Properties

Label 230.2.j.a.9.9
Level $230$
Weight $2$
Character 230.9
Analytic conductor $1.837$
Analytic rank $0$
Dimension $120$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [230,2,Mod(9,230)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(230, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([11, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("230.9");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 230 = 2 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 230.j (of order \(22\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.83655924649\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(12\) over \(\Q(\zeta_{22})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 9.9
Character \(\chi\) \(=\) 230.9
Dual form 230.2.j.a.179.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.281733 + 0.959493i) q^{2} +(-0.951117 + 0.824147i) q^{3} +(-0.841254 + 0.540641i) q^{4} +(1.50149 - 1.65696i) q^{5} +(-1.05872 - 0.680401i) q^{6} +(4.71597 + 2.15371i) q^{7} +(-0.755750 - 0.654861i) q^{8} +(-0.201540 + 1.40174i) q^{9} +O(q^{10})\) \(q+(0.281733 + 0.959493i) q^{2} +(-0.951117 + 0.824147i) q^{3} +(-0.841254 + 0.540641i) q^{4} +(1.50149 - 1.65696i) q^{5} +(-1.05872 - 0.680401i) q^{6} +(4.71597 + 2.15371i) q^{7} +(-0.755750 - 0.654861i) q^{8} +(-0.201540 + 1.40174i) q^{9} +(2.01286 + 0.973851i) q^{10} +(-2.19093 - 0.643316i) q^{11} +(0.354563 - 1.20753i) q^{12} +(-2.34205 + 1.06958i) q^{13} +(-0.737829 + 5.13171i) q^{14} +(-0.0625137 + 2.81341i) q^{15} +(0.415415 - 0.909632i) q^{16} +(-3.46614 + 5.39342i) q^{17} +(-1.40174 + 0.201540i) q^{18} +(5.04389 - 3.24151i) q^{19} +(-0.367314 + 2.20569i) q^{20} +(-6.26041 + 1.83822i) q^{21} -2.28343i q^{22} +(4.75560 + 0.619884i) q^{23} +1.25851 q^{24} +(-0.491043 - 4.97583i) q^{25} +(-1.68609 - 1.94585i) q^{26} +(-3.00476 - 4.67549i) q^{27} +(-5.13171 + 0.737829i) q^{28} +(-1.24018 - 0.797013i) q^{29} +(-2.71706 + 0.732649i) q^{30} +(0.0386867 - 0.0446468i) q^{31} +(0.989821 + 0.142315i) q^{32} +(2.61402 - 1.19378i) q^{33} +(-6.15147 - 1.80623i) q^{34} +(10.6496 - 4.58040i) q^{35} +(-0.588293 - 1.28818i) q^{36} +(2.82112 + 0.405616i) q^{37} +(4.53124 + 3.92634i) q^{38} +(1.34607 - 2.94749i) q^{39} +(-2.21983 + 0.268980i) q^{40} +(-1.69364 - 11.7796i) q^{41} +(-3.52753 - 5.48894i) q^{42} +(2.17198 - 1.88203i) q^{43} +(2.19093 - 0.643316i) q^{44} +(2.02002 + 2.43865i) q^{45} +(0.745033 + 4.73761i) q^{46} +2.51684i q^{47} +(0.354563 + 1.20753i) q^{48} +(13.0179 + 15.0234i) q^{49} +(4.63593 - 1.87301i) q^{50} +(-1.14827 - 7.98638i) q^{51} +(1.39200 - 2.16599i) q^{52} +(-8.37345 - 3.82403i) q^{53} +(3.63957 - 4.20028i) q^{54} +(-4.35562 + 2.66436i) q^{55} +(-2.15371 - 4.71597i) q^{56} +(-2.12585 + 7.23997i) q^{57} +(0.415331 - 1.41449i) q^{58} +(-4.59819 - 10.0686i) q^{59} +(-1.46846 - 2.40059i) q^{60} +(-1.22319 + 1.41164i) q^{61} +(0.0537376 + 0.0245411i) q^{62} +(-3.96941 + 6.17652i) q^{63} +(0.142315 + 0.989821i) q^{64} +(-1.74432 + 5.48665i) q^{65} +(1.88188 + 2.17181i) q^{66} +(-1.16513 - 3.96806i) q^{67} -6.41117i q^{68} +(-5.03401 + 3.32973i) q^{69} +(7.39520 + 8.92778i) q^{70} +(2.50686 - 0.736081i) q^{71} +(1.07026 - 0.927386i) q^{72} +(-3.81970 - 5.94357i) q^{73} +(0.405616 + 2.82112i) q^{74} +(4.56786 + 4.32790i) q^{75} +(-2.49070 + 5.45387i) q^{76} +(-8.94686 - 7.75250i) q^{77} +(3.20733 + 0.461144i) q^{78} +(-2.52526 - 5.52956i) q^{79} +(-0.883483 - 2.05413i) q^{80} +(2.63479 + 0.773644i) q^{81} +(10.8252 - 4.94373i) q^{82} +(-0.603766 - 0.0868084i) q^{83} +(4.27278 - 4.93105i) q^{84} +(3.73230 + 13.8414i) q^{85} +(2.41771 + 1.55377i) q^{86} +(1.83641 - 0.264036i) q^{87} +(1.23452 + 1.92094i) q^{88} +(1.26042 + 1.45461i) q^{89} +(-1.77076 + 2.62525i) q^{90} -13.3486 q^{91} +(-4.33580 + 2.04959i) q^{92} +0.0743478i q^{93} +(-2.41489 + 0.709075i) q^{94} +(2.20230 - 13.2246i) q^{95} +(-1.05872 + 0.680401i) q^{96} +(-5.40298 + 0.776832i) q^{97} +(-10.7473 + 16.7232i) q^{98} +(1.34333 - 2.94147i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120 q + 12 q^{4} - 4 q^{6} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 120 q + 12 q^{4} - 4 q^{6} + 8 q^{9} + 8 q^{11} - 6 q^{15} - 12 q^{16} - 16 q^{19} - 22 q^{20} + 4 q^{24} - 52 q^{25} - 4 q^{26} - 8 q^{29} - 44 q^{30} + 12 q^{31} + 16 q^{35} - 8 q^{36} - 36 q^{39} - 28 q^{41} - 8 q^{44} + 16 q^{45} - 4 q^{46} - 58 q^{49} + 12 q^{50} - 24 q^{51} - 6 q^{54} - 36 q^{55} + 22 q^{56} - 102 q^{59} - 38 q^{60} + 72 q^{61} + 12 q^{64} - 138 q^{65} + 80 q^{66} - 212 q^{69} - 108 q^{70} + 176 q^{71} - 88 q^{74} - 100 q^{75} + 16 q^{76} - 104 q^{79} - 22 q^{80} - 28 q^{81} - 22 q^{84} + 2 q^{85} + 62 q^{86} + 48 q^{89} + 24 q^{90} - 56 q^{91} + 24 q^{94} + 18 q^{95} - 4 q^{96} + 188 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/230\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.281733 + 0.959493i 0.199215 + 0.678464i
\(3\) −0.951117 + 0.824147i −0.549128 + 0.475822i −0.884679 0.466200i \(-0.845623\pi\)
0.335552 + 0.942022i \(0.391077\pi\)
\(4\) −0.841254 + 0.540641i −0.420627 + 0.270320i
\(5\) 1.50149 1.65696i 0.671488 0.741016i
\(6\) −1.05872 0.680401i −0.432222 0.277772i
\(7\) 4.71597 + 2.15371i 1.78247 + 0.814026i 0.974360 + 0.224994i \(0.0722361\pi\)
0.808109 + 0.589033i \(0.200491\pi\)
\(8\) −0.755750 0.654861i −0.267198 0.231528i
\(9\) −0.201540 + 1.40174i −0.0671801 + 0.467248i
\(10\) 2.01286 + 0.973851i 0.636523 + 0.307959i
\(11\) −2.19093 0.643316i −0.660592 0.193967i −0.0657822 0.997834i \(-0.520954\pi\)
−0.594809 + 0.803867i \(0.702772\pi\)
\(12\) 0.354563 1.20753i 0.102353 0.348584i
\(13\) −2.34205 + 1.06958i −0.649568 + 0.296648i −0.712817 0.701350i \(-0.752581\pi\)
0.0632491 + 0.997998i \(0.479854\pi\)
\(14\) −0.737829 + 5.13171i −0.197193 + 1.37151i
\(15\) −0.0625137 + 2.81341i −0.0161410 + 0.726421i
\(16\) 0.415415 0.909632i 0.103854 0.227408i
\(17\) −3.46614 + 5.39342i −0.840662 + 1.30810i 0.108752 + 0.994069i \(0.465315\pi\)
−0.949414 + 0.314027i \(0.898322\pi\)
\(18\) −1.40174 + 0.201540i −0.330394 + 0.0475035i
\(19\) 5.04389 3.24151i 1.15715 0.743654i 0.186098 0.982531i \(-0.440416\pi\)
0.971050 + 0.238877i \(0.0767794\pi\)
\(20\) −0.367314 + 2.20569i −0.0821340 + 0.493208i
\(21\) −6.26041 + 1.83822i −1.36613 + 0.401133i
\(22\) 2.28343i 0.486829i
\(23\) 4.75560 + 0.619884i 0.991611 + 0.129255i
\(24\) 1.25851 0.256892
\(25\) −0.491043 4.97583i −0.0982087 0.995166i
\(26\) −1.68609 1.94585i −0.330668 0.381612i
\(27\) −3.00476 4.67549i −0.578266 0.899799i
\(28\) −5.13171 + 0.737829i −0.969802 + 0.139437i
\(29\) −1.24018 0.797013i −0.230295 0.148002i 0.420405 0.907337i \(-0.361888\pi\)
−0.650700 + 0.759335i \(0.725524\pi\)
\(30\) −2.71706 + 0.732649i −0.496066 + 0.133763i
\(31\) 0.0386867 0.0446468i 0.00694833 0.00801880i −0.752265 0.658861i \(-0.771039\pi\)
0.759213 + 0.650842i \(0.225584\pi\)
\(32\) 0.989821 + 0.142315i 0.174977 + 0.0251579i
\(33\) 2.61402 1.19378i 0.455043 0.207811i
\(34\) −6.15147 1.80623i −1.05497 0.309767i
\(35\) 10.6496 4.58040i 1.80011 0.774229i
\(36\) −0.588293 1.28818i −0.0980489 0.214697i
\(37\) 2.82112 + 0.405616i 0.463790 + 0.0666829i 0.370249 0.928933i \(-0.379272\pi\)
0.0935407 + 0.995615i \(0.470181\pi\)
\(38\) 4.53124 + 3.92634i 0.735064 + 0.636936i
\(39\) 1.34607 2.94749i 0.215544 0.471976i
\(40\) −2.21983 + 0.268980i −0.350986 + 0.0425294i
\(41\) −1.69364 11.7796i −0.264503 1.83966i −0.497848 0.867264i \(-0.665876\pi\)
0.233346 0.972394i \(-0.425033\pi\)
\(42\) −3.52753 5.48894i −0.544309 0.846961i
\(43\) 2.17198 1.88203i 0.331224 0.287007i −0.473332 0.880884i \(-0.656949\pi\)
0.804556 + 0.593877i \(0.202403\pi\)
\(44\) 2.19093 0.643316i 0.330296 0.0969836i
\(45\) 2.02002 + 2.43865i 0.301127 + 0.363533i
\(46\) 0.745033 + 4.73761i 0.109849 + 0.698522i
\(47\) 2.51684i 0.367118i 0.983009 + 0.183559i \(0.0587619\pi\)
−0.983009 + 0.183559i \(0.941238\pi\)
\(48\) 0.354563 + 1.20753i 0.0511767 + 0.174292i
\(49\) 13.0179 + 15.0234i 1.85970 + 2.14620i
\(50\) 4.63593 1.87301i 0.655620 0.264883i
\(51\) −1.14827 7.98638i −0.160790 1.11832i
\(52\) 1.39200 2.16599i 0.193036 0.300369i
\(53\) −8.37345 3.82403i −1.15018 0.525271i −0.253233 0.967405i \(-0.581494\pi\)
−0.896949 + 0.442135i \(0.854221\pi\)
\(54\) 3.63957 4.20028i 0.495282 0.571586i
\(55\) −4.35562 + 2.66436i −0.587312 + 0.359262i
\(56\) −2.15371 4.71597i −0.287802 0.630198i
\(57\) −2.12585 + 7.23997i −0.281575 + 0.958957i
\(58\) 0.415331 1.41449i 0.0545356 0.185731i
\(59\) −4.59819 10.0686i −0.598633 1.31082i −0.930083 0.367350i \(-0.880265\pi\)
0.331450 0.943473i \(-0.392462\pi\)
\(60\) −1.46846 2.40059i −0.189577 0.309915i
\(61\) −1.22319 + 1.41164i −0.156614 + 0.180742i −0.828634 0.559791i \(-0.810881\pi\)
0.672020 + 0.740533i \(0.265427\pi\)
\(62\) 0.0537376 + 0.0245411i 0.00682468 + 0.00311673i
\(63\) −3.96941 + 6.17652i −0.500099 + 0.778168i
\(64\) 0.142315 + 0.989821i 0.0177894 + 0.123728i
\(65\) −1.74432 + 5.48665i −0.216356 + 0.680535i
\(66\) 1.88188 + 2.17181i 0.231644 + 0.267331i
\(67\) −1.16513 3.96806i −0.142343 0.484776i 0.857201 0.514983i \(-0.172202\pi\)
−0.999544 + 0.0302066i \(0.990383\pi\)
\(68\) 6.41117i 0.777468i
\(69\) −5.03401 + 3.32973i −0.606023 + 0.400853i
\(70\) 7.39520 + 8.92778i 0.883896 + 1.06707i
\(71\) 2.50686 0.736081i 0.297510 0.0873567i −0.129571 0.991570i \(-0.541360\pi\)
0.427081 + 0.904213i \(0.359542\pi\)
\(72\) 1.07026 0.927386i 0.126131 0.109294i
\(73\) −3.81970 5.94357i −0.447062 0.695642i 0.542451 0.840088i \(-0.317497\pi\)
−0.989513 + 0.144445i \(0.953860\pi\)
\(74\) 0.405616 + 2.82112i 0.0471519 + 0.327949i
\(75\) 4.56786 + 4.32790i 0.527451 + 0.499743i
\(76\) −2.49070 + 5.45387i −0.285703 + 0.625601i
\(77\) −8.94686 7.75250i −1.01959 0.883480i
\(78\) 3.20733 + 0.461144i 0.363158 + 0.0522143i
\(79\) −2.52526 5.52956i −0.284114 0.622124i 0.712736 0.701433i \(-0.247456\pi\)
−0.996850 + 0.0793090i \(0.974729\pi\)
\(80\) −0.883483 2.05413i −0.0987764 0.229659i
\(81\) 2.63479 + 0.773644i 0.292755 + 0.0859605i
\(82\) 10.8252 4.94373i 1.19545 0.545943i
\(83\) −0.603766 0.0868084i −0.0662719 0.00952846i 0.109099 0.994031i \(-0.465203\pi\)
−0.175371 + 0.984502i \(0.556113\pi\)
\(84\) 4.27278 4.93105i 0.466198 0.538021i
\(85\) 3.73230 + 13.8414i 0.404825 + 1.50131i
\(86\) 2.41771 + 1.55377i 0.260709 + 0.167547i
\(87\) 1.83641 0.264036i 0.196884 0.0283076i
\(88\) 1.23452 + 1.92094i 0.131600 + 0.204773i
\(89\) 1.26042 + 1.45461i 0.133605 + 0.154188i 0.818609 0.574351i \(-0.194745\pi\)
−0.685005 + 0.728539i \(0.740200\pi\)
\(90\) −1.77076 + 2.62525i −0.186655 + 0.276725i
\(91\) −13.3486 −1.39931
\(92\) −4.33580 + 2.04959i −0.452039 + 0.213685i
\(93\) 0.0743478i 0.00770951i
\(94\) −2.41489 + 0.709075i −0.249077 + 0.0731355i
\(95\) 2.20230 13.2246i 0.225951 1.35682i
\(96\) −1.05872 + 0.680401i −0.108056 + 0.0694431i
\(97\) −5.40298 + 0.776832i −0.548590 + 0.0788753i −0.411036 0.911619i \(-0.634833\pi\)
−0.137554 + 0.990494i \(0.543924\pi\)
\(98\) −10.7473 + 16.7232i −1.08564 + 1.68929i
\(99\) 1.34333 2.94147i 0.135009 0.295629i
\(100\) 3.10323 + 3.92046i 0.310323 + 0.392046i
\(101\) −0.137115 + 0.953658i −0.0136435 + 0.0948925i −0.995505 0.0947050i \(-0.969809\pi\)
0.981862 + 0.189597i \(0.0607183\pi\)
\(102\) 7.33937 3.35178i 0.726706 0.331875i
\(103\) 1.20605 4.10742i 0.118835 0.404716i −0.878494 0.477754i \(-0.841451\pi\)
0.997329 + 0.0730377i \(0.0232694\pi\)
\(104\) 2.47043 + 0.725383i 0.242245 + 0.0711297i
\(105\) −6.35410 + 13.1333i −0.620096 + 1.28168i
\(106\) 1.31005 9.11162i 0.127244 0.884999i
\(107\) 11.1022 + 9.62014i 1.07329 + 0.930014i 0.997744 0.0671276i \(-0.0213835\pi\)
0.0755495 + 0.997142i \(0.475929\pi\)
\(108\) 5.05553 + 2.30878i 0.486468 + 0.222163i
\(109\) 10.5609 + 6.78706i 1.01155 + 0.650083i 0.937793 0.347194i \(-0.112865\pi\)
0.0737550 + 0.997276i \(0.476502\pi\)
\(110\) −3.78355 3.42855i −0.360748 0.326899i
\(111\) −3.01750 + 1.93923i −0.286409 + 0.184064i
\(112\) 3.91817 3.39511i 0.370232 0.320808i
\(113\) −2.52010 8.58266i −0.237071 0.807389i −0.988971 0.148112i \(-0.952680\pi\)
0.751900 0.659277i \(-0.229138\pi\)
\(114\) −7.54562 −0.706712
\(115\) 8.16762 6.94910i 0.761635 0.648007i
\(116\) 1.47420 0.136876
\(117\) −1.02726 3.49852i −0.0949700 0.323438i
\(118\) 8.36531 7.24859i 0.770090 0.667286i
\(119\) −27.9621 + 17.9701i −2.56328 + 1.64732i
\(120\) 1.88964 2.08530i 0.172500 0.190361i
\(121\) −4.86745 3.12812i −0.442496 0.284375i
\(122\) −1.69907 0.775940i −0.153827 0.0702503i
\(123\) 11.3189 + 9.80792i 1.02060 + 0.884351i
\(124\) −0.00840741 + 0.0584748i −0.000755008 + 0.00525120i
\(125\) −8.98206 6.65753i −0.803379 0.595467i
\(126\) −7.04464 2.06849i −0.627586 0.184276i
\(127\) −4.01637 + 13.6785i −0.356395 + 1.21377i 0.564983 + 0.825103i \(0.308883\pi\)
−0.921378 + 0.388668i \(0.872935\pi\)
\(128\) −0.909632 + 0.415415i −0.0804009 + 0.0367178i
\(129\) −0.514736 + 3.58006i −0.0453199 + 0.315207i
\(130\) −5.75584 0.127894i −0.504820 0.0112170i
\(131\) −2.83256 + 6.20244i −0.247482 + 0.541910i −0.992081 0.125603i \(-0.959914\pi\)
0.744599 + 0.667512i \(0.232641\pi\)
\(132\) −1.55365 + 2.41752i −0.135228 + 0.210418i
\(133\) 30.7681 4.42379i 2.66793 0.383591i
\(134\) 3.47907 2.23586i 0.300546 0.193149i
\(135\) −12.2587 2.04145i −1.05506 0.175700i
\(136\) 6.15147 1.80623i 0.527484 0.154883i
\(137\) 6.35078i 0.542584i 0.962497 + 0.271292i \(0.0874509\pi\)
−0.962497 + 0.271292i \(0.912549\pi\)
\(138\) −4.61310 3.89200i −0.392693 0.331309i
\(139\) 4.15230 0.352194 0.176097 0.984373i \(-0.443653\pi\)
0.176097 + 0.984373i \(0.443653\pi\)
\(140\) −6.48267 + 9.61089i −0.547886 + 0.812269i
\(141\) −2.07425 2.39381i −0.174683 0.201595i
\(142\) 1.41253 + 2.19794i 0.118537 + 0.184447i
\(143\) 5.81936 0.836697i 0.486639 0.0699681i
\(144\) 1.19135 + 0.765633i 0.0992790 + 0.0638027i
\(145\) −3.18274 + 0.858217i −0.264312 + 0.0712710i
\(146\) 4.62668 5.33947i 0.382907 0.441898i
\(147\) −24.7630 3.56039i −2.04242 0.293656i
\(148\) −2.59257 + 1.18399i −0.213108 + 0.0973232i
\(149\) −6.77849 1.99034i −0.555315 0.163055i −0.00797916 0.999968i \(-0.502540\pi\)
−0.547336 + 0.836913i \(0.684358\pi\)
\(150\) −2.86568 + 5.60214i −0.233982 + 0.457413i
\(151\) 6.96279 + 15.2464i 0.566623 + 1.24073i 0.948576 + 0.316550i \(0.102525\pi\)
−0.381952 + 0.924182i \(0.624748\pi\)
\(152\) −5.93466 0.853275i −0.481364 0.0692097i
\(153\) −6.86162 5.94563i −0.554729 0.480675i
\(154\) 4.91785 10.7686i 0.396291 0.867757i
\(155\) −0.0158903 0.131139i −0.00127634 0.0105333i
\(156\) 0.461144 + 3.20733i 0.0369211 + 0.256792i
\(157\) 3.78167 + 5.88439i 0.301810 + 0.469625i 0.958723 0.284341i \(-0.0917747\pi\)
−0.656913 + 0.753966i \(0.728138\pi\)
\(158\) 4.59412 3.98083i 0.365489 0.316698i
\(159\) 11.1157 3.26386i 0.881532 0.258841i
\(160\) 1.72202 1.42641i 0.136138 0.112768i
\(161\) 21.0922 + 13.1655i 1.66230 + 1.03759i
\(162\) 2.74602i 0.215748i
\(163\) 4.38321 + 14.9278i 0.343319 + 1.16924i 0.932480 + 0.361222i \(0.117640\pi\)
−0.589161 + 0.808016i \(0.700542\pi\)
\(164\) 7.79329 + 8.99394i 0.608554 + 0.702309i
\(165\) 1.94688 6.12379i 0.151564 0.476736i
\(166\) −0.0868084 0.603766i −0.00673764 0.0468613i
\(167\) 0.520879 0.810504i 0.0403068 0.0627187i −0.820515 0.571624i \(-0.806313\pi\)
0.860822 + 0.508906i \(0.169950\pi\)
\(168\) 5.93509 + 2.71046i 0.457902 + 0.209117i
\(169\) −4.17199 + 4.81473i −0.320922 + 0.370364i
\(170\) −12.2292 + 7.48070i −0.937940 + 0.573744i
\(171\) 3.52722 + 7.72354i 0.269733 + 0.590634i
\(172\) −0.809683 + 2.75753i −0.0617378 + 0.210259i
\(173\) 2.08713 7.10812i 0.158682 0.540420i −0.841318 0.540540i \(-0.818220\pi\)
1.00000 0.000119804i \(3.81349e-5\pi\)
\(174\) 0.770717 + 1.68763i 0.0584279 + 0.127939i
\(175\) 8.40076 24.5234i 0.635037 1.85380i
\(176\) −1.49533 + 1.72570i −0.112715 + 0.130080i
\(177\) 12.6714 + 5.78685i 0.952444 + 0.434967i
\(178\) −1.04058 + 1.61918i −0.0779950 + 0.121363i
\(179\) 0.522586 + 3.63466i 0.0390599 + 0.271667i 0.999987 0.00513471i \(-0.00163444\pi\)
−0.960927 + 0.276802i \(0.910725\pi\)
\(180\) −3.01779 0.959416i −0.224933 0.0715107i
\(181\) 3.34960 + 3.86565i 0.248974 + 0.287331i 0.866456 0.499254i \(-0.166393\pi\)
−0.617482 + 0.786585i \(0.711847\pi\)
\(182\) −3.76074 12.8079i −0.278764 0.949384i
\(183\) 2.35073i 0.173771i
\(184\) −3.18811 3.58273i −0.235030 0.264123i
\(185\) 4.90798 4.06546i 0.360842 0.298899i
\(186\) −0.0713362 + 0.0209462i −0.00523062 + 0.00153585i
\(187\) 11.0638 9.58680i 0.809062 0.701056i
\(188\) −1.36070 2.11730i −0.0992396 0.154420i
\(189\) −4.10068 28.5209i −0.298281 2.07459i
\(190\) 13.3094 1.61272i 0.965566 0.116999i
\(191\) 6.61488 14.4846i 0.478636 1.04807i −0.504200 0.863587i \(-0.668213\pi\)
0.982836 0.184480i \(-0.0590601\pi\)
\(192\) −0.951117 0.824147i −0.0686409 0.0594777i
\(193\) −16.2334 2.33400i −1.16850 0.168005i −0.469373 0.883000i \(-0.655520\pi\)
−0.699130 + 0.714995i \(0.746429\pi\)
\(194\) −2.26756 4.96527i −0.162801 0.356485i
\(195\) −2.86276 6.65602i −0.205006 0.476648i
\(196\) −19.0736 5.60052i −1.36240 0.400037i
\(197\) −8.28190 + 3.78222i −0.590061 + 0.269472i −0.687988 0.725722i \(-0.741506\pi\)
0.0979275 + 0.995194i \(0.468779\pi\)
\(198\) 3.20078 + 0.460203i 0.227470 + 0.0327052i
\(199\) 15.5311 17.9239i 1.10097 1.27059i 0.141148 0.989989i \(-0.454921\pi\)
0.959824 0.280601i \(-0.0905338\pi\)
\(200\) −2.88737 + 4.08205i −0.204168 + 0.288644i
\(201\) 4.37844 + 2.81385i 0.308831 + 0.198474i
\(202\) −0.953658 + 0.137115i −0.0670991 + 0.00964740i
\(203\) −4.13210 6.42968i −0.290017 0.451275i
\(204\) 5.28375 + 6.09777i 0.369936 + 0.426929i
\(205\) −22.0613 14.8806i −1.54083 1.03931i
\(206\) 4.28082 0.298259
\(207\) −1.82736 + 6.54120i −0.127011 + 0.454645i
\(208\) 2.57472i 0.178525i
\(209\) −13.1362 + 3.85712i −0.908647 + 0.266803i
\(210\) −14.3915 2.39662i −0.993108 0.165383i
\(211\) 2.20758 1.41873i 0.151976 0.0976692i −0.462443 0.886649i \(-0.653027\pi\)
0.614419 + 0.788980i \(0.289391\pi\)
\(212\) 9.11162 1.31005i 0.625789 0.0899748i
\(213\) −1.77768 + 2.76612i −0.121805 + 0.189532i
\(214\) −6.10260 + 13.3628i −0.417165 + 0.913464i
\(215\) 0.142757 6.42474i 0.00973595 0.438164i
\(216\) −0.790953 + 5.50120i −0.0538175 + 0.374309i
\(217\) 0.278601 0.127233i 0.0189127 0.00863714i
\(218\) −3.53680 + 12.0452i −0.239542 + 0.815805i
\(219\) 8.53136 + 2.50503i 0.576496 + 0.169274i
\(220\) 2.22372 4.59623i 0.149923 0.309878i
\(221\) 2.34919 16.3390i 0.158023 1.09908i
\(222\) −2.71081 2.34893i −0.181938 0.157650i
\(223\) −13.0959 5.98069i −0.876966 0.400497i −0.0745183 0.997220i \(-0.523742\pi\)
−0.802447 + 0.596723i \(0.796469\pi\)
\(224\) 4.36146 + 2.80294i 0.291413 + 0.187279i
\(225\) 7.07380 + 0.314513i 0.471587 + 0.0209675i
\(226\) 7.52501 4.83603i 0.500556 0.321688i
\(227\) 1.86666 1.61747i 0.123894 0.107355i −0.590710 0.806884i \(-0.701152\pi\)
0.714604 + 0.699529i \(0.246607\pi\)
\(228\) −2.12585 7.23997i −0.140788 0.479478i
\(229\) −24.3983 −1.61228 −0.806142 0.591722i \(-0.798448\pi\)
−0.806142 + 0.591722i \(0.798448\pi\)
\(230\) 8.96870 + 5.87899i 0.591378 + 0.387649i
\(231\) 14.8987 0.980264
\(232\) 0.415331 + 1.41449i 0.0272678 + 0.0928656i
\(233\) −15.5592 + 13.4821i −1.01931 + 0.883241i −0.993200 0.116418i \(-0.962859\pi\)
−0.0261146 + 0.999659i \(0.508313\pi\)
\(234\) 3.06739 1.97129i 0.200522 0.128867i
\(235\) 4.17030 + 3.77901i 0.272041 + 0.246516i
\(236\) 9.31175 + 5.98430i 0.606143 + 0.389545i
\(237\) 6.95899 + 3.17806i 0.452035 + 0.206437i
\(238\) −25.1200 21.7666i −1.62829 1.41092i
\(239\) −0.442468 + 3.07743i −0.0286209 + 0.199062i −0.999115 0.0420623i \(-0.986607\pi\)
0.970494 + 0.241125i \(0.0775163\pi\)
\(240\) 2.53320 + 1.22560i 0.163518 + 0.0791121i
\(241\) 9.87037 + 2.89820i 0.635806 + 0.186690i 0.583723 0.811953i \(-0.301596\pi\)
0.0520837 + 0.998643i \(0.483414\pi\)
\(242\) 1.63009 5.55158i 0.104786 0.356869i
\(243\) 12.0230 5.49071i 0.771275 0.352229i
\(244\) 0.265825 1.84886i 0.0170177 0.118361i
\(245\) 44.4395 + 0.987440i 2.83914 + 0.0630852i
\(246\) −6.22172 + 13.6237i −0.396682 + 0.868613i
\(247\) −8.34600 + 12.9866i −0.531043 + 0.826319i
\(248\) −0.0584748 + 0.00840741i −0.00371316 + 0.000533871i
\(249\) 0.645795 0.415027i 0.0409256 0.0263013i
\(250\) 3.85731 10.4939i 0.243958 0.663690i
\(251\) −12.7825 + 3.75329i −0.806827 + 0.236906i −0.659035 0.752113i \(-0.729035\pi\)
−0.147793 + 0.989018i \(0.547217\pi\)
\(252\) 7.34204i 0.462505i
\(253\) −10.0204 4.41748i −0.629979 0.277725i
\(254\) −14.2560 −0.894499
\(255\) −14.9572 10.0888i −0.936659 0.631788i
\(256\) −0.654861 0.755750i −0.0409288 0.0472343i
\(257\) 2.22905 + 3.46846i 0.139044 + 0.216357i 0.903791 0.427974i \(-0.140772\pi\)
−0.764747 + 0.644331i \(0.777136\pi\)
\(258\) −3.58006 + 0.514736i −0.222885 + 0.0320460i
\(259\) 12.4307 + 7.98876i 0.772409 + 0.496397i
\(260\) −1.49889 5.55872i −0.0929574 0.344737i
\(261\) 1.36715 1.57778i 0.0846247 0.0976621i
\(262\) −6.74922 0.970392i −0.416968 0.0599510i
\(263\) −8.89016 + 4.06000i −0.548191 + 0.250350i −0.670202 0.742178i \(-0.733793\pi\)
0.122012 + 0.992529i \(0.461065\pi\)
\(264\) −2.75731 0.809619i −0.169701 0.0498286i
\(265\) −18.9089 + 8.13274i −1.16157 + 0.499590i
\(266\) 12.9130 + 28.2755i 0.791745 + 1.73368i
\(267\) −2.39762 0.344726i −0.146732 0.0210969i
\(268\) 3.12547 + 2.70823i 0.190918 + 0.165432i
\(269\) 9.72977 21.3052i 0.593234 1.29900i −0.340234 0.940341i \(-0.610506\pi\)
0.933468 0.358661i \(-0.116767\pi\)
\(270\) −1.49493 12.3373i −0.0909784 0.750825i
\(271\) 0.396200 + 2.75563i 0.0240675 + 0.167393i 0.998310 0.0581087i \(-0.0185070\pi\)
−0.974243 + 0.225502i \(0.927598\pi\)
\(272\) 3.46614 + 5.39342i 0.210166 + 0.327024i
\(273\) 12.6961 11.0012i 0.768402 0.665824i
\(274\) −6.09353 + 1.78922i −0.368124 + 0.108091i
\(275\) −2.12519 + 11.2176i −0.128154 + 0.676447i
\(276\) 2.43469 5.52274i 0.146551 0.332430i
\(277\) 5.14479i 0.309121i 0.987983 + 0.154560i \(0.0493961\pi\)
−0.987983 + 0.154560i \(0.950604\pi\)
\(278\) 1.16984 + 3.98411i 0.0701623 + 0.238951i
\(279\) 0.0547864 + 0.0632269i 0.00327998 + 0.00378529i
\(280\) −11.0480 3.51237i −0.660242 0.209905i
\(281\) 3.35457 + 23.3315i 0.200117 + 1.39184i 0.803934 + 0.594719i \(0.202737\pi\)
−0.603817 + 0.797123i \(0.706354\pi\)
\(282\) 1.71246 2.66464i 0.101975 0.158677i
\(283\) −21.6945 9.90757i −1.28961 0.588944i −0.351792 0.936078i \(-0.614427\pi\)
−0.937815 + 0.347135i \(0.887155\pi\)
\(284\) −1.71095 + 1.97454i −0.101526 + 0.117168i
\(285\) 8.80441 + 14.3932i 0.521528 + 0.852579i
\(286\) 2.44231 + 5.34791i 0.144417 + 0.316228i
\(287\) 17.3826 59.1997i 1.02606 3.49445i
\(288\) −0.398978 + 1.35879i −0.0235100 + 0.0800677i
\(289\) −10.0128 21.9249i −0.588987 1.28970i
\(290\) −1.72013 2.81203i −0.101010 0.165128i
\(291\) 4.49865 5.19171i 0.263715 0.304344i
\(292\) 6.42667 + 2.93496i 0.376093 + 0.171756i
\(293\) 0.570702 0.888029i 0.0333407 0.0518792i −0.824183 0.566323i \(-0.808365\pi\)
0.857524 + 0.514444i \(0.172002\pi\)
\(294\) −3.56039 24.7630i −0.207646 1.44421i
\(295\) −23.5875 7.49894i −1.37332 0.436605i
\(296\) −1.86644 2.15399i −0.108485 0.125198i
\(297\) 3.57540 + 12.1767i 0.207466 + 0.706564i
\(298\) 7.06465i 0.409244i
\(299\) −11.8009 + 3.63469i −0.682462 + 0.210200i
\(300\) −6.18257 1.17129i −0.356951 0.0676247i
\(301\) 14.2964 4.19779i 0.824028 0.241956i
\(302\) −12.6671 + 10.9761i −0.728912 + 0.631606i
\(303\) −0.655542 1.02004i −0.0376599 0.0585999i
\(304\) −0.853275 5.93466i −0.0489387 0.340376i
\(305\) 0.502419 + 4.14635i 0.0287684 + 0.237419i
\(306\) 3.77165 8.25875i 0.215611 0.472121i
\(307\) 15.4098 + 13.3526i 0.879482 + 0.762075i 0.972332 0.233605i \(-0.0750522\pi\)
−0.0928499 + 0.995680i \(0.529598\pi\)
\(308\) 11.7179 + 1.68478i 0.667689 + 0.0959992i
\(309\) 2.23803 + 4.90059i 0.127317 + 0.278785i
\(310\) 0.121350 0.0521928i 0.00689223 0.00296435i
\(311\) 18.1903 + 5.34115i 1.03148 + 0.302869i 0.753311 0.657664i \(-0.228455\pi\)
0.278166 + 0.960533i \(0.410274\pi\)
\(312\) −2.94749 + 1.34607i −0.166869 + 0.0762064i
\(313\) 18.8059 + 2.70388i 1.06297 + 0.152832i 0.651544 0.758610i \(-0.274121\pi\)
0.411427 + 0.911443i \(0.365030\pi\)
\(314\) −4.58061 + 5.28631i −0.258499 + 0.298324i
\(315\) 4.27422 + 15.8512i 0.240825 + 0.893111i
\(316\) 5.11389 + 3.28650i 0.287679 + 0.184880i
\(317\) 6.25125 0.898794i 0.351105 0.0504813i 0.0354940 0.999370i \(-0.488700\pi\)
0.315611 + 0.948889i \(0.397790\pi\)
\(318\) 6.26331 + 9.74589i 0.351229 + 0.546523i
\(319\) 2.20441 + 2.54403i 0.123424 + 0.142438i
\(320\) 1.85378 + 1.25040i 0.103629 + 0.0698994i
\(321\) −18.4879 −1.03190
\(322\) −6.68989 + 23.9470i −0.372813 + 1.33451i
\(323\) 38.4393i 2.13882i
\(324\) −2.63479 + 0.773644i −0.146377 + 0.0429802i
\(325\) 6.47209 + 11.1284i 0.359007 + 0.617294i
\(326\) −13.0883 + 8.41131i −0.724891 + 0.465859i
\(327\) −15.6382 + 2.24843i −0.864793 + 0.124338i
\(328\) −6.43400 + 10.0115i −0.355258 + 0.552792i
\(329\) −5.42054 + 11.8693i −0.298844 + 0.654377i
\(330\) 6.42423 + 0.142746i 0.353642 + 0.00785789i
\(331\) −3.10124 + 21.5696i −0.170460 + 1.18557i 0.707456 + 0.706757i \(0.249843\pi\)
−0.877916 + 0.478815i \(0.841066\pi\)
\(332\) 0.554852 0.253393i 0.0304515 0.0139067i
\(333\) −1.13714 + 3.87274i −0.0623149 + 0.212225i
\(334\) 0.924421 + 0.271435i 0.0505821 + 0.0148522i
\(335\) −8.32436 4.02744i −0.454808 0.220043i
\(336\) −0.928563 + 6.45830i −0.0506573 + 0.352329i
\(337\) −5.28719 4.58138i −0.288012 0.249563i 0.498857 0.866685i \(-0.333753\pi\)
−0.786868 + 0.617121i \(0.788299\pi\)
\(338\) −5.79508 2.64653i −0.315211 0.143952i
\(339\) 9.47029 + 6.08618i 0.514355 + 0.330556i
\(340\) −10.6231 9.62632i −0.576116 0.522060i
\(341\) −0.113482 + 0.0729304i −0.00614539 + 0.00394940i
\(342\) −6.41695 + 5.56031i −0.346989 + 0.300667i
\(343\) 18.8113 + 64.0655i 1.01572 + 3.45921i
\(344\) −2.87394 −0.154953
\(345\) −2.04128 + 13.3407i −0.109899 + 0.718241i
\(346\) 7.40820 0.398267
\(347\) −4.65039 15.8378i −0.249646 0.850216i −0.985003 0.172536i \(-0.944804\pi\)
0.735357 0.677680i \(-0.237014\pi\)
\(348\) −1.40214 + 1.21496i −0.0751625 + 0.0651287i
\(349\) 16.0887 10.3396i 0.861206 0.553464i −0.0338450 0.999427i \(-0.510775\pi\)
0.895051 + 0.445964i \(0.147139\pi\)
\(350\) 25.8968 + 1.15142i 1.38424 + 0.0615458i
\(351\) 12.0381 + 7.73642i 0.642546 + 0.412939i
\(352\) −2.07708 0.948571i −0.110709 0.0505590i
\(353\) 10.3411 + 8.96065i 0.550404 + 0.476927i 0.885102 0.465398i \(-0.154089\pi\)
−0.334698 + 0.942325i \(0.608634\pi\)
\(354\) −1.98249 + 13.7885i −0.105368 + 0.732851i
\(355\) 2.54437 5.25899i 0.135041 0.279118i
\(356\) −1.84676 0.542257i −0.0978779 0.0287395i
\(357\) 11.7852 40.1366i 0.623737 2.12425i
\(358\) −3.34020 + 1.52542i −0.176535 + 0.0806209i
\(359\) −3.09393 + 21.5187i −0.163291 + 1.13571i 0.729085 + 0.684423i \(0.239946\pi\)
−0.892376 + 0.451292i \(0.850963\pi\)
\(360\) 0.0703446 3.16584i 0.00370749 0.166855i
\(361\) 7.04055 15.4167i 0.370555 0.811403i
\(362\) −2.76537 + 4.30300i −0.145345 + 0.226161i
\(363\) 7.20755 1.03629i 0.378298 0.0543911i
\(364\) 11.2296 7.21680i 0.588589 0.378263i
\(365\) −15.5835 2.59513i −0.815679 0.135835i
\(366\) 2.25551 0.662276i 0.117897 0.0346177i
\(367\) 1.23164i 0.0642910i −0.999483 0.0321455i \(-0.989766\pi\)
0.999483 0.0321455i \(-0.0102340\pi\)
\(368\) 2.53941 4.06834i 0.132376 0.212077i
\(369\) 16.8533 0.877345
\(370\) 5.28352 + 3.56380i 0.274677 + 0.185273i
\(371\) −31.2531 36.0680i −1.62258 1.87256i
\(372\) −0.0401955 0.0625454i −0.00208404 0.00324283i
\(373\) 1.37341 0.197466i 0.0711124 0.0102244i −0.106667 0.994295i \(-0.534018\pi\)
0.177779 + 0.984070i \(0.443109\pi\)
\(374\) 12.3155 + 7.91468i 0.636819 + 0.409258i
\(375\) 14.0298 1.07045i 0.724494 0.0552779i
\(376\) 1.64818 1.90210i 0.0849983 0.0980933i
\(377\) 3.75703 + 0.540179i 0.193497 + 0.0278206i
\(378\) 26.2103 11.9698i 1.34811 0.615662i
\(379\) −20.3174 5.96573i −1.04364 0.306439i −0.285392 0.958411i \(-0.592124\pi\)
−0.758243 + 0.651972i \(0.773942\pi\)
\(380\) 5.29709 + 12.3159i 0.271735 + 0.631794i
\(381\) −7.45306 16.3199i −0.381832 0.836095i
\(382\) 15.7615 + 2.26616i 0.806427 + 0.115947i
\(383\) −2.48962 2.15726i −0.127213 0.110231i 0.588931 0.808184i \(-0.299549\pi\)
−0.716144 + 0.697953i \(0.754095\pi\)
\(384\) 0.522803 1.14478i 0.0266792 0.0584193i
\(385\) −26.2792 + 3.18429i −1.33931 + 0.162286i
\(386\) −2.33400 16.2334i −0.118798 0.826256i
\(387\) 2.20038 + 3.42386i 0.111852 + 0.174045i
\(388\) 4.12529 3.57459i 0.209430 0.181472i
\(389\) −19.1664 + 5.62777i −0.971777 + 0.285339i −0.728826 0.684699i \(-0.759934\pi\)
−0.242951 + 0.970039i \(0.578115\pi\)
\(390\) 5.57988 4.62201i 0.282548 0.234045i
\(391\) −19.8269 + 23.5003i −1.00269 + 1.18846i
\(392\) 19.8789i 1.00403i
\(393\) −2.41763 8.23369i −0.121953 0.415335i
\(394\) −5.96229 6.88085i −0.300376 0.346652i
\(395\) −12.9539 4.11832i −0.651783 0.207215i
\(396\) 0.460203 + 3.20078i 0.0231261 + 0.160845i
\(397\) −5.40887 + 8.41637i −0.271463 + 0.422405i −0.950042 0.312123i \(-0.898960\pi\)
0.678578 + 0.734528i \(0.262596\pi\)
\(398\) 21.5735 + 9.85227i 1.08138 + 0.493849i
\(399\) −25.6182 + 29.5650i −1.28252 + 1.48010i
\(400\) −4.73016 1.62037i −0.236508 0.0810183i
\(401\) 4.05546 + 8.88023i 0.202520 + 0.443457i 0.983454 0.181156i \(-0.0579839\pi\)
−0.780934 + 0.624613i \(0.785257\pi\)
\(402\) −1.46632 + 4.99384i −0.0731336 + 0.249070i
\(403\) −0.0428529 + 0.145943i −0.00213465 + 0.00726996i
\(404\) −0.400238 0.876398i −0.0199126 0.0436024i
\(405\) 5.23802 3.20413i 0.260279 0.159214i
\(406\) 5.00508 5.77617i 0.248398 0.286667i
\(407\) −5.91995 2.70355i −0.293441 0.134010i
\(408\) −4.36216 + 6.78766i −0.215959 + 0.336039i
\(409\) −3.17875 22.1087i −0.157179 1.09321i −0.903800 0.427955i \(-0.859234\pi\)
0.746621 0.665250i \(-0.231675\pi\)
\(410\) 8.06246 25.3600i 0.398177 1.25244i
\(411\) −5.23398 6.04033i −0.258173 0.297948i
\(412\) 1.20605 + 4.10742i 0.0594176 + 0.202358i
\(413\) 57.3865i 2.82380i
\(414\) −6.79106 + 0.0895267i −0.333763 + 0.00440000i
\(415\) −1.05039 + 0.870075i −0.0515615 + 0.0427103i
\(416\) −2.47043 + 0.725383i −0.121123 + 0.0355648i
\(417\) −3.94933 + 3.42211i −0.193399 + 0.167582i
\(418\) −7.40176 11.5174i −0.362032 0.563333i
\(419\) 2.15594 + 14.9949i 0.105325 + 0.732549i 0.972222 + 0.234062i \(0.0752017\pi\)
−0.866897 + 0.498487i \(0.833889\pi\)
\(420\) −1.75502 14.4838i −0.0856360 0.706735i
\(421\) 5.95606 13.0420i 0.290281 0.635626i −0.707166 0.707048i \(-0.750026\pi\)
0.997446 + 0.0714221i \(0.0227537\pi\)
\(422\) 1.98321 + 1.71846i 0.0965410 + 0.0836532i
\(423\) −3.52796 0.507244i −0.171535 0.0246631i
\(424\) 3.82403 + 8.37345i 0.185711 + 0.406651i
\(425\) 28.5387 + 14.5985i 1.38433 + 0.708132i
\(426\) −3.15491 0.926364i −0.152856 0.0448825i
\(427\) −8.80881 + 4.02285i −0.426288 + 0.194679i
\(428\) −14.5408 2.09066i −0.702858 0.101056i
\(429\) −4.84533 + 5.59180i −0.233935 + 0.269975i
\(430\) 6.20472 1.67309i 0.299218 0.0806833i
\(431\) 16.9948 + 10.9219i 0.818610 + 0.526089i 0.881640 0.471923i \(-0.156440\pi\)
−0.0630297 + 0.998012i \(0.520076\pi\)
\(432\) −5.50120 + 0.790953i −0.264677 + 0.0380547i
\(433\) −8.01987 12.4792i −0.385411 0.599711i 0.593294 0.804986i \(-0.297827\pi\)
−0.978704 + 0.205276i \(0.934191\pi\)
\(434\) 0.200570 + 0.231470i 0.00962768 + 0.0111109i
\(435\) 2.31986 3.43931i 0.111229 0.164902i
\(436\) −12.5537 −0.601215
\(437\) 25.9961 12.2887i 1.24356 0.587849i
\(438\) 8.89153i 0.424854i
\(439\) 23.8354 6.99872i 1.13760 0.334031i 0.341912 0.939732i \(-0.388926\pi\)
0.795692 + 0.605701i \(0.207107\pi\)
\(440\) 5.03654 + 0.838736i 0.240108 + 0.0399852i
\(441\) −23.6826 + 15.2199i −1.12774 + 0.724757i
\(442\) 16.3390 2.34919i 0.777165 0.111739i
\(443\) −0.857306 + 1.33399i −0.0407318 + 0.0633800i −0.861022 0.508567i \(-0.830175\pi\)
0.820291 + 0.571947i \(0.193812\pi\)
\(444\) 1.49006 3.26277i 0.0707150 0.154844i
\(445\) 4.30275 + 0.0956065i 0.203970 + 0.00453218i
\(446\) 2.04889 14.2504i 0.0970179 0.674775i
\(447\) 8.08747 3.69342i 0.382524 0.174693i
\(448\) −1.46064 + 4.97447i −0.0690086 + 0.235022i
\(449\) 28.5778 + 8.39119i 1.34867 + 0.396005i 0.874755 0.484566i \(-0.161023\pi\)
0.473914 + 0.880571i \(0.342841\pi\)
\(450\) 1.69115 + 6.87587i 0.0797214 + 0.324132i
\(451\) −3.86732 + 26.8978i −0.182105 + 1.26657i
\(452\) 6.76018 + 5.85773i 0.317972 + 0.275524i
\(453\) −19.1877 8.76272i −0.901516 0.411709i
\(454\) 2.07785 + 1.33535i 0.0975183 + 0.0626712i
\(455\) −20.0428 + 22.1181i −0.939622 + 1.03691i
\(456\) 6.34778 4.07947i 0.297262 0.191039i
\(457\) −24.0354 + 20.8268i −1.12433 + 0.974235i −0.999838 0.0179862i \(-0.994275\pi\)
−0.124489 + 0.992221i \(0.539729\pi\)
\(458\) −6.87379 23.4100i −0.321191 1.09388i
\(459\) 35.6318 1.66315
\(460\) −3.11407 + 10.2617i −0.145194 + 0.478454i
\(461\) −4.24198 −0.197569 −0.0987843 0.995109i \(-0.531495\pi\)
−0.0987843 + 0.995109i \(0.531495\pi\)
\(462\) 4.19745 + 14.2952i 0.195283 + 0.665074i
\(463\) −15.4907 + 13.4227i −0.719912 + 0.623807i −0.935767 0.352618i \(-0.885291\pi\)
0.215855 + 0.976425i \(0.430746\pi\)
\(464\) −1.24018 + 0.797013i −0.0575738 + 0.0370004i
\(465\) 0.123191 + 0.111633i 0.00571287 + 0.00517684i
\(466\) −17.3195 11.1306i −0.802310 0.515614i
\(467\) −28.8610 13.1804i −1.33553 0.609915i −0.385682 0.922632i \(-0.626034\pi\)
−0.949847 + 0.312716i \(0.898761\pi\)
\(468\) 2.75562 + 2.38776i 0.127379 + 0.110374i
\(469\) 3.05135 21.2226i 0.140898 0.979969i
\(470\) −2.45102 + 5.06605i −0.113057 + 0.233679i
\(471\) −8.44641 2.48009i −0.389190 0.114277i
\(472\) −3.11847 + 10.6205i −0.143539 + 0.488849i
\(473\) −5.96941 + 2.72614i −0.274474 + 0.125348i
\(474\) −1.08876 + 7.57247i −0.0500082 + 0.347815i
\(475\) −18.6060 23.5058i −0.853701 1.07852i
\(476\) 13.8078 30.2349i 0.632880 1.38581i
\(477\) 7.04789 10.9667i 0.322701 0.502132i
\(478\) −3.07743 + 0.442468i −0.140758 + 0.0202380i
\(479\) −11.7958 + 7.58073i −0.538966 + 0.346372i −0.781634 0.623737i \(-0.785614\pi\)
0.242669 + 0.970109i \(0.421977\pi\)
\(480\) −0.462268 + 2.77588i −0.0210996 + 0.126701i
\(481\) −7.04105 + 2.06744i −0.321044 + 0.0942671i
\(482\) 10.2871i 0.468563i
\(483\) −30.9115 + 4.86113i −1.40652 + 0.221189i
\(484\) 5.78595 0.262998
\(485\) −6.82536 + 10.1189i −0.309923 + 0.459478i
\(486\) 8.65557 + 9.98906i 0.392624 + 0.453113i
\(487\) −10.0725 15.6731i −0.456427 0.710214i 0.534418 0.845221i \(-0.320531\pi\)
−0.990845 + 0.135006i \(0.956895\pi\)
\(488\) 1.84886 0.265825i 0.0836938 0.0120333i
\(489\) −16.4717 10.5857i −0.744875 0.478702i
\(490\) 11.5726 + 42.9176i 0.522797 + 1.93882i
\(491\) 4.84920 5.59627i 0.218841 0.252556i −0.635704 0.771933i \(-0.719290\pi\)
0.854546 + 0.519376i \(0.173836\pi\)
\(492\) −14.8247 2.13147i −0.668348 0.0960939i
\(493\) 8.59725 3.92623i 0.387201 0.176829i
\(494\) −14.8119 4.34917i −0.666419 0.195678i
\(495\) −2.85692 6.64244i −0.128409 0.298555i
\(496\) −0.0245411 0.0537376i −0.00110193 0.00241289i
\(497\) 13.4076 + 1.92772i 0.601413 + 0.0864701i
\(498\) 0.580157 + 0.502709i 0.0259975 + 0.0225269i
\(499\) 4.72459 10.3454i 0.211502 0.463124i −0.773914 0.633291i \(-0.781704\pi\)
0.985415 + 0.170167i \(0.0544308\pi\)
\(500\) 11.1555 + 0.744603i 0.498890 + 0.0332997i
\(501\) 0.172558 + 1.20017i 0.00770931 + 0.0536194i
\(502\) −7.20252 11.2073i −0.321464 0.500208i
\(503\) 20.6382 17.8831i 0.920212 0.797368i −0.0594070 0.998234i \(-0.518921\pi\)
0.979619 + 0.200866i \(0.0643755\pi\)
\(504\) 7.04464 2.06849i 0.313793 0.0921380i
\(505\) 1.37430 + 1.65910i 0.0611554 + 0.0738292i
\(506\) 1.41546 10.8591i 0.0629249 0.482745i
\(507\) 8.01770i 0.356079i
\(508\) −4.01637 13.6785i −0.178198 0.606885i
\(509\) 10.3925 + 11.9936i 0.460639 + 0.531606i 0.937784 0.347218i \(-0.112874\pi\)
−0.477145 + 0.878825i \(0.658328\pi\)
\(510\) 5.46624 17.1937i 0.242049 0.761351i
\(511\) −5.21286 36.2562i −0.230603 1.60388i
\(512\) 0.540641 0.841254i 0.0238932 0.0371785i
\(513\) −30.3113 13.8427i −1.33828 0.611171i
\(514\) −2.69997 + 3.11593i −0.119091 + 0.137438i
\(515\) −4.99496 8.16563i −0.220104 0.359821i
\(516\) −1.50251 3.29003i −0.0661441 0.144835i
\(517\) 1.61912 5.51423i 0.0712089 0.242515i
\(518\) −4.16301 + 14.1779i −0.182912 + 0.622942i
\(519\) 3.87303 + 8.48076i 0.170007 + 0.372264i
\(520\) 4.91126 3.00425i 0.215373 0.131745i
\(521\) −7.20928 + 8.31996i −0.315844 + 0.364504i −0.891367 0.453282i \(-0.850253\pi\)
0.575523 + 0.817786i \(0.304799\pi\)
\(522\) 1.89904 + 0.867263i 0.0831187 + 0.0379591i
\(523\) 7.23208 11.2533i 0.316237 0.492074i −0.646352 0.763039i \(-0.723706\pi\)
0.962589 + 0.270965i \(0.0873428\pi\)
\(524\) −0.970392 6.74922i −0.0423918 0.294841i
\(525\) 12.2208 + 30.2481i 0.533360 + 1.32014i
\(526\) −6.40019 7.38621i −0.279061 0.322054i
\(527\) 0.106705 + 0.363405i 0.00464816 + 0.0158302i
\(528\) 2.87371i 0.125062i
\(529\) 22.2315 + 5.89584i 0.966586 + 0.256341i
\(530\) −13.1306 15.8517i −0.570356 0.688555i
\(531\) 15.0403 4.41624i 0.652695 0.191649i
\(532\) −23.4921 + 20.3560i −1.01851 + 0.882546i
\(533\) 16.5658 + 25.7768i 0.717543 + 1.11652i
\(534\) −0.344726 2.39762i −0.0149178 0.103755i
\(535\) 32.6101 3.95141i 1.40986 0.170834i
\(536\) −1.71798 + 3.76186i −0.0742056 + 0.162488i
\(537\) −3.49254 3.02630i −0.150714 0.130595i
\(538\) 23.1834 + 3.33327i 0.999507 + 0.143707i
\(539\) −18.8565 41.2900i −0.812207 1.77848i
\(540\) 11.4164 4.91019i 0.491283 0.211301i
\(541\) −25.6122 7.52043i −1.10116 0.323328i −0.319844 0.947470i \(-0.603631\pi\)
−0.781311 + 0.624142i \(0.785449\pi\)
\(542\) −2.53239 + 1.15650i −0.108775 + 0.0496761i
\(543\) −6.37173 0.916116i −0.273437 0.0393143i
\(544\) −4.19842 + 4.84524i −0.180006 + 0.207738i
\(545\) 27.1030 7.30824i 1.16096 0.313051i
\(546\) 14.1325 + 9.08240i 0.604815 + 0.388691i
\(547\) 20.1556 2.89794i 0.861791 0.123907i 0.302774 0.953063i \(-0.402087\pi\)
0.559018 + 0.829156i \(0.311178\pi\)
\(548\) −3.43349 5.34262i −0.146671 0.228225i
\(549\) −1.73223 1.99911i −0.0739300 0.0853198i
\(550\) −11.3620 + 1.12126i −0.484475 + 0.0478108i
\(551\) −8.83885 −0.376548
\(552\) 5.98496 + 0.780129i 0.254737 + 0.0332045i
\(553\) 31.5159i 1.34019i
\(554\) −4.93639 + 1.44946i −0.209727 + 0.0615815i
\(555\) −1.31753 + 7.91163i −0.0559258 + 0.335830i
\(556\) −3.49314 + 2.24491i −0.148142 + 0.0952052i
\(557\) 13.8849 1.99635i 0.588322 0.0845880i 0.158276 0.987395i \(-0.449406\pi\)
0.430046 + 0.902807i \(0.358497\pi\)
\(558\) −0.0452306 + 0.0703802i −0.00191477 + 0.00297943i
\(559\) −3.07391 + 6.73092i −0.130012 + 0.284687i
\(560\) 0.257528 11.5900i 0.0108826 0.489767i
\(561\) −2.62199 + 18.2363i −0.110700 + 0.769938i
\(562\) −21.4413 + 9.79193i −0.904448 + 0.413048i
\(563\) 0.372801 1.26964i 0.0157117 0.0535091i −0.951264 0.308378i \(-0.900214\pi\)
0.966976 + 0.254868i \(0.0820322\pi\)
\(564\) 3.03916 + 0.892377i 0.127972 + 0.0375758i
\(565\) −18.0050 8.71110i −0.757478 0.366479i
\(566\) 3.39418 23.6071i 0.142668 0.992278i
\(567\) 10.7594 + 9.32306i 0.451852 + 0.391532i
\(568\) −2.37659 1.08535i −0.0997195 0.0455404i
\(569\) 1.89726 + 1.21930i 0.0795375 + 0.0511156i 0.579805 0.814755i \(-0.303129\pi\)
−0.500268 + 0.865871i \(0.666765\pi\)
\(570\) −11.3297 + 12.5028i −0.474548 + 0.523685i
\(571\) 23.7275 15.2487i 0.992965 0.638140i 0.0600344 0.998196i \(-0.480879\pi\)
0.932930 + 0.360057i \(0.117243\pi\)
\(572\) −4.44320 + 3.85006i −0.185780 + 0.160979i
\(573\) 5.64590 + 19.2282i 0.235861 + 0.803268i
\(574\) 61.6989 2.57526
\(575\) 0.749231 23.9674i 0.0312451 0.999512i
\(576\) −1.41616 −0.0590066
\(577\) −10.0441 34.2072i −0.418143 1.42407i −0.852217 0.523188i \(-0.824743\pi\)
0.434074 0.900877i \(-0.357076\pi\)
\(578\) 18.2159 15.7841i 0.757681 0.656534i
\(579\) 17.3634 11.1588i 0.721598 0.463743i
\(580\) 2.21350 2.44270i 0.0919107 0.101427i
\(581\) −2.66038 1.70972i −0.110371 0.0709313i
\(582\) 6.24883 + 2.85374i 0.259022 + 0.118291i
\(583\) 15.8856 + 13.7650i 0.657915 + 0.570087i
\(584\) −1.00547 + 6.99322i −0.0416068 + 0.289382i
\(585\) −7.33933 3.55087i −0.303444 0.146810i
\(586\) 1.01284 + 0.297398i 0.0418402 + 0.0122854i
\(587\) −11.1756 + 38.0606i −0.461267 + 1.57093i 0.320430 + 0.947272i \(0.396173\pi\)
−0.781697 + 0.623659i \(0.785646\pi\)
\(588\) 22.7569 10.3927i 0.938479 0.428589i
\(589\) 0.0504082 0.350597i 0.00207703 0.0144461i
\(590\) 0.549824 24.7447i 0.0226359 1.01872i
\(591\) 4.75995 10.4228i 0.195798 0.428738i
\(592\) 1.54090 2.39768i 0.0633305 0.0985442i
\(593\) 33.5886 4.82930i 1.37932 0.198316i 0.587574 0.809171i \(-0.300083\pi\)
0.791743 + 0.610855i \(0.209174\pi\)
\(594\) −10.6762 + 6.86115i −0.438048 + 0.281516i
\(595\) −12.2090 + 73.3141i −0.500521 + 3.00558i
\(596\) 6.77849 1.99034i 0.277658 0.0815276i
\(597\) 29.8476i 1.22158i
\(598\) −6.81215 10.2988i −0.278569 0.421151i
\(599\) 7.55512 0.308694 0.154347 0.988017i \(-0.450673\pi\)
0.154347 + 0.988017i \(0.450673\pi\)
\(600\) −0.617982 6.26212i −0.0252290 0.255650i
\(601\) 6.29242 + 7.26184i 0.256673 + 0.296217i 0.869431 0.494054i \(-0.164485\pi\)
−0.612758 + 0.790270i \(0.709940\pi\)
\(602\) 8.05549 + 12.5346i 0.328317 + 0.510872i
\(603\) 5.79703 0.833486i 0.236073 0.0339422i
\(604\) −14.1003 9.06170i −0.573732 0.368715i
\(605\) −12.4916 + 3.36833i −0.507856 + 0.136942i
\(606\) 0.794037 0.916367i 0.0322555 0.0372249i
\(607\) −0.952905 0.137007i −0.0386772 0.00556094i 0.122949 0.992413i \(-0.460765\pi\)
−0.161626 + 0.986852i \(0.551674\pi\)
\(608\) 5.45387 2.49070i 0.221184 0.101011i
\(609\) 9.22911 + 2.70991i 0.373983 + 0.109811i
\(610\) −3.83685 + 1.65023i −0.155349 + 0.0668158i
\(611\) −2.69196 5.89456i −0.108905 0.238468i
\(612\) 8.98681 + 1.29211i 0.363270 + 0.0522304i
\(613\) 10.0312 + 8.69205i 0.405155 + 0.351068i 0.833474 0.552559i \(-0.186349\pi\)
−0.428319 + 0.903628i \(0.640894\pi\)
\(614\) −8.47033 + 18.5474i −0.341835 + 0.748513i
\(615\) 33.2467 4.02854i 1.34063 0.162446i
\(616\) 1.68478 + 11.7179i 0.0678817 + 0.472128i
\(617\) 25.3109 + 39.3845i 1.01898 + 1.58556i 0.790926 + 0.611912i \(0.209599\pi\)
0.228053 + 0.973649i \(0.426764\pi\)
\(618\) −4.07156 + 3.52803i −0.163782 + 0.141918i
\(619\) −44.9233 + 13.1907i −1.80562 + 0.530178i −0.998210 0.0598105i \(-0.980950\pi\)
−0.807411 + 0.589989i \(0.799132\pi\)
\(620\) 0.0842669 + 0.101730i 0.00338424 + 0.00408559i
\(621\) −11.3912 24.0974i −0.457112 0.966995i
\(622\) 18.9582i 0.760156i
\(623\) 2.81132 + 9.57448i 0.112633 + 0.383593i
\(624\) −2.12195 2.44886i −0.0849460 0.0980330i
\(625\) −24.5178 + 4.88670i −0.980710 + 0.195468i
\(626\) 2.70388 + 18.8059i 0.108069 + 0.751634i
\(627\) 9.31518 14.4947i 0.372012 0.578863i
\(628\) −6.36268 2.90574i −0.253899 0.115952i
\(629\) −11.9661 + 13.8096i −0.477118 + 0.550623i
\(630\) −14.0049 + 8.56687i −0.557968 + 0.341312i
\(631\) −9.16538 20.0694i −0.364868 0.798950i −0.999655 0.0262625i \(-0.991639\pi\)
0.634787 0.772687i \(-0.281088\pi\)
\(632\) −1.71262 + 5.83266i −0.0681245 + 0.232011i
\(633\) −0.930429 + 3.16875i −0.0369812 + 0.125946i
\(634\) 2.62357 + 5.74481i 0.104195 + 0.228156i
\(635\) 16.6342 + 27.1931i 0.660108 + 1.07913i
\(636\) −7.58654 + 8.75533i −0.300826 + 0.347172i
\(637\) −46.5573 21.2620i −1.84467 0.842431i
\(638\) −1.81992 + 2.83186i −0.0720515 + 0.112114i
\(639\) 0.526563 + 3.66233i 0.0208305 + 0.144879i
\(640\) −0.677478 + 2.13097i −0.0267797 + 0.0842339i
\(641\) −13.2573 15.2998i −0.523633 0.604305i 0.430904 0.902398i \(-0.358195\pi\)
−0.954537 + 0.298093i \(0.903649\pi\)
\(642\) −5.20866 17.7391i −0.205569 0.700105i
\(643\) 3.05833i 0.120609i −0.998180 0.0603043i \(-0.980793\pi\)
0.998180 0.0603043i \(-0.0192071\pi\)
\(644\) −24.8617 + 0.327753i −0.979690 + 0.0129153i
\(645\) 5.15916 + 6.22834i 0.203142 + 0.245240i
\(646\) −36.8823 + 10.8296i −1.45111 + 0.426085i
\(647\) 18.0228 15.6169i 0.708550 0.613962i −0.224176 0.974549i \(-0.571969\pi\)
0.932726 + 0.360587i \(0.117423\pi\)
\(648\) −1.48461 2.31010i −0.0583211 0.0907494i
\(649\) 3.59701 + 25.0178i 0.141195 + 0.982034i
\(650\) −8.85426 + 9.34517i −0.347292 + 0.366548i
\(651\) −0.160124 + 0.350622i −0.00627574 + 0.0137420i
\(652\) −11.7580 10.1883i −0.460478 0.399006i
\(653\) 39.6254 + 5.69727i 1.55066 + 0.222951i 0.863799 0.503837i \(-0.168079\pi\)
0.686861 + 0.726788i \(0.258988\pi\)
\(654\) −6.56313 14.3713i −0.256639 0.561961i
\(655\) 6.02414 + 14.0064i 0.235383 + 0.547274i
\(656\) −11.4186 3.35281i −0.445823 0.130905i
\(657\) 9.10119 4.15637i 0.355071 0.162156i
\(658\) −12.9157 1.85699i −0.503506 0.0723932i
\(659\) −7.98515 + 9.21535i −0.311057 + 0.358979i −0.889655 0.456634i \(-0.849055\pi\)
0.578597 + 0.815613i \(0.303600\pi\)
\(660\) 1.67295 + 6.20422i 0.0651196 + 0.241499i
\(661\) −11.2131 7.20620i −0.436138 0.280289i 0.304092 0.952643i \(-0.401647\pi\)
−0.740230 + 0.672354i \(0.765283\pi\)
\(662\) −21.5696 + 3.10124i −0.838327 + 0.120533i
\(663\) 11.2314 + 17.4763i 0.436190 + 0.678725i
\(664\) 0.399448 + 0.460988i 0.0155016 + 0.0178898i
\(665\) 38.8680 57.6239i 1.50724 2.23456i
\(666\) −4.03624 −0.156401
\(667\) −5.40373 4.55904i −0.209233 0.176527i
\(668\) 0.963448i 0.0372769i
\(669\) 17.3847 5.10461i 0.672131 0.197356i
\(670\) 1.51906 9.12183i 0.0586864 0.352407i
\(671\) 3.58807 2.30591i 0.138516 0.0890187i
\(672\) −6.45830 + 0.928563i −0.249134 + 0.0358201i
\(673\) −21.1368 + 32.8895i −0.814764 + 1.26780i 0.145682 + 0.989332i \(0.453462\pi\)
−0.960446 + 0.278467i \(0.910174\pi\)
\(674\) 2.90622 6.36374i 0.111944 0.245122i
\(675\) −21.7890 + 17.2470i −0.838659 + 0.663838i
\(676\) 0.906660 6.30596i 0.0348715 0.242537i
\(677\) −30.5911 + 13.9705i −1.17571 + 0.536929i −0.904867 0.425695i \(-0.860030\pi\)
−0.270843 + 0.962624i \(0.587302\pi\)
\(678\) −3.17156 + 10.8013i −0.121803 + 0.414823i
\(679\) −27.1534 7.97295i −1.04205 0.305974i
\(680\) 6.24352 12.9048i 0.239428 0.494876i
\(681\) −0.442378 + 3.07680i −0.0169519 + 0.117903i
\(682\) −0.101948 0.0883382i −0.00390378 0.00338265i
\(683\) −16.8684 7.70352i −0.645450 0.294767i 0.0656664 0.997842i \(-0.479083\pi\)
−0.711116 + 0.703075i \(0.751810\pi\)
\(684\) −7.14295 4.59049i −0.273117 0.175522i
\(685\) 10.5230 + 9.53565i 0.402063 + 0.364338i
\(686\) −56.1706 + 36.0987i −2.14461 + 1.37825i
\(687\) 23.2056 20.1078i 0.885350 0.767160i
\(688\) −0.809683 2.75753i −0.0308689 0.105130i
\(689\) 23.7011 0.902942
\(690\) −13.3754 + 1.79992i −0.509194 + 0.0685219i
\(691\) −20.4901 −0.779479 −0.389739 0.920925i \(-0.627435\pi\)
−0.389739 + 0.920925i \(0.627435\pi\)
\(692\) 2.08713 + 7.10812i 0.0793408 + 0.270210i
\(693\) 12.6702 10.9788i 0.481300 0.417049i
\(694\) 13.8861 8.92403i 0.527108 0.338752i
\(695\) 6.23465 6.88021i 0.236494 0.260981i
\(696\) −1.56077 1.00305i −0.0591609 0.0380204i
\(697\) 69.4025 + 31.6950i 2.62881 + 1.20054i
\(698\) 14.4534 + 12.5240i 0.547070 + 0.474039i
\(699\) 3.68735 25.6461i 0.139468 0.970024i
\(700\) 6.19120 + 25.1722i 0.234005 + 0.951420i
\(701\) −17.1244 5.02818i −0.646780 0.189912i −0.0581418 0.998308i \(-0.518518\pi\)
−0.588638 + 0.808397i \(0.700336\pi\)
\(702\) −4.03151 + 13.7301i −0.152160 + 0.518208i
\(703\) 15.5442 7.09882i 0.586262 0.267737i
\(704\) 0.324966 2.26019i 0.0122476 0.0851840i
\(705\) −7.08091 0.157337i −0.266682 0.00592565i
\(706\) −5.68425 + 12.4468i −0.213929 + 0.468440i
\(707\) −2.70054 + 4.20211i −0.101564 + 0.158037i
\(708\) −13.7885 + 1.98249i −0.518204 + 0.0745065i
\(709\) −29.6320 + 19.0433i −1.11285 + 0.715188i −0.961913 0.273355i \(-0.911867\pi\)
−0.150940 + 0.988543i \(0.548230\pi\)
\(710\) 5.76280 + 0.959680i 0.216274 + 0.0360162i
\(711\) 8.25996 2.42534i 0.309773 0.0909575i
\(712\) 1.92472i 0.0721320i
\(713\) 0.211654 0.188341i 0.00792651 0.00705343i
\(714\) 41.8310 1.56549
\(715\) 7.35134 10.8987i 0.274925 0.407590i
\(716\) −2.40467 2.77514i −0.0898669 0.103712i
\(717\) −2.11542 3.29166i −0.0790018 0.122929i
\(718\) −21.5187 + 3.09393i −0.803072 + 0.115464i
\(719\) 4.54145 + 2.91862i 0.169368 + 0.108846i 0.622578 0.782557i \(-0.286085\pi\)
−0.453211 + 0.891403i \(0.649722\pi\)
\(720\) 3.05742 0.824426i 0.113943 0.0307245i
\(721\) 14.5339 16.7730i 0.541270 0.624659i
\(722\) 16.7757 + 2.41199i 0.624328 + 0.0897648i
\(723\) −11.7764 + 5.37811i −0.437970 + 0.200014i
\(724\) −4.90779 1.44106i −0.182397 0.0535565i
\(725\) −3.35682 + 6.56228i −0.124669 + 0.243717i
\(726\) 3.02491 + 6.62364i 0.112265 + 0.245826i
\(727\) −35.4857 5.10207i −1.31609 0.189225i −0.551734 0.834020i \(-0.686034\pi\)
−0.764356 + 0.644795i \(0.776943\pi\)
\(728\) 10.0882 + 8.74148i 0.373894 + 0.323981i
\(729\) −10.3323 + 22.6246i −0.382679 + 0.837949i
\(730\) −1.90038 15.6834i −0.0703362 0.580469i
\(731\) 2.62220 + 18.2378i 0.0969854 + 0.674549i
\(732\) 1.27090 + 1.97756i 0.0469738 + 0.0730926i
\(733\) 19.4711 16.8718i 0.719181 0.623174i −0.216392 0.976307i \(-0.569429\pi\)
0.935573 + 0.353133i \(0.114884\pi\)
\(734\) 1.18175 0.346993i 0.0436192 0.0128077i
\(735\) −43.0809 + 35.6855i −1.58906 + 1.31628i
\(736\) 4.61898 + 1.29037i 0.170258 + 0.0475636i
\(737\) 9.44331i 0.347849i
\(738\) 4.74811 + 16.1706i 0.174780 + 0.595247i
\(739\) 13.0349 + 15.0431i 0.479497 + 0.553369i 0.943029 0.332711i \(-0.107963\pi\)
−0.463532 + 0.886080i \(0.653418\pi\)
\(740\) −1.93090 + 6.07354i −0.0709814 + 0.223268i
\(741\) −2.76487 19.2301i −0.101570 0.706436i
\(742\) 25.8020 40.1487i 0.947220 1.47390i
\(743\) −26.9014 12.2855i −0.986916 0.450710i −0.144481 0.989508i \(-0.546151\pi\)
−0.842435 + 0.538798i \(0.818879\pi\)
\(744\) 0.0486875 0.0561883i 0.00178497 0.00205996i
\(745\) −13.4758 + 8.24321i −0.493714 + 0.302008i
\(746\) 0.576401 + 1.26214i 0.0211035 + 0.0462103i
\(747\) 0.243366 0.828829i 0.00890431 0.0303253i
\(748\) −4.12441 + 14.0464i −0.150803 + 0.513589i
\(749\) 31.6388 + 69.2793i 1.15606 + 2.53141i
\(750\) 4.97973 + 13.1599i 0.181834 + 0.480531i
\(751\) −18.5605 + 21.4199i −0.677281 + 0.781624i −0.985497 0.169693i \(-0.945723\pi\)
0.308216 + 0.951316i \(0.400268\pi\)
\(752\) 2.28940 + 1.04553i 0.0834857 + 0.0381266i
\(753\) 9.06443 14.1045i 0.330326 0.513997i
\(754\) 0.540179 + 3.75703i 0.0196722 + 0.136823i
\(755\) 35.7172 + 11.3552i 1.29988 + 0.413260i
\(756\) 18.8693 + 21.7763i 0.686268 + 0.791996i
\(757\) −8.44639 28.7658i −0.306989 1.04551i −0.958078 0.286508i \(-0.907505\pi\)
0.651088 0.759002i \(-0.274313\pi\)
\(758\) 21.1752i 0.769116i
\(759\) 13.1713 4.05677i 0.478086 0.147251i
\(760\) −10.3247 + 8.55231i −0.374516 + 0.310225i
\(761\) 45.2253 13.2794i 1.63942 0.481376i 0.673276 0.739391i \(-0.264886\pi\)
0.966141 + 0.258015i \(0.0830683\pi\)
\(762\) 13.5591 11.7490i 0.491194 0.425622i
\(763\) 35.1874 + 54.7527i 1.27387 + 1.98218i
\(764\) 2.26616 + 15.7615i 0.0819867 + 0.570230i
\(765\) −20.1543 + 2.44213i −0.728682 + 0.0882953i
\(766\) 1.36847 2.99654i 0.0494450 0.108269i
\(767\) 21.5384 + 18.6631i 0.777705 + 0.673886i
\(768\) 1.24570 + 0.179104i 0.0449503 + 0.00646287i