Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [230,2,Mod(7,230)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(230, base_ring=CyclotomicField(44))
chi = DirichletCharacter(H, H._module([11, 38]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("230.7");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 230 = 2 \cdot 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 230.l (of order \(44\), degree \(20\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.83655924649\) |
Analytic rank: | \(0\) |
Dimension: | \(240\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{44})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{44}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 | −0.997452 | + | 0.0713392i | −0.666533 | + | 3.06400i | 0.989821 | − | 0.142315i | −0.533993 | + | 2.17137i | 0.446251 | − | 3.10375i | −1.50098 | + | 2.74884i | −0.977147 | + | 0.212565i | −6.21495 | − | 2.83827i | 0.377729 | − | 2.20393i |
7.2 | −0.997452 | + | 0.0713392i | −0.442321 | + | 2.03332i | 0.989821 | − | 0.142315i | 1.86221 | − | 1.23780i | 0.296139 | − | 2.05969i | 1.88657 | − | 3.45500i | −0.977147 | + | 0.212565i | −1.20984 | − | 0.552516i | −1.76917 | + | 1.36750i |
7.3 | −0.997452 | + | 0.0713392i | −0.293712 | + | 1.35017i | 0.989821 | − | 0.142315i | −2.12582 | − | 0.693460i | 0.196644 | − | 1.36769i | −0.324076 | + | 0.593501i | −0.977147 | + | 0.212565i | 0.992195 | + | 0.453120i | 2.16988 | + | 0.540039i |
7.4 | −0.997452 | + | 0.0713392i | −0.0823325 | + | 0.378476i | 0.989821 | − | 0.142315i | −0.0392167 | + | 2.23572i | 0.0551225 | − | 0.383386i | 1.43832 | − | 2.63408i | −0.977147 | + | 0.212565i | 2.59243 | + | 1.18392i | −0.120378 | − | 2.23283i |
7.5 | −0.997452 | + | 0.0713392i | 0.184045 | − | 0.846041i | 0.989821 | − | 0.142315i | 2.13522 | + | 0.663941i | −0.123220 | + | 0.857015i | −2.12852 | + | 3.89809i | −0.977147 | + | 0.212565i | 2.04698 | + | 0.934826i | −2.17715 | − | 0.509924i |
7.6 | −0.997452 | + | 0.0713392i | 0.445581 | − | 2.04831i | 0.989821 | − | 0.142315i | 0.313060 | − | 2.21404i | −0.298322 | + | 2.07487i | 0.390085 | − | 0.714388i | −0.977147 | + | 0.212565i | −1.26811 | − | 0.579129i | −0.154315 | + | 2.23074i |
7.7 | 0.997452 | − | 0.0713392i | −0.664372 | + | 3.05407i | 0.989821 | − | 0.142315i | 2.09578 | + | 0.779553i | −0.444805 | + | 3.09368i | 1.24726 | − | 2.28419i | 0.977147 | − | 0.212565i | −6.15705 | − | 2.81183i | 2.14605 | + | 0.628055i |
7.8 | 0.997452 | − | 0.0713392i | −0.372248 | + | 1.71120i | 0.989821 | − | 0.142315i | −2.13965 | + | 0.649526i | −0.249224 | + | 1.73339i | −1.73066 | + | 3.16947i | 0.977147 | − | 0.212565i | −0.0607343 | − | 0.0277364i | −2.08786 | + | 0.800513i |
7.9 | 0.997452 | − | 0.0713392i | −0.307156 | + | 1.41198i | 0.989821 | − | 0.142315i | 1.55520 | − | 1.60666i | −0.205645 | + | 1.43029i | −1.84581 | + | 3.38035i | 0.977147 | − | 0.212565i | 0.829567 | + | 0.378851i | 1.43661 | − | 1.71352i |
7.10 | 0.997452 | − | 0.0713392i | 0.0484278 | − | 0.222619i | 0.989821 | − | 0.142315i | −0.464445 | + | 2.18730i | 0.0324229 | − | 0.225507i | 1.13968 | − | 2.08717i | 0.977147 | − | 0.212565i | 2.68168 | + | 1.22468i | −0.307222 | + | 2.21486i |
7.11 | 0.997452 | − | 0.0713392i | 0.452602 | − | 2.08058i | 0.989821 | − | 0.142315i | −1.62540 | − | 1.53561i | 0.303022 | − | 2.10757i | −0.567213 | + | 1.03877i | 0.977147 | − | 0.212565i | −1.39507 | − | 0.637105i | −1.73080 | − | 1.41574i |
7.12 | 0.997452 | − | 0.0713392i | 0.544276 | − | 2.50200i | 0.989821 | − | 0.142315i | 2.18999 | + | 0.451614i | 0.364399 | − | 2.53445i | −0.470705 | + | 0.862032i | 0.977147 | − | 0.212565i | −3.23486 | − | 1.47731i | 2.21663 | + | 0.294232i |
17.1 | −0.936950 | + | 0.349464i | −2.43530 | + | 1.32977i | 0.755750 | − | 0.654861i | 2.05188 | − | 0.888703i | 1.81704 | − | 2.09698i | −1.58597 | − | 2.11861i | −0.479249 | + | 0.877679i | 2.54045 | − | 3.95301i | −1.61194 | + | 1.54973i |
17.2 | −0.936950 | + | 0.349464i | −1.69758 | + | 0.926949i | 0.755750 | − | 0.654861i | −1.50435 | + | 1.65436i | 1.26661 | − | 1.46175i | −0.735871 | − | 0.983009i | −0.479249 | + | 0.877679i | 0.400622 | − | 0.623380i | 0.831363 | − | 2.07577i |
17.3 | −0.936950 | + | 0.349464i | −0.565213 | + | 0.308630i | 0.755750 | − | 0.654861i | −1.72918 | − | 1.41772i | 0.421721 | − | 0.486692i | 1.82117 | + | 2.43280i | −0.479249 | + | 0.877679i | −1.39771 | + | 2.17488i | 2.11560 | + | 0.724045i |
17.4 | −0.936950 | + | 0.349464i | 1.26604 | − | 0.691312i | 0.755750 | − | 0.654861i | −0.584903 | + | 2.15821i | −0.944630 | + | 1.09016i | 1.35459 | + | 1.80952i | −0.479249 | + | 0.877679i | −0.496969 | + | 0.773299i | −0.206194 | − | 2.22654i |
17.5 | −0.936950 | + | 0.349464i | 1.92611 | − | 1.05174i | 0.755750 | − | 0.654861i | 2.14017 | − | 0.647831i | −1.43713 | + | 1.65853i | 0.903621 | + | 1.20710i | −0.479249 | + | 0.877679i | 0.981834 | − | 1.52776i | −1.77883 | + | 1.35490i |
17.6 | −0.936950 | + | 0.349464i | 2.58843 | − | 1.41339i | 0.755750 | − | 0.654861i | −2.20870 | − | 0.348772i | −1.93130 | + | 2.22883i | −2.57783 | − | 3.44357i | −0.479249 | + | 0.877679i | 3.08036 | − | 4.79313i | 2.19132 | − | 0.445080i |
17.7 | 0.936950 | − | 0.349464i | −1.94498 | + | 1.06204i | 0.755750 | − | 0.654861i | −1.77597 | − | 1.35866i | −1.45120 | + | 1.67478i | −3.01546 | − | 4.02819i | 0.479249 | − | 0.877679i | 1.03309 | − | 1.60752i | −2.13879 | − | 0.652357i |
17.8 | 0.936950 | − | 0.349464i | −1.76120 | + | 0.961687i | 0.755750 | − | 0.654861i | −1.99344 | + | 1.01301i | −1.31408 | + | 1.51653i | 2.41169 | + | 3.22164i | 0.479249 | − | 0.877679i | 0.555057 | − | 0.863686i | −1.51374 | + | 1.64578i |
See next 80 embeddings (of 240 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
23.d | odd | 22 | 1 | inner |
115.l | even | 44 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 230.2.l.a | ✓ | 240 |
5.c | odd | 4 | 1 | inner | 230.2.l.a | ✓ | 240 |
23.d | odd | 22 | 1 | inner | 230.2.l.a | ✓ | 240 |
115.l | even | 44 | 1 | inner | 230.2.l.a | ✓ | 240 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
230.2.l.a | ✓ | 240 | 1.a | even | 1 | 1 | trivial |
230.2.l.a | ✓ | 240 | 5.c | odd | 4 | 1 | inner |
230.2.l.a | ✓ | 240 | 23.d | odd | 22 | 1 | inner |
230.2.l.a | ✓ | 240 | 115.l | even | 44 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(230, [\chi])\).