Properties

Label 230.3.i.a.109.19
Level $230$
Weight $3$
Character 230.109
Analytic conductor $6.267$
Analytic rank $0$
Dimension $240$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 230 = 2 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 230.i (of order \(22\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.26704608029\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(24\) over \(\Q(\zeta_{22})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 109.19
Character \(\chi\) \(=\) 230.109
Dual form 230.3.i.a.19.19

$q$-expansion

\(f(q)\) \(=\) \(q+(1.28641 + 0.587486i) q^{2} +(0.00972304 - 0.0331137i) q^{3} +(1.30972 + 1.51150i) q^{4} +(1.88998 - 4.62904i) q^{5} +(0.0319617 - 0.0368857i) q^{6} +(-0.869641 + 6.04849i) q^{7} +(0.796860 + 2.71386i) q^{8} +(7.57028 + 4.86512i) q^{9} +O(q^{10})\) \(q+(1.28641 + 0.587486i) q^{2} +(0.00972304 - 0.0331137i) q^{3} +(1.30972 + 1.51150i) q^{4} +(1.88998 - 4.62904i) q^{5} +(0.0319617 - 0.0368857i) q^{6} +(-0.869641 + 6.04849i) q^{7} +(0.796860 + 2.71386i) q^{8} +(7.57028 + 4.86512i) q^{9} +(5.15079 - 4.84452i) q^{10} +(-0.789357 + 0.360487i) q^{11} +(0.0627857 - 0.0286733i) q^{12} +(12.0743 - 1.73602i) q^{13} +(-4.67212 + 7.26996i) q^{14} +(-0.134908 - 0.107592i) q^{15} +(-0.569259 + 3.95929i) q^{16} +(19.6346 - 22.6595i) q^{17} +(6.88032 + 10.7060i) q^{18} +(-7.05521 + 6.11337i) q^{19} +(9.47213 - 3.20605i) q^{20} +(0.191832 + 0.0876067i) q^{21} -1.22722 q^{22} +(20.5841 + 10.2614i) q^{23} +0.0976136 q^{24} +(-17.8560 - 17.4975i) q^{25} +(16.5524 + 4.86022i) q^{26} +(0.469447 - 0.406778i) q^{27} +(-10.2813 + 6.60737i) q^{28} +(-13.1874 + 15.2191i) q^{29} +(-0.110339 - 0.217665i) q^{30} +(-43.4091 + 12.7460i) q^{31} +(-3.05833 + 4.75885i) q^{32} +(0.00426210 + 0.0296435i) q^{33} +(38.5703 - 17.6145i) q^{34} +(26.3551 + 15.4571i) q^{35} +(2.56133 + 17.8144i) q^{36} +(11.9429 + 7.67524i) q^{37} +(-12.6674 + 3.71949i) q^{38} +(0.0599128 - 0.416703i) q^{39} +(14.0686 + 1.44043i) q^{40} +(-45.5878 + 29.2975i) q^{41} +(0.195308 + 0.225397i) q^{42} +(-61.6500 - 18.1021i) q^{43} +(-1.57871 - 0.720974i) q^{44} +(36.8285 - 25.8481i) q^{45} +(20.4513 + 25.2932i) q^{46} -58.7319i q^{47} +(0.125571 + 0.0573466i) q^{48} +(11.1872 + 3.28487i) q^{49} +(-12.6906 - 32.9992i) q^{50} +(-0.559431 - 0.870491i) q^{51} +(18.4379 + 15.9765i) q^{52} +(0.467135 - 3.24899i) q^{53} +(0.842880 - 0.247492i) q^{54} +(0.176843 + 4.33528i) q^{55} +(-17.1077 + 2.45972i) q^{56} +(0.133838 + 0.293064i) q^{57} +(-25.9055 + 11.8307i) q^{58} +(-15.7619 - 109.627i) q^{59} +(-0.0140661 - 0.344829i) q^{60} +(-26.5531 - 90.4315i) q^{61} +(-63.3301 - 9.10550i) q^{62} +(-36.0101 + 41.5578i) q^{63} +(-6.73003 + 4.32513i) q^{64} +(14.7840 - 59.1733i) q^{65} +(-0.0119323 + 0.0406378i) q^{66} +(-16.7830 + 36.7496i) q^{67} +59.9656 q^{68} +(0.539931 - 0.581843i) q^{69} +(24.8227 + 35.3675i) q^{70} +(-31.2064 + 68.3326i) q^{71} +(-7.17079 + 24.4215i) q^{72} +(-66.0949 + 57.2715i) q^{73} +(10.8544 + 16.8898i) q^{74} +(-0.753022 + 0.421147i) q^{75} +(-18.4807 - 2.65713i) q^{76} +(-1.49394 - 5.08791i) q^{77} +(0.321879 - 0.500854i) q^{78} +(66.1445 - 9.51014i) q^{79} +(17.2518 + 10.1181i) q^{80} +(33.6353 + 73.6509i) q^{81} +(-75.8566 + 10.9065i) q^{82} +(25.0249 + 16.0825i) q^{83} +(0.118829 + 0.404694i) q^{84} +(-67.7827 - 133.715i) q^{85} +(-68.6727 - 59.5052i) q^{86} +(0.375739 + 0.584661i) q^{87} +(-1.60732 - 1.85494i) q^{88} +(4.94644 - 16.8460i) q^{89} +(62.5621 - 11.6152i) q^{90} +74.5408i q^{91} +(11.4494 + 44.5523i) q^{92} +1.56136i q^{93} +(34.5042 - 75.5536i) q^{94} +(14.9649 + 44.2130i) q^{95} +(0.127847 + 0.147543i) q^{96} +(112.999 - 72.6201i) q^{97} +(12.4616 + 10.7980i) q^{98} +(-7.72947 - 1.11133i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 240q + 48q^{4} - 8q^{6} + 96q^{9} + O(q^{10}) \) \( 240q + 48q^{4} - 8q^{6} + 96q^{9} + 154q^{15} - 96q^{16} + 44q^{20} + 16q^{24} - 84q^{25} + 32q^{26} - 100q^{29} - 352q^{30} + 124q^{31} + 28q^{35} - 192q^{36} + 72q^{39} + 116q^{41} - 148q^{46} - 188q^{49} + 144q^{50} + 324q^{54} + 796q^{55} - 264q^{56} + 400q^{59} + 176q^{60} - 616q^{61} + 192q^{64} + 462q^{65} - 176q^{66} + 120q^{69} - 504q^{70} + 464q^{71} - 528q^{74} - 934q^{75} - 968q^{79} - 264q^{80} + 664q^{81} - 352q^{84} - 1196q^{85} + 396q^{86} + 376q^{94} + 126q^{95} - 32q^{96} - 3300q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/230\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{22}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.28641 + 0.587486i 0.643207 + 0.293743i
\(3\) 0.00972304 0.0331137i 0.00324101 0.0110379i −0.957857 0.287247i \(-0.907260\pi\)
0.961098 + 0.276209i \(0.0890782\pi\)
\(4\) 1.30972 + 1.51150i 0.327430 + 0.377875i
\(5\) 1.88998 4.62904i 0.377995 0.925807i
\(6\) 0.0319617 0.0368857i 0.00532694 0.00614762i
\(7\) −0.869641 + 6.04849i −0.124234 + 0.864070i 0.828440 + 0.560078i \(0.189229\pi\)
−0.952675 + 0.303992i \(0.901680\pi\)
\(8\) 0.796860 + 2.71386i 0.0996075 + 0.339232i
\(9\) 7.57028 + 4.86512i 0.841142 + 0.540569i
\(10\) 5.15079 4.84452i 0.515079 0.484452i
\(11\) −0.789357 + 0.360487i −0.0717597 + 0.0327716i −0.450972 0.892538i \(-0.648922\pi\)
0.379212 + 0.925310i \(0.376195\pi\)
\(12\) 0.0627857 0.0286733i 0.00523214 0.00238944i
\(13\) 12.0743 1.73602i 0.928790 0.133540i 0.338716 0.940889i \(-0.390008\pi\)
0.590074 + 0.807349i \(0.299098\pi\)
\(14\) −4.67212 + 7.26996i −0.333723 + 0.519283i
\(15\) −0.134908 0.107592i −0.00899387 0.00717282i
\(16\) −0.569259 + 3.95929i −0.0355787 + 0.247455i
\(17\) 19.6346 22.6595i 1.15497 1.33291i 0.221124 0.975246i \(-0.429027\pi\)
0.933850 0.357665i \(-0.116427\pi\)
\(18\) 6.88032 + 10.7060i 0.382240 + 0.594777i
\(19\) −7.05521 + 6.11337i −0.371327 + 0.321756i −0.820455 0.571711i \(-0.806280\pi\)
0.449129 + 0.893467i \(0.351735\pi\)
\(20\) 9.47213 3.20605i 0.473606 0.160303i
\(21\) 0.191832 + 0.0876067i 0.00913485 + 0.00417175i
\(22\) −1.22722 −0.0557828
\(23\) 20.5841 + 10.2614i 0.894960 + 0.446146i
\(24\) 0.0976136 0.00406723
\(25\) −17.8560 17.4975i −0.714239 0.699902i
\(26\) 16.5524 + 4.86022i 0.636631 + 0.186932i
\(27\) 0.469447 0.406778i 0.0173869 0.0150659i
\(28\) −10.2813 + 6.60737i −0.367188 + 0.235978i
\(29\) −13.1874 + 15.2191i −0.454740 + 0.524797i −0.936104 0.351723i \(-0.885596\pi\)
0.481365 + 0.876521i \(0.340141\pi\)
\(30\) −0.110339 0.217665i −0.00367795 0.00725549i
\(31\) −43.4091 + 12.7460i −1.40029 + 0.411163i −0.892784 0.450484i \(-0.851251\pi\)
−0.507508 + 0.861647i \(0.669433\pi\)
\(32\) −3.05833 + 4.75885i −0.0955727 + 0.148714i
\(33\) 0.00426210 + 0.0296435i 0.000129154 + 0.000898289i
\(34\) 38.5703 17.6145i 1.13442 0.518072i
\(35\) 26.3551 + 15.4571i 0.753002 + 0.441631i
\(36\) 2.56133 + 17.8144i 0.0711480 + 0.494845i
\(37\) 11.9429 + 7.67524i 0.322781 + 0.207439i 0.691989 0.721908i \(-0.256735\pi\)
−0.369208 + 0.929347i \(0.620371\pi\)
\(38\) −12.6674 + 3.71949i −0.333354 + 0.0978814i
\(39\) 0.0599128 0.416703i 0.00153623 0.0106847i
\(40\) 14.0686 + 1.44043i 0.351715 + 0.0360108i
\(41\) −45.5878 + 29.2975i −1.11190 + 0.714573i −0.961706 0.274084i \(-0.911625\pi\)
−0.150191 + 0.988657i \(0.547989\pi\)
\(42\) 0.195308 + 0.225397i 0.00465018 + 0.00536659i
\(43\) −61.6500 18.1021i −1.43372 0.420978i −0.529597 0.848250i \(-0.677657\pi\)
−0.904123 + 0.427271i \(0.859475\pi\)
\(44\) −1.57871 0.720974i −0.0358799 0.0163858i
\(45\) 36.8285 25.8481i 0.818411 0.574403i
\(46\) 20.4513 + 25.2932i 0.444592 + 0.549852i
\(47\) 58.7319i 1.24962i −0.780779 0.624808i \(-0.785177\pi\)
0.780779 0.624808i \(-0.214823\pi\)
\(48\) 0.125571 + 0.0573466i 0.00261607 + 0.00119472i
\(49\) 11.1872 + 3.28487i 0.228311 + 0.0670382i
\(50\) −12.6906 32.9992i −0.253812 0.659984i
\(51\) −0.559431 0.870491i −0.0109692 0.0170685i
\(52\) 18.4379 + 15.9765i 0.354575 + 0.307241i
\(53\) 0.467135 3.24899i 0.00881386 0.0613018i −0.984940 0.172897i \(-0.944687\pi\)
0.993754 + 0.111596i \(0.0355962\pi\)
\(54\) 0.842880 0.247492i 0.0156089 0.00458318i
\(55\) 0.176843 + 4.33528i 0.00321532 + 0.0788232i
\(56\) −17.1077 + 2.45972i −0.305495 + 0.0439235i
\(57\) 0.133838 + 0.293064i 0.00234803 + 0.00514148i
\(58\) −25.9055 + 11.8307i −0.446647 + 0.203977i
\(59\) −15.7619 109.627i −0.267151 1.85808i −0.475093 0.879936i \(-0.657586\pi\)
0.207942 0.978141i \(-0.433323\pi\)
\(60\) −0.0140661 0.344829i −0.000234435 0.00574716i
\(61\) −26.5531 90.4315i −0.435296 1.48248i −0.826900 0.562349i \(-0.809898\pi\)
0.391604 0.920134i \(-0.371920\pi\)
\(62\) −63.3301 9.10550i −1.02145 0.146863i
\(63\) −36.0101 + 41.5578i −0.571588 + 0.659648i
\(64\) −6.73003 + 4.32513i −0.105157 + 0.0675801i
\(65\) 14.7840 59.1733i 0.227446 0.910358i
\(66\) −0.0119323 + 0.0406378i −0.000180793 + 0.000615724i
\(67\) −16.7830 + 36.7496i −0.250493 + 0.548502i −0.992551 0.121834i \(-0.961123\pi\)
0.742058 + 0.670336i \(0.233850\pi\)
\(68\) 59.9656 0.881847
\(69\) 0.539931 0.581843i 0.00782509 0.00843250i
\(70\) 24.8227 + 35.3675i 0.354610 + 0.505249i
\(71\) −31.2064 + 68.3326i −0.439527 + 0.962431i 0.552157 + 0.833740i \(0.313805\pi\)
−0.991685 + 0.128691i \(0.958922\pi\)
\(72\) −7.17079 + 24.4215i −0.0995943 + 0.339187i
\(73\) −66.0949 + 57.2715i −0.905409 + 0.784542i −0.977077 0.212887i \(-0.931713\pi\)
0.0716675 + 0.997429i \(0.477168\pi\)
\(74\) 10.8544 + 16.8898i 0.146681 + 0.228241i
\(75\) −0.753022 + 0.421147i −0.0100403 + 0.00561529i
\(76\) −18.4807 2.65713i −0.243167 0.0349622i
\(77\) −1.49394 5.08791i −0.0194019 0.0660767i
\(78\) 0.321879 0.500854i 0.00412666 0.00642121i
\(79\) 66.1445 9.51014i 0.837272 0.120381i 0.289676 0.957125i \(-0.406452\pi\)
0.547595 + 0.836743i \(0.315543\pi\)
\(80\) 17.2518 + 10.1181i 0.215647 + 0.126476i
\(81\) 33.6353 + 73.6509i 0.415250 + 0.909271i
\(82\) −75.8566 + 10.9065i −0.925081 + 0.133007i
\(83\) 25.0249 + 16.0825i 0.301504 + 0.193765i 0.682642 0.730753i \(-0.260831\pi\)
−0.381137 + 0.924519i \(0.624467\pi\)
\(84\) 0.118829 + 0.404694i 0.00141463 + 0.00481779i
\(85\) −67.7827 133.715i −0.797444 1.57312i
\(86\) −68.6727 59.5052i −0.798519 0.691921i
\(87\) 0.375739 + 0.584661i 0.00431884 + 0.00672024i
\(88\) −1.60732 1.85494i −0.0182650 0.0210789i
\(89\) 4.94644 16.8460i 0.0555780 0.189281i −0.927025 0.374999i \(-0.877643\pi\)
0.982603 + 0.185718i \(0.0594611\pi\)
\(90\) 62.5621 11.6152i 0.695134 0.129058i
\(91\) 74.5408i 0.819129i
\(92\) 11.4494 + 44.5523i 0.124450 + 0.484265i
\(93\) 1.56136i 0.0167888i
\(94\) 34.5042 75.5536i 0.367065 0.803761i
\(95\) 14.9649 + 44.2130i 0.157525 + 0.465400i
\(96\) 0.127847 + 0.147543i 0.00133174 + 0.00153690i
\(97\) 112.999 72.6201i 1.16494 0.748661i 0.192380 0.981320i \(-0.438379\pi\)
0.972558 + 0.232660i \(0.0747429\pi\)
\(98\) 12.4616 + 10.7980i 0.127159 + 0.110184i
\(99\) −7.72947 1.11133i −0.0780754 0.0112256i
\(100\) 3.06117 49.9062i 0.0306117 0.499062i
\(101\) −32.5067 20.8908i −0.321848 0.206839i 0.369733 0.929138i \(-0.379449\pi\)
−0.691581 + 0.722299i \(0.743086\pi\)
\(102\) −0.208258 1.44847i −0.00204175 0.0142007i
\(103\) 2.77210 + 6.07006i 0.0269136 + 0.0589326i 0.922611 0.385731i \(-0.126051\pi\)
−0.895698 + 0.444663i \(0.853323\pi\)
\(104\) 14.3328 + 31.3845i 0.137815 + 0.301774i
\(105\) 0.768093 0.722422i 0.00731517 0.00688021i
\(106\) 2.50967 3.90512i 0.0236761 0.0368407i
\(107\) −77.3002 + 22.6974i −0.722431 + 0.212125i −0.622221 0.782841i \(-0.713770\pi\)
−0.100210 + 0.994966i \(0.531951\pi\)
\(108\) 1.22969 + 0.176803i 0.0113860 + 0.00163706i
\(109\) −147.615 127.909i −1.35426 1.17348i −0.967960 0.251106i \(-0.919206\pi\)
−0.386305 0.922371i \(-0.626249\pi\)
\(110\) −2.31942 + 5.68085i −0.0210856 + 0.0516441i
\(111\) 0.370277 0.320847i 0.00333583 0.00289051i
\(112\) −23.4526 6.88632i −0.209399 0.0614850i
\(113\) −22.1292 + 48.4561i −0.195833 + 0.428815i −0.981919 0.189303i \(-0.939377\pi\)
0.786086 + 0.618118i \(0.212105\pi\)
\(114\) 0.455630i 0.00399675i
\(115\) 86.4037 75.8908i 0.751336 0.659920i
\(116\) −40.2756 −0.347203
\(117\) 99.8515 + 45.6007i 0.853432 + 0.389749i
\(118\) 44.1277 150.285i 0.373963 1.27360i
\(119\) 119.981 + 138.465i 1.00824 + 1.16357i
\(120\) 0.184487 0.451857i 0.00153740 0.00376547i
\(121\) −78.7450 + 90.8766i −0.650785 + 0.751046i
\(122\) 18.9689 131.932i 0.155483 1.08141i
\(123\) 0.526895 + 1.79444i 0.00428370 + 0.0145889i
\(124\) −76.1194 48.9190i −0.613866 0.394508i
\(125\) −114.744 + 49.5860i −0.917953 + 0.396688i
\(126\) −70.7385 + 32.3052i −0.561416 + 0.256390i
\(127\) 50.9674 23.2760i 0.401318 0.183276i −0.204522 0.978862i \(-0.565564\pi\)
0.605841 + 0.795586i \(0.292837\pi\)
\(128\) −11.1986 + 1.61011i −0.0874887 + 0.0125790i
\(129\) −1.19885 + 1.86545i −0.00929342 + 0.0144608i
\(130\) 53.7818 67.4359i 0.413706 0.518738i
\(131\) −24.3466 + 169.335i −0.185852 + 1.29263i 0.656756 + 0.754103i \(0.271928\pi\)
−0.842608 + 0.538527i \(0.818981\pi\)
\(132\) −0.0392240 + 0.0452669i −0.000297152 + 0.000342931i
\(133\) −30.8412 47.9898i −0.231888 0.360825i
\(134\) −43.1798 + 37.4155i −0.322237 + 0.279220i
\(135\) −0.995748 2.94189i −0.00737591 0.0217918i
\(136\) 77.1406 + 35.2289i 0.567210 + 0.259036i
\(137\) 22.8318 0.166655 0.0833276 0.996522i \(-0.473445\pi\)
0.0833276 + 0.996522i \(0.473445\pi\)
\(138\) 1.03640 0.431289i 0.00751014 0.00312528i
\(139\) 206.211 1.48353 0.741767 0.670658i \(-0.233988\pi\)
0.741767 + 0.670658i \(0.233988\pi\)
\(140\) 11.1544 + 60.0802i 0.0796743 + 0.429144i
\(141\) −1.94483 0.571053i −0.0137931 0.00405002i
\(142\) −80.2888 + 69.5707i −0.565414 + 0.489934i
\(143\) −8.90510 + 5.72296i −0.0622734 + 0.0400207i
\(144\) −23.5719 + 27.2034i −0.163694 + 0.188912i
\(145\) 45.5259 + 89.8090i 0.313972 + 0.619372i
\(146\) −118.672 + 34.8451i −0.812819 + 0.238665i
\(147\) 0.217548 0.338511i 0.00147992 0.00230280i
\(148\) 4.04076 + 28.1041i 0.0273025 + 0.189893i
\(149\) 122.948 56.1483i 0.825153 0.376835i 0.0423486 0.999103i \(-0.486516\pi\)
0.782804 + 0.622268i \(0.213789\pi\)
\(150\) −1.21612 + 0.0993798i −0.00810744 + 0.000662532i
\(151\) 5.15663 + 35.8652i 0.0341499 + 0.237518i 0.999746 0.0225280i \(-0.00717149\pi\)
−0.965596 + 0.260046i \(0.916262\pi\)
\(152\) −22.2128 14.2753i −0.146137 0.0939166i
\(153\) 258.880 76.0141i 1.69203 0.496824i
\(154\) 1.06724 7.42283i 0.00693014 0.0482002i
\(155\) −23.0402 + 225.032i −0.148646 + 1.45182i
\(156\) 0.708315 0.455206i 0.00454048 0.00291799i
\(157\) 15.9489 + 18.4060i 0.101585 + 0.117236i 0.804266 0.594270i \(-0.202559\pi\)
−0.702680 + 0.711506i \(0.748014\pi\)
\(158\) 90.6762 + 26.6249i 0.573900 + 0.168512i
\(159\) −0.103044 0.0470587i −0.000648076 0.000295966i
\(160\) 16.2487 + 23.1512i 0.101555 + 0.144695i
\(161\) −79.9664 + 115.579i −0.496686 + 0.717881i
\(162\) 114.506i 0.706826i
\(163\) −72.4088 33.0680i −0.444226 0.202871i 0.180728 0.983533i \(-0.442155\pi\)
−0.624953 + 0.780662i \(0.714882\pi\)
\(164\) −103.990 30.5343i −0.634088 0.186185i
\(165\) 0.145276 + 0.0362962i 0.000880462 + 0.000219977i
\(166\) 22.7441 + 35.3905i 0.137013 + 0.213196i
\(167\) 20.1775 + 17.4839i 0.120823 + 0.104694i 0.713177 0.700984i \(-0.247256\pi\)
−0.592353 + 0.805678i \(0.701801\pi\)
\(168\) −0.0848888 + 0.590414i −0.000505290 + 0.00351437i
\(169\) −19.3801 + 5.69051i −0.114675 + 0.0336716i
\(170\) −8.64104 211.834i −0.0508297 1.24608i
\(171\) −83.1522 + 11.9555i −0.486270 + 0.0699151i
\(172\) −53.3830 116.893i −0.310366 0.679608i
\(173\) 101.792 46.4870i 0.588395 0.268711i −0.0988904 0.995098i \(-0.531529\pi\)
0.687286 + 0.726387i \(0.258802\pi\)
\(174\) 0.139876 + 0.972857i 0.000803883 + 0.00559113i
\(175\) 121.362 92.7850i 0.693497 0.530200i
\(176\) −0.977923 3.33050i −0.00555638 0.0189233i
\(177\) −3.78339 0.543969i −0.0213751 0.00307327i
\(178\) 16.2600 18.7650i 0.0913482 0.105421i
\(179\) −86.6806 + 55.7062i −0.484249 + 0.311208i −0.759889 0.650053i \(-0.774747\pi\)
0.275640 + 0.961261i \(0.411110\pi\)
\(180\) 87.3045 + 21.8124i 0.485025 + 0.121180i
\(181\) 55.2311 188.100i 0.305144 1.03923i −0.654044 0.756457i \(-0.726929\pi\)
0.959188 0.282769i \(-0.0912530\pi\)
\(182\) −43.7916 + 95.8903i −0.240613 + 0.526870i
\(183\) −3.25269 −0.0177743
\(184\) −11.4452 + 64.0391i −0.0622022 + 0.348039i
\(185\) 58.1008 40.7781i 0.314058 0.220422i
\(186\) −0.917278 + 2.00856i −0.00493160 + 0.0107987i
\(187\) −7.33022 + 24.9644i −0.0391990 + 0.133500i
\(188\) 88.7732 76.9225i 0.472198 0.409162i
\(189\) 2.05214 + 3.19320i 0.0108579 + 0.0168952i
\(190\) −6.72348 + 65.6678i −0.0353867 + 0.345620i
\(191\) 204.057 + 29.3389i 1.06836 + 0.153607i 0.653991 0.756502i \(-0.273093\pi\)
0.414369 + 0.910109i \(0.364002\pi\)
\(192\) 0.0777844 + 0.264909i 0.000405127 + 0.00137974i
\(193\) 126.116 196.241i 0.653453 1.01679i −0.343528 0.939143i \(-0.611622\pi\)
0.996981 0.0776503i \(-0.0247418\pi\)
\(194\) 188.027 27.0342i 0.969210 0.139351i
\(195\) −1.81570 1.06490i −0.00931127 0.00546101i
\(196\) 9.68709 + 21.2118i 0.0494239 + 0.108223i
\(197\) 244.276 35.1216i 1.23998 0.178282i 0.509051 0.860736i \(-0.329996\pi\)
0.730928 + 0.682454i \(0.239087\pi\)
\(198\) −9.29040 5.97058i −0.0469212 0.0301544i
\(199\) 66.1612 + 225.324i 0.332468 + 1.13228i 0.940902 + 0.338678i \(0.109980\pi\)
−0.608434 + 0.793605i \(0.708202\pi\)
\(200\) 33.2571 62.4016i 0.166286 0.312008i
\(201\) 1.05373 + 0.913065i 0.00524245 + 0.00454261i
\(202\) −29.5440 45.9714i −0.146258 0.227581i
\(203\) −80.5843 92.9993i −0.396967 0.458125i
\(204\) 0.583048 1.98568i 0.00285808 0.00973372i
\(205\) 49.4593 + 266.399i 0.241265 + 1.29951i
\(206\) 9.43717i 0.0458115i
\(207\) 105.905 + 177.825i 0.511616 + 0.859060i
\(208\) 48.7937i 0.234585i
\(209\) 3.36528 7.36895i 0.0161018 0.0352581i
\(210\) 1.41250 0.478091i 0.00672618 0.00227662i
\(211\) −57.4827 66.3385i −0.272430 0.314401i 0.603005 0.797738i \(-0.293970\pi\)
−0.875434 + 0.483337i \(0.839425\pi\)
\(212\) 5.52267 3.54920i 0.0260503 0.0167415i
\(213\) 1.95932 + 1.69776i 0.00919868 + 0.00797071i
\(214\) −112.774 16.2145i −0.526983 0.0757687i
\(215\) −200.312 + 251.167i −0.931684 + 1.16822i
\(216\) 1.47802 + 0.949867i 0.00684269 + 0.00439753i
\(217\) −39.3440 273.644i −0.181309 1.26103i
\(218\) −114.749 251.265i −0.526372 1.15259i
\(219\) 1.25383 + 2.74550i 0.00572523 + 0.0125365i
\(220\) −6.32115 + 5.94530i −0.0287325 + 0.0270241i
\(221\) 197.736 307.683i 0.894731 1.39223i
\(222\) 0.664822 0.195209i 0.00299469 0.000879321i
\(223\) −408.838 58.7820i −1.83335 0.263596i −0.862985 0.505230i \(-0.831408\pi\)
−0.970368 + 0.241633i \(0.922317\pi\)
\(224\) −26.1242 22.6367i −0.116626 0.101057i
\(225\) −50.0470 219.333i −0.222431 0.974813i
\(226\) −56.9345 + 49.3340i −0.251923 + 0.218292i
\(227\) 306.892 + 90.1115i 1.35195 + 0.396967i 0.875917 0.482463i \(-0.160258\pi\)
0.476029 + 0.879430i \(0.342076\pi\)
\(228\) −0.267676 + 0.586129i −0.00117402 + 0.00257074i
\(229\) 52.1414i 0.227692i 0.993498 + 0.113846i \(0.0363170\pi\)
−0.993498 + 0.113846i \(0.963683\pi\)
\(230\) 155.736 46.8660i 0.677111 0.203765i
\(231\) −0.183005 −0.000792229
\(232\) −51.8111 23.6613i −0.223324 0.101988i
\(233\) −117.127 + 398.896i −0.502689 + 1.71200i 0.182117 + 0.983277i \(0.441705\pi\)
−0.684807 + 0.728725i \(0.740113\pi\)
\(234\) 101.661 + 117.323i 0.434447 + 0.501379i
\(235\) −271.872 111.002i −1.15690 0.472349i
\(236\) 145.057 167.404i 0.614647 0.709340i
\(237\) 0.328210 2.28275i 0.00138485 0.00963186i
\(238\) 72.9985 + 248.610i 0.306716 + 1.04458i
\(239\) −233.886 150.309i −0.978602 0.628910i −0.0495164 0.998773i \(-0.515768\pi\)
−0.929086 + 0.369864i \(0.879404\pi\)
\(240\) 0.502787 0.472891i 0.00209494 0.00197038i
\(241\) −164.597 + 75.1689i −0.682975 + 0.311904i −0.726518 0.687147i \(-0.758863\pi\)
0.0435430 + 0.999052i \(0.486135\pi\)
\(242\) −154.687 + 70.6434i −0.639204 + 0.291915i
\(243\) 8.29950 1.19329i 0.0341543 0.00491065i
\(244\) 101.910 158.575i 0.417664 0.649898i
\(245\) 36.3494 45.5778i 0.148365 0.186032i
\(246\) −0.376402 + 2.61793i −0.00153009 + 0.0106420i
\(247\) −74.5736 + 86.0625i −0.301917 + 0.348431i
\(248\) −69.1819 107.649i −0.278959 0.434069i
\(249\) 0.775868 0.672294i 0.00311594 0.00269998i
\(250\) −176.740 3.62241i −0.706958 0.0144896i
\(251\) 62.6190 + 28.5972i 0.249478 + 0.113933i 0.536230 0.844072i \(-0.319848\pi\)
−0.286751 + 0.958005i \(0.592575\pi\)
\(252\) −109.978 −0.436420
\(253\) −19.9473 0.679574i −0.0788430 0.00268606i
\(254\) 79.2395 0.311967
\(255\) −5.08685 + 0.944417i −0.0199484 + 0.00370360i
\(256\) −15.3519 4.50772i −0.0599683 0.0176083i
\(257\) −318.770 + 276.216i −1.24035 + 1.07477i −0.245930 + 0.969288i \(0.579093\pi\)
−0.994421 + 0.105483i \(0.966361\pi\)
\(258\) −2.63814 + 1.69543i −0.0102254 + 0.00657144i
\(259\) −56.8096 + 65.5618i −0.219342 + 0.253134i
\(260\) 108.803 55.1545i 0.418474 0.212133i
\(261\) −173.876 + 51.0545i −0.666190 + 0.195611i
\(262\) −130.801 + 203.531i −0.499242 + 0.776836i
\(263\) −12.7624 88.7647i −0.0485264 0.337508i −0.999593 0.0285228i \(-0.990920\pi\)
0.951067 0.308985i \(-0.0999894\pi\)
\(264\) −0.0770520 + 0.0351885i −0.000291863 + 0.000133290i
\(265\) −14.1568 8.30291i −0.0534220 0.0313317i
\(266\) −11.4812 79.8534i −0.0431624 0.300201i
\(267\) −0.509739 0.327590i −0.00190914 0.00122693i
\(268\) −77.5281 + 22.7643i −0.289284 + 0.0849414i
\(269\) −49.6147 + 345.078i −0.184441 + 1.28282i 0.661663 + 0.749801i \(0.269851\pi\)
−0.846105 + 0.533017i \(0.821058\pi\)
\(270\) 0.447375 4.36948i 0.00165694 0.0161833i
\(271\) 242.847 156.068i 0.896114 0.575898i −0.00952138 0.999955i \(-0.503031\pi\)
0.905635 + 0.424057i \(0.139394\pi\)
\(272\) 78.5382 + 90.6379i 0.288743 + 0.333228i
\(273\) 2.46832 + 0.724763i 0.00904145 + 0.00265481i
\(274\) 29.3711 + 13.4133i 0.107194 + 0.0489538i
\(275\) 20.4024 + 7.37496i 0.0741905 + 0.0268180i
\(276\) 1.58661 + 0.0540536i 0.00574860 + 0.000195846i
\(277\) 279.737i 1.00988i −0.863154 0.504941i \(-0.831514\pi\)
0.863154 0.504941i \(-0.168486\pi\)
\(278\) 265.273 + 121.146i 0.954219 + 0.435777i
\(279\) −390.630 114.699i −1.40011 0.411108i
\(280\) −20.9470 + 83.8410i −0.0748109 + 0.299432i
\(281\) −117.982 183.583i −0.419864 0.653320i 0.565311 0.824878i \(-0.308756\pi\)
−0.985174 + 0.171558i \(0.945120\pi\)
\(282\) −2.16637 1.87717i −0.00768216 0.00665663i
\(283\) 31.4531 218.761i 0.111142 0.773007i −0.855671 0.517520i \(-0.826855\pi\)
0.966813 0.255487i \(-0.0822357\pi\)
\(284\) −144.156 + 42.3281i −0.507593 + 0.149043i
\(285\) 1.60956 0.0656563i 0.00564757 0.000230373i
\(286\) −14.8178 + 2.13048i −0.0518105 + 0.00744922i
\(287\) −137.560 301.215i −0.479305 1.04953i
\(288\) −46.3048 + 21.1467i −0.160780 + 0.0734260i
\(289\) −86.8075 603.759i −0.300372 2.08913i
\(290\) 5.80371 + 142.277i 0.0200128 + 0.490612i
\(291\) −1.30602 4.44790i −0.00448804 0.0152849i
\(292\) −173.132 24.8926i −0.592917 0.0852486i
\(293\) −11.8223 + 13.6437i −0.0403491 + 0.0465654i −0.775565 0.631267i \(-0.782535\pi\)
0.735216 + 0.677833i \(0.237081\pi\)
\(294\) 0.478727 0.307659i 0.00162832 0.00104646i
\(295\) −537.255 134.229i −1.82120 0.455014i
\(296\) −11.3127 + 38.5274i −0.0382185 + 0.130160i
\(297\) −0.223923 + 0.490323i −0.000753950 + 0.00165092i
\(298\) 191.148 0.641436
\(299\) 266.352 + 88.1641i 0.890808 + 0.294863i
\(300\) −1.62281 0.586607i −0.00540938 0.00195536i
\(301\) 163.103 357.147i 0.541872 1.18653i
\(302\) −14.4367 + 49.1669i −0.0478036 + 0.162804i
\(303\) −1.00783 + 0.873293i −0.00332618 + 0.00288216i
\(304\) −20.1883 31.4137i −0.0664090 0.103334i
\(305\) −468.795 47.9982i −1.53703 0.157371i
\(306\) 377.684 + 54.3028i 1.23426 + 0.177460i
\(307\) −85.9053 292.567i −0.279822 0.952986i −0.972726 0.231956i \(-0.925487\pi\)
0.692904 0.721030i \(-0.256331\pi\)
\(308\) 5.73372 8.92184i 0.0186160 0.0289670i
\(309\) 0.227955 0.0327750i 0.000737718 0.000106068i
\(310\) −161.842 + 275.948i −0.522072 + 0.890156i
\(311\) 10.0007 + 21.8984i 0.0321565 + 0.0704128i 0.925029 0.379897i \(-0.124041\pi\)
−0.892872 + 0.450310i \(0.851313\pi\)
\(312\) 1.17861 0.169459i 0.00377760 0.000543138i
\(313\) 143.810 + 92.4212i 0.459457 + 0.295275i 0.749821 0.661641i \(-0.230140\pi\)
−0.290363 + 0.956916i \(0.593776\pi\)
\(314\) 9.70361 + 33.0475i 0.0309032 + 0.105247i
\(315\) 124.315 + 245.235i 0.394649 + 0.778525i
\(316\) 101.005 + 87.5217i 0.319637 + 0.276967i
\(317\) −64.7724 100.788i −0.204329 0.317943i 0.723932 0.689871i \(-0.242333\pi\)
−0.928261 + 0.371929i \(0.878697\pi\)
\(318\) −0.104911 0.121074i −0.000329909 0.000380735i
\(319\) 4.92330 16.7672i 0.0154336 0.0525618i
\(320\) 7.30157 + 39.3279i 0.0228174 + 0.122900i
\(321\) 2.78038i 0.00866161i
\(322\) −170.771 + 101.703i −0.530344 + 0.315848i
\(323\) 279.901i 0.866566i
\(324\) −67.2705 + 147.302i −0.207625 + 0.454635i
\(325\) −245.974 180.272i −0.756843 0.554682i
\(326\) −73.7207 85.0783i −0.226137 0.260976i
\(327\) −5.67080 + 3.64440i −0.0173419 + 0.0111450i
\(328\) −115.836 100.373i −0.353159 0.306014i
\(329\) 355.239 + 51.0757i 1.07975 + 0.155245i
\(330\) 0.165562 + 0.132040i 0.000501703 + 0.000400120i
\(331\) −140.504 90.2964i −0.424483 0.272799i 0.310910 0.950439i \(-0.399366\pi\)
−0.735393 + 0.677641i \(0.763003\pi\)
\(332\) 8.46691 + 58.8887i 0.0255027 + 0.177376i
\(333\) 53.0702 + 116.207i 0.159370 + 0.348971i
\(334\) 15.6851 + 34.3455i 0.0469613 + 0.102831i
\(335\) 138.396 + 147.145i 0.413122 + 0.439239i
\(336\) −0.456062 + 0.709646i −0.00135733 + 0.00211204i
\(337\) 187.980 55.1960i 0.557805 0.163786i 0.00933470 0.999956i \(-0.497029\pi\)
0.548470 + 0.836170i \(0.315210\pi\)
\(338\) −28.2739 4.06517i −0.0836506 0.0120271i
\(339\) 1.38940 + 1.20392i 0.00409851 + 0.00355138i
\(340\) 113.334 277.583i 0.333334 0.816420i
\(341\) 29.6705 25.7096i 0.0870101 0.0753947i
\(342\) −113.992 33.4710i −0.333309 0.0978685i
\(343\) −153.982 + 337.174i −0.448928 + 0.983016i
\(344\) 181.734i 0.528296i
\(345\) −1.67291 3.59903i −0.00484903 0.0104320i
\(346\) 158.258 0.457392
\(347\) 437.868 + 199.968i 1.26187 + 0.576276i 0.930177 0.367112i \(-0.119653\pi\)
0.331691 + 0.943388i \(0.392381\pi\)
\(348\) −0.391601 + 1.33367i −0.00112529 + 0.00383239i
\(349\) −165.998 191.571i −0.475638 0.548915i 0.466334 0.884609i \(-0.345575\pi\)
−0.941971 + 0.335694i \(0.891029\pi\)
\(350\) 210.632 48.0616i 0.601805 0.137319i
\(351\) 4.96206 5.72652i 0.0141369 0.0163149i
\(352\) 0.698607 4.85892i 0.00198468 0.0138037i
\(353\) −88.2043 300.396i −0.249870 0.850981i −0.984926 0.172974i \(-0.944662\pi\)
0.735056 0.678006i \(-0.237156\pi\)
\(354\) −4.54743 2.92246i −0.0128458 0.00825552i
\(355\) 257.335 + 273.603i 0.724886 + 0.770712i
\(356\) 31.9412 14.5871i 0.0897226 0.0409749i
\(357\) 5.75166 2.62669i 0.0161111 0.00735769i
\(358\) −144.234 + 20.7377i −0.402887 + 0.0579265i
\(359\) 208.372 324.234i 0.580425 0.903158i −0.419565 0.907725i \(-0.637817\pi\)
0.999990 + 0.00456690i \(0.00145370\pi\)
\(360\) 99.4953 + 79.3499i 0.276376 + 0.220416i
\(361\) −38.9730 + 271.063i −0.107959 + 0.750868i
\(362\) 181.556 209.527i 0.501536 0.578803i
\(363\) 2.24361 + 3.49113i 0.00618076 + 0.00961744i
\(364\) −112.668 + 97.6276i −0.309528 + 0.268208i
\(365\) 140.194 + 414.198i 0.384094 + 1.13479i
\(366\) −4.18431 1.91091i −0.0114325 0.00522107i
\(367\) 654.177 1.78250 0.891249 0.453514i \(-0.149830\pi\)
0.891249 + 0.453514i \(0.149830\pi\)
\(368\) −52.3453 + 75.6569i −0.142243 + 0.205589i
\(369\) −487.648 −1.32154
\(370\) 98.6982 18.3242i 0.266752 0.0495248i
\(371\) 19.2453 + 5.65092i 0.0518740 + 0.0152316i
\(372\) −2.36000 + 2.04495i −0.00634408 + 0.00549718i
\(373\) −121.316 + 77.9652i −0.325245 + 0.209022i −0.693065 0.720875i \(-0.743740\pi\)
0.367821 + 0.929897i \(0.380104\pi\)
\(374\) −24.0959 + 27.8082i −0.0644276 + 0.0743535i
\(375\) 0.526311 + 4.28173i 0.00140350 + 0.0114179i
\(376\) 159.390 46.8011i 0.423910 0.124471i
\(377\) −132.808 + 206.653i −0.352276 + 0.548152i
\(378\) 0.763948 + 5.31338i 0.00202103 + 0.0140566i
\(379\) −461.018 + 210.540i −1.21641 + 0.555514i −0.917105 0.398645i \(-0.869481\pi\)
−0.299301 + 0.954159i \(0.596753\pi\)
\(380\) −47.2281 + 80.5260i −0.124284 + 0.211911i
\(381\) −0.275196 1.91403i −0.000722300 0.00502371i
\(382\) 245.265 + 157.622i 0.642056 + 0.412624i
\(383\) −155.583 + 45.6833i −0.406222 + 0.119278i −0.478459 0.878110i \(-0.658804\pi\)
0.0722369 + 0.997388i \(0.476986\pi\)
\(384\) −0.0555674 + 0.386480i −0.000144707 + 0.00100646i
\(385\) −26.3756 2.70050i −0.0685082 0.00701430i
\(386\) 277.527 178.356i 0.718981 0.462061i
\(387\) −378.639 436.972i −0.978395 1.12913i
\(388\) 257.762 + 75.6859i 0.664336 + 0.195067i
\(389\) 449.155 + 205.122i 1.15464 + 0.527306i 0.898344 0.439292i \(-0.144771\pi\)
0.256296 + 0.966598i \(0.417498\pi\)
\(390\) −1.71013 2.43659i −0.00438494 0.00624768i
\(391\) 636.676 264.948i 1.62833 0.677615i
\(392\) 32.9781i 0.0841279i
\(393\) 5.37056 + 2.45265i 0.0136656 + 0.00624085i
\(394\) 334.873 + 98.3277i 0.849932 + 0.249563i
\(395\) 80.9887 324.159i 0.205035 0.820656i
\(396\) −8.44368 13.1386i −0.0213224 0.0331783i
\(397\) 199.715 + 173.054i 0.503061 + 0.435905i 0.869057 0.494712i \(-0.164726\pi\)
−0.365996 + 0.930616i \(0.619272\pi\)
\(398\) −47.2641 + 328.729i −0.118754 + 0.825953i
\(399\) −1.88899 + 0.554656i −0.00473430 + 0.00139012i
\(400\) 79.4425 60.7363i 0.198606 0.151841i
\(401\) 377.428 54.2659i 0.941217 0.135327i 0.345408 0.938453i \(-0.387741\pi\)
0.595809 + 0.803126i \(0.296832\pi\)
\(402\) 0.819124 + 1.79363i 0.00203762 + 0.00446177i
\(403\) −502.005 + 229.258i −1.24567 + 0.568879i
\(404\) −10.9983 76.4949i −0.0272235 0.189344i
\(405\) 404.503 16.5003i 0.998772 0.0407415i
\(406\) −49.0291 166.978i −0.120761 0.411275i
\(407\) −12.1940 1.75324i −0.0299608 0.00430771i
\(408\) 1.91660 2.21187i 0.00469755 0.00542126i
\(409\) −558.396 + 358.860i −1.36527 + 0.877407i −0.998598 0.0529420i \(-0.983140\pi\)
−0.366675 + 0.930349i \(0.619504\pi\)
\(410\) −92.8805 + 371.756i −0.226538 + 0.906722i
\(411\) 0.221994 0.756043i 0.000540132 0.00183952i
\(412\) −5.54420 + 12.1401i −0.0134568 + 0.0294663i
\(413\) 676.782 1.63870
\(414\) 31.7671 + 290.975i 0.0767322 + 0.702837i
\(415\) 121.743 85.4455i 0.293356 0.205893i
\(416\) −28.6656 + 62.7689i −0.0689077 + 0.150887i
\(417\) 2.00500 6.82840i 0.00480815 0.0163751i
\(418\) 8.65830 7.50246i 0.0207136 0.0179485i
\(419\) 94.6408 + 147.264i 0.225873 + 0.351465i 0.935631 0.352981i \(-0.114832\pi\)
−0.709758 + 0.704446i \(0.751196\pi\)
\(420\) 2.09793 + 0.214799i 0.00499507 + 0.000511426i
\(421\) 267.384 + 38.4441i 0.635118 + 0.0913161i 0.452351 0.891840i \(-0.350586\pi\)
0.182767 + 0.983156i \(0.441495\pi\)
\(422\) −34.9736 119.109i −0.0828757 0.282249i
\(423\) 285.738 444.617i 0.675504 1.05110i
\(424\) 9.18954 1.32126i 0.0216735 0.00311617i
\(425\) −747.080 + 61.0506i −1.75783 + 0.143649i
\(426\) 1.52309 + 3.33509i 0.00357532 + 0.00782886i
\(427\) 570.065 81.9630i 1.33505 0.191951i
\(428\) −135.549 87.1119i −0.316703 0.203532i
\(429\) 0.102923 + 0.350525i 0.000239915 + 0.000817074i
\(430\) −405.242 + 205.425i −0.942422 + 0.477732i
\(431\) −100.221 86.8416i −0.232530 0.201489i 0.530800 0.847497i \(-0.321892\pi\)
−0.763330 + 0.646008i \(0.776437\pi\)
\(432\) 1.34331 + 2.09024i 0.00310953 + 0.00483852i
\(433\) 149.884 + 172.976i 0.346153 + 0.399482i 0.901953 0.431834i \(-0.142133\pi\)
−0.555800 + 0.831316i \(0.687588\pi\)
\(434\) 110.149 375.133i 0.253799 0.864362i
\(435\) 3.41655 0.634313i 0.00785415 0.00145819i
\(436\) 390.645i 0.895974i
\(437\) −207.957 + 53.4422i −0.475873 + 0.122293i
\(438\) 4.26845i 0.00974532i
\(439\) −200.772 + 439.629i −0.457339 + 1.00143i 0.530747 + 0.847530i \(0.321911\pi\)
−0.988086 + 0.153902i \(0.950816\pi\)
\(440\) −11.6244 + 3.93453i −0.0264191 + 0.00894212i
\(441\) 68.7092 + 79.2947i 0.155803 + 0.179807i
\(442\) 435.129 279.640i 0.984455 0.632671i
\(443\) 36.9542 + 32.0210i 0.0834181 + 0.0722822i 0.695572 0.718457i \(-0.255151\pi\)
−0.612154 + 0.790739i \(0.709697\pi\)
\(444\) 0.969919 + 0.139453i 0.00218450 + 0.000314084i
\(445\) −68.6323 54.7359i −0.154230 0.123002i
\(446\) −491.401 315.804i −1.10180 0.708081i
\(447\) −0.663850 4.61718i −0.00148512 0.0103293i
\(448\) −20.3078 44.4678i −0.0453298 0.0992585i
\(449\) 295.991 + 648.131i 0.659224 + 1.44350i 0.883244 + 0.468914i \(0.155355\pi\)
−0.224020 + 0.974585i \(0.571918\pi\)
\(450\) 64.4737 311.555i 0.143275 0.692344i
\(451\) 25.4237 39.5600i 0.0563718 0.0877162i
\(452\) −102.224 + 30.0158i −0.226160 + 0.0664066i
\(453\) 1.23776 + 0.177964i 0.00273237 + 0.000392856i
\(454\) 341.850 + 296.215i 0.752975 + 0.652456i
\(455\) 345.052 + 140.880i 0.758356 + 0.309627i
\(456\) −0.688684 + 0.596748i −0.00151027 + 0.00130866i
\(457\) −300.101 88.1175i −0.656675 0.192817i −0.0636139 0.997975i \(-0.520263\pi\)
−0.593061 + 0.805157i \(0.702081\pi\)
\(458\) −30.6323 + 67.0755i −0.0668829 + 0.146453i
\(459\) 18.6244i 0.0405759i
\(460\) 227.874 + 31.2033i 0.495377 + 0.0678332i
\(461\) 399.052 0.865623 0.432811 0.901485i \(-0.357522\pi\)
0.432811 + 0.901485i \(0.357522\pi\)
\(462\) −0.235420 0.107513i −0.000509567 0.000232712i
\(463\) 149.008 507.475i 0.321831 1.09606i −0.626670 0.779285i \(-0.715583\pi\)
0.948502 0.316773i \(-0.102599\pi\)
\(464\) −52.7498 60.8765i −0.113685 0.131199i
\(465\) 7.22761 + 2.95094i 0.0155432 + 0.00634611i
\(466\) −385.019 + 444.336i −0.826221 + 0.953510i
\(467\) −22.1729 + 154.216i −0.0474795 + 0.330227i 0.952213 + 0.305435i \(0.0988017\pi\)
−0.999693 + 0.0247929i \(0.992107\pi\)
\(468\) 61.8523 + 210.650i 0.132163 + 0.450106i
\(469\) −207.685 133.471i −0.442824 0.284586i
\(470\) −284.528 302.516i −0.605379 0.643650i
\(471\) 0.764561 0.349163i 0.00162327 0.000741324i
\(472\) 284.951 130.133i 0.603709 0.275705i
\(473\) 55.1894 7.93504i 0.116679 0.0167760i
\(474\) 1.76330 2.74375i 0.00372004 0.00578849i
\(475\) 232.947 + 14.2886i 0.490414 + 0.0300813i
\(476\) −52.1485 + 362.701i −0.109556 + 0.761977i
\(477\) 19.3431 22.3231i 0.0405516 0.0467990i
\(478\) −212.570 330.765i −0.444706 0.691976i
\(479\) 307.106 266.109i 0.641140 0.555551i −0.272459 0.962167i \(-0.587837\pi\)
0.913599 + 0.406616i \(0.133291\pi\)
\(480\) 0.924608 0.312954i 0.00192627 0.000651988i
\(481\) 157.526 + 71.9398i 0.327497 + 0.149563i
\(482\) −255.901 −0.530914
\(483\) 3.04972 + 3.77176i 0.00631412 + 0.00780903i
\(484\) −240.494 −0.496888
\(485\) −122.595 660.327i −0.252774 1.36150i
\(486\) 11.3776 + 3.34077i 0.0234108 + 0.00687402i
\(487\) 30.3963 26.3385i 0.0624153 0.0540832i −0.623095 0.782147i \(-0.714125\pi\)
0.685510 + 0.728063i \(0.259579\pi\)
\(488\) 224.259 144.122i 0.459547 0.295333i
\(489\) −1.79904 + 2.07620i −0.00367901 + 0.00424581i
\(490\) 73.5367 37.2772i 0.150075 0.0760759i
\(491\) −212.265 + 62.3267i −0.432312 + 0.126938i −0.490646 0.871359i \(-0.663239\pi\)
0.0583344 + 0.998297i \(0.481421\pi\)
\(492\) −2.02221 + 3.14662i −0.00411018 + 0.00639556i
\(493\) 85.9279 + 597.642i 0.174296 + 1.21225i
\(494\) −146.493 + 66.9011i −0.296544 + 0.135427i
\(495\) −19.7529 + 33.6796i −0.0399049 + 0.0680396i
\(496\) −25.7542 179.125i −0.0519239 0.361138i
\(497\) −386.170 248.177i −0.777003 0.499349i
\(498\) 1.39305 0.409037i 0.00279729 0.000821359i
\(499\) 26.2310 182.441i 0.0525671 0.365612i −0.946511 0.322673i \(-0.895419\pi\)
0.999078 0.0429395i \(-0.0136723\pi\)
\(500\) −225.232 108.492i −0.450464 0.216984i
\(501\) 0.775143 0.498154i 0.00154719 0.000994320i
\(502\) 63.7536 + 73.5756i 0.126999 + 0.146565i
\(503\) −312.774 91.8387i −0.621817 0.182582i −0.0443766 0.999015i \(-0.514130\pi\)
−0.577440 + 0.816433i \(0.695948\pi\)
\(504\) −141.477 64.6103i −0.280708 0.128195i
\(505\) −158.141 + 110.992i −0.313151 + 0.219785i
\(506\) −25.2612 12.5930i −0.0499234 0.0248873i
\(507\) 0.697075i 0.00137490i
\(508\) 101.935 + 46.5521i 0.200659 + 0.0916380i
\(509\) 216.556 + 63.5867i 0.425455 + 0.124925i 0.487448 0.873152i \(-0.337928\pi\)
−0.0619938 + 0.998077i \(0.519746\pi\)
\(510\) −7.09862 1.77354i −0.0139189 0.00347752i
\(511\) −288.927 449.580i −0.565415 0.879804i
\(512\) −17.1007 14.8178i −0.0333997 0.0289410i
\(513\) −0.825261 + 5.73981i −0.00160870 + 0.0111887i
\(514\) −572.343 + 168.055i −1.11351 + 0.326956i
\(515\) 33.3377 1.35990i 0.0647335 0.00264058i
\(516\) −4.38978 + 0.631156i −0.00850733 + 0.00122317i
\(517\) 21.1721 + 46.3605i 0.0409519 + 0.0896721i
\(518\) −111.597 + 50.9648i −0.215439 + 0.0983876i
\(519\) −0.549623 3.82271i −0.00105900 0.00736554i
\(520\) 172.369 7.03118i 0.331478 0.0135215i
\(521\) 108.427 + 369.269i 0.208114 + 0.708770i 0.995706 + 0.0925734i \(0.0295093\pi\)
−0.787592 + 0.616197i \(0.788673\pi\)
\(522\) −253.670 36.4722i −0.485957 0.0698701i
\(523\) 115.107 132.841i 0.220091 0.253998i −0.634957 0.772547i \(-0.718982\pi\)
0.855048 + 0.518549i \(0.173528\pi\)
\(524\) −287.836 + 184.981i −0.549306 + 0.353018i
\(525\) −1.89244 4.92089i −0.00360465 0.00937313i
\(526\) 35.7302 121.686i 0.0679281 0.231342i
\(527\) −563.499 + 1233.89i −1.06926 + 2.34135i
\(528\) −0.119793 −0.000226881
\(529\) 318.409 + 422.441i 0.601908 + 0.798566i
\(530\) −13.3337 18.9979i −0.0251580 0.0358451i
\(531\) 414.024 906.587i 0.779707 1.70732i
\(532\) 32.1432 109.470i 0.0604195 0.205770i
\(533\) −499.578 + 432.887i −0.937295 + 0.812171i
\(534\) −0.463282 0.720880i −0.000867569 0.00134996i
\(535\) −41.0285 + 400.723i −0.0766888 + 0.749015i
\(536\) −113.107 16.2623i −0.211020 0.0303402i
\(537\) 1.00184 + 3.41194i 0.00186562 + 0.00635371i
\(538\) −266.553 + 414.765i −0.495453 + 0.770939i
\(539\) −10.0149 + 1.43992i −0.0185805 + 0.00267147i
\(540\) 3.14251 5.35813i 0.00581947 0.00992246i
\(541\) 89.9297 + 196.919i 0.166229 + 0.363990i 0.974354 0.225021i \(-0.0722449\pi\)
−0.808125 + 0.589010i \(0.799518\pi\)
\(542\) 404.089 58.0993i 0.745553 0.107194i
\(543\) −5.69166 3.65781i −0.0104819 0.00673629i
\(544\) 47.7842 + 162.738i 0.0878386 + 0.299151i
\(545\) −871.084 + 441.570i −1.59832 + 0.810219i
\(546\) 2.74949 + 2.38245i 0.00503569 + 0.00436345i
\(547\) 90.9899 + 141.583i 0.166344 + 0.258836i 0.914411 0.404787i \(-0.132654\pi\)
−0.748067 + 0.663623i \(0.769018\pi\)
\(548\) 29.9032 + 34.5102i 0.0545680 + 0.0629748i
\(549\) 238.946 813.776i 0.435239 1.48229i
\(550\) 21.9132 + 21.4734i 0.0398422 + 0.0390425i
\(551\) 187.994i 0.341187i
\(552\) 2.00929 + 1.00165i 0.00364001 + 0.00181458i
\(553\) 408.344i 0.738416i
\(554\) 164.342 359.858i 0.296646 0.649563i
\(555\) −0.785396 2.32042i −0.00141513 0.00418093i
\(556\) 270.079 + 311.688i 0.485754 + 0.560590i
\(557\) −299.455 + 192.448i −0.537621 + 0.345508i −0.781108 0.624396i \(-0.785345\pi\)
0.243487 + 0.969904i \(0.421709\pi\)
\(558\) −435.127 377.040i −0.779798 0.675699i
\(559\) −775.804 111.544i −1.38784 0.199542i
\(560\) −76.2019 + 95.5482i −0.136075 + 0.170622i
\(561\) 0.755391 + 0.485461i 0.00134651 + 0.000865349i
\(562\) −43.9209 305.476i −0.0781510 0.543552i
\(563\) −393.910 862.542i −0.699662 1.53205i −0.840381 0.541997i \(-0.817669\pi\)
0.140719 0.990050i \(-0.455059\pi\)
\(564\) −1.68404 3.68753i −0.00298588 0.00653817i
\(565\) 182.481 + 194.018i 0.322976 + 0.343394i
\(566\) 168.981 262.939i 0.298552 0.464557i
\(567\) −474.727 + 139.393i −0.837262 + 0.245842i
\(568\) −210.312 30.2383i −0.370268 0.0532364i
\(569\) −100.516 87.0973i −0.176653 0.153071i 0.562046 0.827106i \(-0.310014\pi\)
−0.738700 + 0.674035i \(0.764560\pi\)
\(570\) 2.10913 + 0.861130i 0.00370022 + 0.00151075i
\(571\) −648.995 + 562.357i −1.13659 + 0.984864i −0.999983 0.00576109i \(-0.998166\pi\)
−0.136610 + 0.990625i \(0.543621\pi\)
\(572\) −20.3134 5.96456i −0.0355130 0.0104276i
\(573\) 2.95557 6.47180i 0.00515807 0.0112946i
\(574\) 468.302i 0.815858i
\(575\) −188.000 543.398i −0.326957 0.945039i
\(576\) −71.9905 −0.124983
\(577\) −365.105 166.738i −0.632764 0.288974i 0.0730959 0.997325i \(-0.476712\pi\)
−0.705860 + 0.708351i \(0.749439\pi\)
\(578\) 243.030 827.683i 0.420466 1.43198i
\(579\) −5.27202 6.08424i −0.00910539 0.0105082i
\(580\) −76.1199 + 186.437i −0.131241 + 0.321443i
\(581\) −119.037 + 137.377i −0.204884 + 0.236448i
\(582\) 0.932993 6.48911i 0.00160308 0.0111497i
\(583\) 0.802485 + 2.73301i 0.00137647 + 0.00468784i
\(584\) −208.095 133.735i −0.356327 0.228998i
\(585\) 399.804 376.032i 0.683426 0.642790i
\(586\) −23.2238 + 10.6060i −0.0396311 + 0.0180989i
\(587\) −175.362 + 80.0852i −0.298743 + 0.136431i −0.559147 0.829068i \(-0.688871\pi\)
0.260404 + 0.965500i \(0.416144\pi\)
\(588\) 0.796587 0.114532i 0.00135474 0.000194782i
\(589\) 228.339 355.302i 0.387672 0.603229i
\(590\) −612.275 488.304i −1.03775 0.827633i
\(591\) 1.21210 8.43036i 0.00205093 0.0142646i
\(592\) −37.1871 + 42.9162i −0.0628160 + 0.0724936i
\(593\) 504.014 + 784.260i 0.849938 + 1.32253i 0.945004 + 0.327059i \(0.106058\pi\)
−0.0950654 + 0.995471i \(0.530306\pi\)
\(594\) −0.576116 + 0.499207i −0.000969892 + 0.000840416i
\(595\) 867.720 293.699i 1.45835 0.493612i
\(596\) 245.895 + 112.297i 0.412576 + 0.188417i
\(597\) 8.10460 0.0135755
\(598\) 290.843 + 269.893i 0.486360 + 0.451326i
\(599\) 583.085 0.973431 0.486716 0.873560i \(-0.338195\pi\)
0.486716 + 0.873560i \(0.338195\pi\)
\(600\) −1.74299 1.70800i −0.00290498 0.00284666i
\(601\) −294.726 86.5394i −0.490393 0.143992i 0.0271817 0.999631i \(-0.491347\pi\)
−0.517574 + 0.855638i \(0.673165\pi\)
\(602\) 419.637 363.618i 0.697071 0.604016i
\(603\) −305.844 + 196.554i −0.507203 + 0.325960i
\(604\) −47.4564 + 54.7676i −0.0785702 + 0.0906748i
\(605\) 271.845 + 536.268i 0.449330 + 0.886394i
\(606\) −1.80954 + 0.531328i −0.00298604 + 0.000876780i
\(607\) 587.064 913.489i 0.967157 1.50492i 0.107403 0.994216i \(-0.465746\pi\)
0.859753 0.510709i \(-0.170617\pi\)
\(608\) −7.51549 52.2714i −0.0123610 0.0859726i
\(609\) −3.86307 + 1.76421i −0.00634330 + 0.00289689i
\(610\) −574.867 337.156i −0.942404 0.552715i
\(611\) −101.960 709.145i −0.166873 1.16063i
\(612\) 453.956 + 291.740i 0.741759 + 0.476699i
\(613\) 570.361 167.473i 0.930441 0.273202i 0.218820 0.975765i \(-0.429779\pi\)
0.711622 + 0.702563i \(0.247961\pi\)
\(614\) 61.3689 426.830i 0.0999493 0.695163i
\(615\) 9.30234 + 0.952432i 0.0151258 + 0.00154867i
\(616\) 12.6174 8.10870i 0.0204828 0.0131635i
\(617\) −423.170 488.364i −0.685851 0.791514i 0.300918 0.953650i \(-0.402707\pi\)
−0.986768 + 0.162136i \(0.948162\pi\)
\(618\) 0.312499 + 0.0917581i 0.000505662 + 0.000148476i
\(619\) 938.360 + 428.534i 1.51593 + 0.692301i 0.987636 0.156762i \(-0.0501055\pi\)
0.528292 + 0.849063i \(0.322833\pi\)
\(620\) −370.312 + 259.904i −0.597277 + 0.419200i
\(621\) 13.8372 3.55600i 0.0222822 0.00572624i
\(622\) 34.0456i 0.0547357i
\(623\) 97.5914 + 44.5685i 0.156648 + 0.0715385i
\(624\) 1.61574 + 0.474424i 0.00258932 + 0.000760294i
\(625\) 12.6717 + 624.872i 0.0202747 + 0.999794i
\(626\) 130.703 + 203.378i 0.208791 + 0.324885i
\(627\) −0.211292 0.183085i −0.000336989 0.000292002i
\(628\) −6.93205 + 48.2135i −0.0110383 + 0.0767730i
\(629\) 408.411 119.920i 0.649302 0.190652i
\(630\) 15.8478 + 388.507i 0.0251552 + 0.616678i
\(631\) −647.807 + 93.1406i −1.02664 + 0.147608i −0.635000 0.772512i \(-0.719000\pi\)
−0.391636 + 0.920120i \(0.628091\pi\)
\(632\) 78.5170 + 171.928i 0.124236 + 0.272038i
\(633\) −2.75562 + 1.25845i −0.00435327 + 0.00198807i
\(634\) −24.1127 167.708i −0.0380327 0.264523i
\(635\) −11.4184 279.921i −0.0179818 0.440821i
\(636\) −0.0638299 0.217385i −0.000100362 0.000341800i
\(637\) 140.780 + 20.2412i 0.221005 + 0.0317758i
\(638\) 16.1839 18.6772i 0.0253666 0.0292747i
\(639\) −568.688 + 365.474i −0.889966 + 0.571946i
\(640\) −13.7117 + 54.8816i −0.0214246 + 0.0857525i
\(641\) −26.0047 + 88.5640i −0.0405690 + 0.138165i −0.977287 0.211919i \(-0.932029\pi\)
0.936718 + 0.350084i \(0.113847\pi\)
\(642\) −1.63343 + 3.57672i −0.00254429 + 0.00557121i
\(643\) −415.065 −0.645513 −0.322757 0.946482i \(-0.604610\pi\)
−0.322757 + 0.946482i \(0.604610\pi\)
\(644\) −279.431 + 30.5069i −0.433899 + 0.0473710i
\(645\) 6.36943 + 9.07518i 0.00987508 + 0.0140700i
\(646\) −164.438 + 360.068i −0.254547 + 0.557381i
\(647\) −95.8985 + 326.600i −0.148220 + 0.504792i −0.999812 0.0194146i \(-0.993820\pi\)
0.851591 + 0.524206i \(0.175638\pi\)
\(648\) −173.075 + 149.971i −0.267092 + 0.231436i
\(649\) 51.9607 + 80.8525i 0.0800628 + 0.124580i
\(650\) −210.517 376.410i −0.323873 0.579093i
\(651\) −9.44388 1.35783i −0.0145067 0.00208575i
\(652\) −44.8531 152.756i −0.0687931 0.234288i
\(653\) 680.604 1059.04i 1.04227 1.62181i 0.297211 0.954812i \(-0.403943\pi\)
0.745061 0.666996i \(-0.232420\pi\)
\(654\) −9.43603 + 1.35670i −0.0144282 + 0.00207446i
\(655\) 737.842 + 432.740i 1.12648 + 0.660672i
\(656\) −90.0459 197.173i −0.137265 0.300568i
\(657\) −778.990 + 112.002i −1.18568 + 0.170475i
\(658\) 426.978 + 274.402i 0.648903 + 0.417025i
\(659\) −359.332 1223.77i −0.545268 1.85701i −0.514508 0.857485i \(-0.672026\pi\)
−0.0307598 0.999527i \(-0.509793\pi\)
\(660\) 0.135410 + 0.267123i 0.000205166 + 0.000404732i
\(661\) 288.576 + 250.052i 0.436574 + 0.378294i 0.845237 0.534392i \(-0.179459\pi\)
−0.408663 + 0.912686i \(0.634005\pi\)
\(662\) −127.698 198.703i −0.192898 0.300155i
\(663\) −8.26590 9.53936i −0.0124674 0.0143882i
\(664\) −23.7043 + 80.7294i −0.0356992 + 0.121580i
\(665\) −280.436 + 52.0653i −0.421708 + 0.0782937i
\(666\) 180.669i 0.271275i
\(667\) −427.620 + 177.951i −0.641110 + 0.266793i
\(668\) 53.3973i 0.0799361i
\(669\) −5.92163 + 12.9666i −0.00885147 + 0.0193820i
\(670\) 91.5889 + 270.595i 0.136700 + 0.403873i
\(671\) 53.5592 + 61.8107i 0.0798200 + 0.0921172i
\(672\) −1.00359 + 0.644969i −0.00149344 + 0.000959776i
\(673\) −67.3740 58.3799i −0.100110 0.0867457i 0.603368 0.797463i \(-0.293825\pi\)
−0.703478 + 0.710717i \(0.748371\pi\)
\(674\) 274.247 + 39.4308i 0.406895 + 0.0585027i
\(675\) −15.5001 0.950752i −0.0229631 0.00140852i
\(676\) −33.9837 21.8400i −0.0502718 0.0323077i
\(677\) 38.5826 + 268.348i 0.0569906 + 0.396378i 0.998272 + 0.0587561i \(0.0187134\pi\)
−0.941282 + 0.337622i \(0.890377\pi\)
\(678\) 1.08005 + 2.36499i 0.00159300 + 0.00348818i
\(679\) 340.973 + 746.627i 0.502169 + 1.09960i
\(680\) 308.870 290.505i 0.454220 0.427213i
\(681\) 5.96784 9.28614i 0.00876335 0.0136360i
\(682\) 53.2725 15.6422i 0.0781122 0.0229358i
\(683\) 440.111 + 63.2785i 0.644380 + 0.0926478i 0.456754 0.889593i \(-0.349012\pi\)
0.187625 + 0.982241i \(0.439921\pi\)
\(684\) −126.977 110.026i −0.185639 0.160857i
\(685\) 43.1515 105.689i 0.0629949 0.154291i
\(686\) −396.170 + 343.283i −0.577508 + 0.500413i
\(687\) 1.72659 + 0.506974i 0.00251324 + 0.000737953i
\(688\) 106.766 233.785i 0.155183 0.339804i
\(689\) 40.0402i 0.0581135i
\(690\) −0.0376817 5.61265i −5.46112e−5 0.00813428i
\(691\) 787.585 1.13978 0.569888 0.821722i \(-0.306987\pi\)
0.569888 + 0.821722i \(0.306987\pi\)
\(692\) 203.585 + 92.9741i 0.294198 + 0.134356i
\(693\) 13.4437 45.7851i 0.0193993 0.0660680i
\(694\) 445.802 + 514.483i 0.642365 + 0.741329i
\(695\) 389.734 954.559i 0.560769 1.37347i
\(696\) −1.28727 + 1.48559i −0.00184953 + 0.00213447i
\(697\) −231.230 + 1608.24i −0.331750 + 2.30737i
\(698\) −100.996 343.961i −0.144694 0.492781i
\(699\) 12.0701 + 7.75698i 0.0172677 + 0.0110972i
\(700\) 299.195 + 61.9160i 0.427421 + 0.0884514i
\(701\) −957.196 + 437.137i −1.36547 + 0.623590i −0.957242 0.289289i \(-0.906581\pi\)
−0.408230 + 0.912879i \(0.633854\pi\)
\(702\) 9.74751 4.45154i 0.0138853 0.00634122i
\(703\) −131.181 + 18.8610i −0.186602 + 0.0268293i
\(704\) 3.75324 5.84016i 0.00533131 0.00829568i
\(705\) −6.31911 + 7.92341i −0.00896327 + 0.0112389i
\(706\) 63.0112 438.252i 0.0892510 0.620754i
\(707\) 154.627 178.449i 0.218708 0.252403i
\(708\) −4.13298 6.43104i −0.00583754 0.00908338i
\(709\) 329.221 285.272i 0.464346 0.402358i −0.391020 0.920382i \(-0.627878\pi\)
0.855366 + 0.518024i \(0.173332\pi\)
\(710\) 170.301 + 503.147i 0.239861 + 0.708658i
\(711\) 547.000 + 249.807i 0.769339 + 0.351345i
\(712\) 49.6593 0.0697463
\(713\) −1024.33 183.070i −1.43664 0.256760i
\(714\) 8.94216 0.0125240
\(715\) 9.66136 + 52.0383i 0.0135124 + 0.0727808i
\(716\) −197.727 58.0580i −0.276155 0.0810866i
\(717\) −7.25138 + 6.28335i −0.0101135 + 0.00876339i
\(718\) 458.536 294.683i 0.638629 0.410422i
\(719\) 34.0127 39.2528i 0.0473056 0.0545936i −0.731604 0.681730i \(-0.761228\pi\)
0.778909 + 0.627137i \(0.215773\pi\)
\(720\) 81.3752 + 160.529i 0.113021 + 0.222957i
\(721\) −39.1254 + 11.4883i −0.0542654 + 0.0159338i
\(722\) −209.381 + 325.804i −0.290002 + 0.451251i
\(723\) 0.888734 + 6.18128i 0.00122923 + 0.00854949i
\(724\) 356.650 162.877i 0.492611 0.224968i
\(725\) 501.772 41.0043i 0.692099 0.0565577i
\(726\) 0.835227 + 5.80913i 0.00115045 + 0.00800156i
\(727\) 883.641 + 567.882i 1.21546 + 0.781130i 0.981565 0.191131i \(-0.0612154\pi\)
0.233898 + 0.972261i \(0.424852\pi\)
\(728\) −202.293 + 59.3986i −0.277875 + 0.0815914i
\(729\) −103.665 + 721.007i −0.142202 + 0.989036i
\(730\) −62.9872 + 615.192i −0.0862838 + 0.842728i
\(731\) −1620.65 + 1041.53i −2.21704 + 1.42480i
\(732\) −4.26012 4.91644i −0.00581984 0.00671645i
\(733\) 106.223 + 31.1900i 0.144916 + 0.0425512i 0.353386 0.935478i \(-0.385030\pi\)
−0.208470 + 0.978029i \(0.566848\pi\)
\(734\) 841.542 + 384.319i 1.14652 + 0.523596i
\(735\) −1.15582 1.64682i −0.00157255 0.00224057i
\(736\) −111.785 + 66.5740i −0.151882 + 0.0904538i
\(737\) 35.0586i 0.0475694i
\(738\) −627.317 286.486i −0.850024 0.388193i
\(739\) −488.070 143.310i −0.660446 0.193924i −0.0657016 0.997839i \(-0.520929\pi\)
−0.594744 + 0.803915i \(0.702747\pi\)
\(740\) 137.732 + 34.4113i 0.186124 + 0.0465018i
\(741\) 2.12476 + 3.30619i 0.00286742 + 0.00446180i
\(742\) 21.4375 + 18.5757i 0.0288916 + 0.0250347i
\(743\) 174.755 1215.45i 0.235202 1.63586i −0.439834 0.898079i \(-0.644963\pi\)
0.675036 0.737785i \(-0.264128\pi\)
\(744\) −4.23731 + 1.24419i −0.00569531 + 0.00167229i
\(745\) −27.5444 675.249i −0.0369724 0.906374i
\(746\) −201.866 + 29.0240i −0.270598 + 0.0389062i
\(747\) 111.202 + 243.498i 0.148865 + 0.325968i
\(748\) −47.3343 + 21.6168i −0.0632811 + 0.0288995i
\(749\) −70.0614 487.288i −0.0935399 0.650584i
\(750\) −1.83840 + 5.81727i −0.00245120 + 0.00775636i
\(751\) 169.329 + 576.681i 0.225471 + 0.767884i 0.992062 + 0.125749i \(0.0401333\pi\)
−0.766591 + 0.642136i \(0.778049\pi\)
\(752\) 232.536 + 33.4337i 0.309224 + 0.0444597i
\(753\) 1.55580 1.79549i 0.00206614 0.00238445i
\(754\) −292.252 + 187.819i −0.387602 + 0.249097i
\(755\) 175.767 + 43.9141i 0.232804 + 0.0581643i
\(756\) −2.13878 + 7.28401i −0.00282907 + 0.00963494i
\(757\) 503.636 1102.81i 0.665306 1.45682i −0.212188 0.977229i \(-0.568059\pi\)
0.877494 0.479587i \(-0.159214\pi\)
\(758\) −716.749 −0.945579
\(759\) −0.216451 + 0.653920i −0.000285180 + 0.000861554i
\(760\) −108.063 + 75.8440i −0.142188 + 0.0997947i
\(761\) −272.945 + 597.667i −0.358667 + 0.785371i 0.641172 + 0.767397i \(0.278449\pi\)
−0.999838 + 0.0179732i \(0.994279\pi\)
\(762\) 0.770450 2.62391i 0.00101109 0.00344345i
\(763\) 902.028 781.611i 1.18221 1.02439i
\(764\) 222.912 + 346.857i 0.291769 + 0.454002i
\(765\) 137.406 1342.03i 0.179615 1.75429i
\(766\) −226.982 32.6351i −0.296322 0.0426046i
\(767\) −380.627 1296.30i −0.496254 1.69009i
\(768\) −0.298534 + 0.464528i −0.000388716 + 0.000604855i
\(769\) −1441.92 + 207.317i −1.87506 + 0.269593i −0.983176 0.182663i \(-0.941528\pi\)
−0.891888 + 0.452256i \(0.850619\pi\)
\(770\) −32.3435 18.9693i −0.0420045 0.0246354i
\(771\) 6.04710 + 13.2413i 0.00784320 + 0.0171742i
\(772\) 461.796 66.3962i 0.598181 0.0860054i
\(773\) 612.818 + 393.834i