0.231428 0.251626i
\(731\) −213.944 137.494i −0.292674 0.188090i
\(732\) −109.811 + 126.729i −0.150015 + 0.173127i
\(733\) 766.844 225.166i 1.04617 0.307184i 0.286902 0.957960i \(-0.407375\pi\)
0.759270 + 0.650776i \(0.225556\pi\)
\(734\) 612.994 279.945i 0.835141 0.381396i
\(735\) −328.936 + 37.3916i −0.447532 + 0.0508730i
\(736\) 80.2079 102.444i 0.108978 0.139190i
\(737\) 946.834i 1.28471i
\(738\) −416.191 + 190.068i −0.563945 + 0.257545i
\(739\) 289.953 85.1379i 0.392359 0.115207i −0.0796016 0.996827i \(-0.525365\pi\)
0.471960 + 0.881620i \(0.343547\pi\)
\(740\) −310.832 213.021i −0.420044 0.287867i
\(741\) −254.258 + 395.634i −0.343129 + 0.533919i
\(742\) 205.583 178.139i 0.277066 0.240079i
\(743\) −77.4301 538.538i −0.104213 0.724816i −0.973197 0.229975i \(-0.926136\pi\)
0.868984 0.494841i \(-0.164774\pi\)
\(744\) −338.007 99.2479i −0.454311 0.133398i
\(745\) −106.959 + 87.2725i −0.143569 + 0.117144i
\(746\) −653.567 93.9688i −0.876096 0.125964i
\(747\) −385.708 + 844.583i −0.516343 + 1.13063i
\(748\) −190.128 86.8287i −0.254182 0.116081i
\(749\) 153.064 1064.58i 0.204357 1.42134i
\(750\) −610.980 474.215i −0.814639 0.632287i
\(751\) −289.298 + 985.260i −0.385218 + 1.31193i 0.507631 + 0.861574i \(0.330521\pi\)
−0.892849 + 0.450356i \(0.851297\pi\)
\(752\) 298.766 42.9560i 0.397295 0.0571224i
\(753\) −954.075 1101.06i −1.26703 1.46223i
\(754\) 315.107 + 202.507i 0.417914 + 0.268577i
\(755\) 789.099 + 540.790i 1.04516 + 0.716279i
\(756\) −16.3783 55.7794i −0.0216644 0.0737822i
\(757\) 320.582 + 701.977i 0.423490 + 0.927314i 0.994339 + 0.106259i \(0.0338872\pi\)
−0.570848 + 0.821056i \(0.693386\pi\)
\(758\) −126.573 −0.166982
\(759\) −1059.28 + 206.514i −1.39562 + 0.272087i
\(760\) −21.7132 191.012i −0.0285700 0.251331i
\(761\) 577.167 + 1263.82i 0.758432 + 1.66073i 0.750593 + 0.660765i \(0.229768\pi\)
0.00783919 + 0.999969i \(0.497505\pi\)
\(762\) −34.7306 118.282i −0.0455782 0.155225i
\(763\) −111.925 96.9834i −0.146690 0.127108i
\(764\) 399.366 621.425i 0.522730 0.813383i
\(765\) 334.497 363.690i 0.437250 0.475412i
\(766\) −476.506 + 68.5113i −0.622071 + 0.0894403i
\(767\) 164.655 560.764i 0.214674 0.731113i
\(768\) −37.8459 58.8893i −0.0492785 0.0766788i
\(769\) −805.327 115.789i −1.04724 0.150570i −0.402848 0.915267i \(-0.631980\pi\)
−0.644391 + 0.764696i \(0.722889\pi\)
\(770\) −419.586 136.819i −0.544917 0.177688i
\(771\) 73.6458 161.262i 0.0955199 0.209159i
\(772\) −280.955 40.3952i −0.363931 0.0523254i
\(773\) −1070.71 + 688.102i −1.38513 + 0.890171i −0.999473 0.0324692i \(-0.989663\pi\)
−0.385661 + 0.922641i