Properties

Label 230.2.l.a
Level $230$
Weight $2$
Character orbit 230.l
Analytic conductor $1.837$
Analytic rank $0$
Dimension $240$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [230,2,Mod(7,230)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(230, base_ring=CyclotomicField(44))
 
chi = DirichletCharacter(H, H._module([11, 38]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("230.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 230 = 2 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 230.l (of order \(44\), degree \(20\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.83655924649\)
Analytic rank: \(0\)
Dimension: \(240\)
Relative dimension: \(12\) over \(\Q(\zeta_{44})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{44}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 240 q - 8 q^{3} - 8 q^{6} - 8 q^{12} + 16 q^{13} + 24 q^{16} - 72 q^{18} - 80 q^{23} - 8 q^{26} + 16 q^{27} - 44 q^{28} + 24 q^{31} - 44 q^{33} - 8 q^{35} - 32 q^{36} - 88 q^{37} - 24 q^{41} - 8 q^{46}+ \cdots + 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
7.1 −0.997452 + 0.0713392i −0.666533 + 3.06400i 0.989821 0.142315i −0.533993 + 2.17137i 0.446251 3.10375i −1.50098 + 2.74884i −0.977147 + 0.212565i −6.21495 2.83827i 0.377729 2.20393i
7.2 −0.997452 + 0.0713392i −0.442321 + 2.03332i 0.989821 0.142315i 1.86221 1.23780i 0.296139 2.05969i 1.88657 3.45500i −0.977147 + 0.212565i −1.20984 0.552516i −1.76917 + 1.36750i
7.3 −0.997452 + 0.0713392i −0.293712 + 1.35017i 0.989821 0.142315i −2.12582 0.693460i 0.196644 1.36769i −0.324076 + 0.593501i −0.977147 + 0.212565i 0.992195 + 0.453120i 2.16988 + 0.540039i
7.4 −0.997452 + 0.0713392i −0.0823325 + 0.378476i 0.989821 0.142315i −0.0392167 + 2.23572i 0.0551225 0.383386i 1.43832 2.63408i −0.977147 + 0.212565i 2.59243 + 1.18392i −0.120378 2.23283i
7.5 −0.997452 + 0.0713392i 0.184045 0.846041i 0.989821 0.142315i 2.13522 + 0.663941i −0.123220 + 0.857015i −2.12852 + 3.89809i −0.977147 + 0.212565i 2.04698 + 0.934826i −2.17715 0.509924i
7.6 −0.997452 + 0.0713392i 0.445581 2.04831i 0.989821 0.142315i 0.313060 2.21404i −0.298322 + 2.07487i 0.390085 0.714388i −0.977147 + 0.212565i −1.26811 0.579129i −0.154315 + 2.23074i
7.7 0.997452 0.0713392i −0.664372 + 3.05407i 0.989821 0.142315i 2.09578 + 0.779553i −0.444805 + 3.09368i 1.24726 2.28419i 0.977147 0.212565i −6.15705 2.81183i 2.14605 + 0.628055i
7.8 0.997452 0.0713392i −0.372248 + 1.71120i 0.989821 0.142315i −2.13965 + 0.649526i −0.249224 + 1.73339i −1.73066 + 3.16947i 0.977147 0.212565i −0.0607343 0.0277364i −2.08786 + 0.800513i
7.9 0.997452 0.0713392i −0.307156 + 1.41198i 0.989821 0.142315i 1.55520 1.60666i −0.205645 + 1.43029i −1.84581 + 3.38035i 0.977147 0.212565i 0.829567 + 0.378851i 1.43661 1.71352i
7.10 0.997452 0.0713392i 0.0484278 0.222619i 0.989821 0.142315i −0.464445 + 2.18730i 0.0324229 0.225507i 1.13968 2.08717i 0.977147 0.212565i 2.68168 + 1.22468i −0.307222 + 2.21486i
7.11 0.997452 0.0713392i 0.452602 2.08058i 0.989821 0.142315i −1.62540 1.53561i 0.303022 2.10757i −0.567213 + 1.03877i 0.977147 0.212565i −1.39507 0.637105i −1.73080 1.41574i
7.12 0.997452 0.0713392i 0.544276 2.50200i 0.989821 0.142315i 2.18999 + 0.451614i 0.364399 2.53445i −0.470705 + 0.862032i 0.977147 0.212565i −3.23486 1.47731i 2.21663 + 0.294232i
17.1 −0.936950 + 0.349464i −2.43530 + 1.32977i 0.755750 0.654861i 2.05188 0.888703i 1.81704 2.09698i −1.58597 2.11861i −0.479249 + 0.877679i 2.54045 3.95301i −1.61194 + 1.54973i
17.2 −0.936950 + 0.349464i −1.69758 + 0.926949i 0.755750 0.654861i −1.50435 + 1.65436i 1.26661 1.46175i −0.735871 0.983009i −0.479249 + 0.877679i 0.400622 0.623380i 0.831363 2.07577i
17.3 −0.936950 + 0.349464i −0.565213 + 0.308630i 0.755750 0.654861i −1.72918 1.41772i 0.421721 0.486692i 1.82117 + 2.43280i −0.479249 + 0.877679i −1.39771 + 2.17488i 2.11560 + 0.724045i
17.4 −0.936950 + 0.349464i 1.26604 0.691312i 0.755750 0.654861i −0.584903 + 2.15821i −0.944630 + 1.09016i 1.35459 + 1.80952i −0.479249 + 0.877679i −0.496969 + 0.773299i −0.206194 2.22654i
17.5 −0.936950 + 0.349464i 1.92611 1.05174i 0.755750 0.654861i 2.14017 0.647831i −1.43713 + 1.65853i 0.903621 + 1.20710i −0.479249 + 0.877679i 0.981834 1.52776i −1.77883 + 1.35490i
17.6 −0.936950 + 0.349464i 2.58843 1.41339i 0.755750 0.654861i −2.20870 0.348772i −1.93130 + 2.22883i −2.57783 3.44357i −0.479249 + 0.877679i 3.08036 4.79313i 2.19132 0.445080i
17.7 0.936950 0.349464i −1.94498 + 1.06204i 0.755750 0.654861i −1.77597 1.35866i −1.45120 + 1.67478i −3.01546 4.02819i 0.479249 0.877679i 1.03309 1.60752i −2.13879 0.652357i
17.8 0.936950 0.349464i −1.76120 + 0.961687i 0.755750 0.654861i −1.99344 + 1.01301i −1.31408 + 1.51653i 2.41169 + 3.22164i 0.479249 0.877679i 0.555057 0.863686i −1.51374 + 1.64578i
See next 80 embeddings (of 240 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 7.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner
23.d odd 22 1 inner
115.l even 44 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 230.2.l.a 240
5.c odd 4 1 inner 230.2.l.a 240
23.d odd 22 1 inner 230.2.l.a 240
115.l even 44 1 inner 230.2.l.a 240
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
230.2.l.a 240 1.a even 1 1 trivial
230.2.l.a 240 5.c odd 4 1 inner
230.2.l.a 240 23.d odd 22 1 inner
230.2.l.a 240 115.l even 44 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(230, [\chi])\).