# Properties

 Label 230.2.j.a.9.9 Level $230$ Weight $2$ Character 230.9 Analytic conductor $1.837$ Analytic rank $0$ Dimension $120$ CM no Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [230,2,Mod(9,230)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(230, base_ring=CyclotomicField(22))

chi = DirichletCharacter(H, H._module([11, 10]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("230.9");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$230 = 2 \cdot 5 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 230.j (of order $$22$$, degree $$10$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.83655924649$$ Analytic rank: $$0$$ Dimension: $$120$$ Relative dimension: $$12$$ over $$\Q(\zeta_{22})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

## Embedding invariants

 Embedding label 9.9 Character $$\chi$$ $$=$$ 230.9 Dual form 230.2.j.a.179.9

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(0.281733 + 0.959493i) q^{2} +(-0.951117 + 0.824147i) q^{3} +(-0.841254 + 0.540641i) q^{4} +(1.50149 - 1.65696i) q^{5} +(-1.05872 - 0.680401i) q^{6} +(4.71597 + 2.15371i) q^{7} +(-0.755750 - 0.654861i) q^{8} +(-0.201540 + 1.40174i) q^{9} +O(q^{10})$$ $$q+(0.281733 + 0.959493i) q^{2} +(-0.951117 + 0.824147i) q^{3} +(-0.841254 + 0.540641i) q^{4} +(1.50149 - 1.65696i) q^{5} +(-1.05872 - 0.680401i) q^{6} +(4.71597 + 2.15371i) q^{7} +(-0.755750 - 0.654861i) q^{8} +(-0.201540 + 1.40174i) q^{9} +(2.01286 + 0.973851i) q^{10} +(-2.19093 - 0.643316i) q^{11} +(0.354563 - 1.20753i) q^{12} +(-2.34205 + 1.06958i) q^{13} +(-0.737829 + 5.13171i) q^{14} +(-0.0625137 + 2.81341i) q^{15} +(0.415415 - 0.909632i) q^{16} +(-3.46614 + 5.39342i) q^{17} +(-1.40174 + 0.201540i) q^{18} +(5.04389 - 3.24151i) q^{19} +(-0.367314 + 2.20569i) q^{20} +(-6.26041 + 1.83822i) q^{21} -2.28343i q^{22} +(4.75560 + 0.619884i) q^{23} +1.25851 q^{24} +(-0.491043 - 4.97583i) q^{25} +(-1.68609 - 1.94585i) q^{26} +(-3.00476 - 4.67549i) q^{27} +(-5.13171 + 0.737829i) q^{28} +(-1.24018 - 0.797013i) q^{29} +(-2.71706 + 0.732649i) q^{30} +(0.0386867 - 0.0446468i) q^{31} +(0.989821 + 0.142315i) q^{32} +(2.61402 - 1.19378i) q^{33} +(-6.15147 - 1.80623i) q^{34} +(10.6496 - 4.58040i) q^{35} +(-0.588293 - 1.28818i) q^{36} +(2.82112 + 0.405616i) q^{37} +(4.53124 + 3.92634i) q^{38} +(1.34607 - 2.94749i) q^{39} +(-2.21983 + 0.268980i) q^{40} +(-1.69364 - 11.7796i) q^{41} +(-3.52753 - 5.48894i) q^{42} +(2.17198 - 1.88203i) q^{43} +(2.19093 - 0.643316i) q^{44} +(2.02002 + 2.43865i) q^{45} +(0.745033 + 4.73761i) q^{46} +2.51684i q^{47} +(0.354563 + 1.20753i) q^{48} +(13.0179 + 15.0234i) q^{49} +(4.63593 - 1.87301i) q^{50} +(-1.14827 - 7.98638i) q^{51} +(1.39200 - 2.16599i) q^{52} +(-8.37345 - 3.82403i) q^{53} +(3.63957 - 4.20028i) q^{54} +(-4.35562 + 2.66436i) q^{55} +(-2.15371 - 4.71597i) q^{56} +(-2.12585 + 7.23997i) q^{57} +(0.415331 - 1.41449i) q^{58} +(-4.59819 - 10.0686i) q^{59} +(-1.46846 - 2.40059i) q^{60} +(-1.22319 + 1.41164i) q^{61} +(0.0537376 + 0.0245411i) q^{62} +(-3.96941 + 6.17652i) q^{63} +(0.142315 + 0.989821i) q^{64} +(-1.74432 + 5.48665i) q^{65} +(1.88188 + 2.17181i) q^{66} +(-1.16513 - 3.96806i) q^{67} -6.41117i q^{68} +(-5.03401 + 3.32973i) q^{69} +(7.39520 + 8.92778i) q^{70} +(2.50686 - 0.736081i) q^{71} +(1.07026 - 0.927386i) q^{72} +(-3.81970 - 5.94357i) q^{73} +(0.405616 + 2.82112i) q^{74} +(4.56786 + 4.32790i) q^{75} +(-2.49070 + 5.45387i) q^{76} +(-8.94686 - 7.75250i) q^{77} +(3.20733 + 0.461144i) q^{78} +(-2.52526 - 5.52956i) q^{79} +(-0.883483 - 2.05413i) q^{80} +(2.63479 + 0.773644i) q^{81} +(10.8252 - 4.94373i) q^{82} +(-0.603766 - 0.0868084i) q^{83} +(4.27278 - 4.93105i) q^{84} +(3.73230 + 13.8414i) q^{85} +(2.41771 + 1.55377i) q^{86} +(1.83641 - 0.264036i) q^{87} +(1.23452 + 1.92094i) q^{88} +(1.26042 + 1.45461i) q^{89} +(-1.77076 + 2.62525i) q^{90} -13.3486 q^{91} +(-4.33580 + 2.04959i) q^{92} +0.0743478i q^{93} +(-2.41489 + 0.709075i) q^{94} +(2.20230 - 13.2246i) q^{95} +(-1.05872 + 0.680401i) q^{96} +(-5.40298 + 0.776832i) q^{97} +(-10.7473 + 16.7232i) q^{98} +(1.34333 - 2.94147i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$120 q + 12 q^{4} - 4 q^{6} + 8 q^{9}+O(q^{10})$$ 120 * q + 12 * q^4 - 4 * q^6 + 8 * q^9 $$120 q + 12 q^{4} - 4 q^{6} + 8 q^{9} + 8 q^{11} - 6 q^{15} - 12 q^{16} - 16 q^{19} - 22 q^{20} + 4 q^{24} - 52 q^{25} - 4 q^{26} - 8 q^{29} - 44 q^{30} + 12 q^{31} + 16 q^{35} - 8 q^{36} - 36 q^{39} - 28 q^{41} - 8 q^{44} + 16 q^{45} - 4 q^{46} - 58 q^{49} + 12 q^{50} - 24 q^{51} - 6 q^{54} - 36 q^{55} + 22 q^{56} - 102 q^{59} - 38 q^{60} + 72 q^{61} + 12 q^{64} - 138 q^{65} + 80 q^{66} - 212 q^{69} - 108 q^{70} + 176 q^{71} - 88 q^{74} - 100 q^{75} + 16 q^{76} - 104 q^{79} - 22 q^{80} - 28 q^{81} - 22 q^{84} + 2 q^{85} + 62 q^{86} + 48 q^{89} + 24 q^{90} - 56 q^{91} + 24 q^{94} + 18 q^{95} - 4 q^{96} + 188 q^{99}+O(q^{100})$$ 120 * q + 12 * q^4 - 4 * q^6 + 8 * q^9 + 8 * q^11 - 6 * q^15 - 12 * q^16 - 16 * q^19 - 22 * q^20 + 4 * q^24 - 52 * q^25 - 4 * q^26 - 8 * q^29 - 44 * q^30 + 12 * q^31 + 16 * q^35 - 8 * q^36 - 36 * q^39 - 28 * q^41 - 8 * q^44 + 16 * q^45 - 4 * q^46 - 58 * q^49 + 12 * q^50 - 24 * q^51 - 6 * q^54 - 36 * q^55 + 22 * q^56 - 102 * q^59 - 38 * q^60 + 72 * q^61 + 12 * q^64 - 138 * q^65 + 80 * q^66 - 212 * q^69 - 108 * q^70 + 176 * q^71 - 88 * q^74 - 100 * q^75 + 16 * q^76 - 104 * q^79 - 22 * q^80 - 28 * q^81 - 22 * q^84 + 2 * q^85 + 62 * q^86 + 48 * q^89 + 24 * q^90 - 56 * q^91 + 24 * q^94 + 18 * q^95 - 4 * q^96 + 188 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/230\mathbb{Z}\right)^\times$$.

 $$n$$ $$47$$ $$51$$ $$\chi(n)$$ $$-1$$ $$e\left(\frac{5}{11}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.281733 + 0.959493i 0.199215 + 0.678464i
$$3$$ −0.951117 + 0.824147i −0.549128 + 0.475822i −0.884679 0.466200i $$-0.845623\pi$$
0.335552 + 0.942022i $$0.391077\pi$$
$$4$$ −0.841254 + 0.540641i −0.420627 + 0.270320i
$$5$$ 1.50149 1.65696i 0.671488 0.741016i
$$6$$ −1.05872 0.680401i −0.432222 0.277772i
$$7$$ 4.71597 + 2.15371i 1.78247 + 0.814026i 0.974360 + 0.224994i $$0.0722361\pi$$
0.808109 + 0.589033i $$0.200491\pi$$
$$8$$ −0.755750 0.654861i −0.267198 0.231528i
$$9$$ −0.201540 + 1.40174i −0.0671801 + 0.467248i
$$10$$ 2.01286 + 0.973851i 0.636523 + 0.307959i
$$11$$ −2.19093 0.643316i −0.660592 0.193967i −0.0657822 0.997834i $$-0.520954\pi$$
−0.594809 + 0.803867i $$0.702772\pi$$
$$12$$ 0.354563 1.20753i 0.102353 0.348584i
$$13$$ −2.34205 + 1.06958i −0.649568 + 0.296648i −0.712817 0.701350i $$-0.752581\pi$$
0.0632491 + 0.997998i $$0.479854\pi$$
$$14$$ −0.737829 + 5.13171i −0.197193 + 1.37151i
$$15$$ −0.0625137 + 2.81341i −0.0161410 + 0.726421i
$$16$$ 0.415415 0.909632i 0.103854 0.227408i
$$17$$ −3.46614 + 5.39342i −0.840662 + 1.30810i 0.108752 + 0.994069i $$0.465315\pi$$
−0.949414 + 0.314027i $$0.898322\pi$$
$$18$$ −1.40174 + 0.201540i −0.330394 + 0.0475035i
$$19$$ 5.04389 3.24151i 1.15715 0.743654i 0.186098 0.982531i $$-0.440416\pi$$
0.971050 + 0.238877i $$0.0767794\pi$$
$$20$$ −0.367314 + 2.20569i −0.0821340 + 0.493208i
$$21$$ −6.26041 + 1.83822i −1.36613 + 0.401133i
$$22$$ 2.28343i 0.486829i
$$23$$ 4.75560 + 0.619884i 0.991611 + 0.129255i
$$24$$ 1.25851 0.256892
$$25$$ −0.491043 4.97583i −0.0982087 0.995166i
$$26$$ −1.68609 1.94585i −0.330668 0.381612i
$$27$$ −3.00476 4.67549i −0.578266 0.899799i
$$28$$ −5.13171 + 0.737829i −0.969802 + 0.139437i
$$29$$ −1.24018 0.797013i −0.230295 0.148002i 0.420405 0.907337i $$-0.361888\pi$$
−0.650700 + 0.759335i $$0.725524\pi$$
$$30$$ −2.71706 + 0.732649i −0.496066 + 0.133763i
$$31$$ 0.0386867 0.0446468i 0.00694833 0.00801880i −0.752265 0.658861i $$-0.771039\pi$$
0.759213 + 0.650842i $$0.225584\pi$$
$$32$$ 0.989821 + 0.142315i 0.174977 + 0.0251579i
$$33$$ 2.61402 1.19378i 0.455043 0.207811i
$$34$$ −6.15147 1.80623i −1.05497 0.309767i
$$35$$ 10.6496 4.58040i 1.80011 0.774229i
$$36$$ −0.588293 1.28818i −0.0980489 0.214697i
$$37$$ 2.82112 + 0.405616i 0.463790 + 0.0666829i 0.370249 0.928933i $$-0.379272\pi$$
0.0935407 + 0.995615i $$0.470181\pi$$
$$38$$ 4.53124 + 3.92634i 0.735064 + 0.636936i
$$39$$ 1.34607 2.94749i 0.215544 0.471976i
$$40$$ −2.21983 + 0.268980i −0.350986 + 0.0425294i
$$41$$ −1.69364 11.7796i −0.264503 1.83966i −0.497848 0.867264i $$-0.665876\pi$$
0.233346 0.972394i $$-0.425033\pi$$
$$42$$ −3.52753 5.48894i −0.544309 0.846961i
$$43$$ 2.17198 1.88203i 0.331224 0.287007i −0.473332 0.880884i $$-0.656949\pi$$
0.804556 + 0.593877i $$0.202403\pi$$
$$44$$ 2.19093 0.643316i 0.330296 0.0969836i
$$45$$ 2.02002 + 2.43865i 0.301127 + 0.363533i
$$46$$ 0.745033 + 4.73761i 0.109849 + 0.698522i
$$47$$ 2.51684i 0.367118i 0.983009 + 0.183559i $$0.0587619\pi$$
−0.983009 + 0.183559i $$0.941238\pi$$
$$48$$ 0.354563 + 1.20753i 0.0511767 + 0.174292i
$$49$$ 13.0179 + 15.0234i 1.85970 + 2.14620i
$$50$$ 4.63593 1.87301i 0.655620 0.264883i
$$51$$ −1.14827 7.98638i −0.160790 1.11832i
$$52$$ 1.39200 2.16599i 0.193036 0.300369i
$$53$$ −8.37345 3.82403i −1.15018 0.525271i −0.253233 0.967405i $$-0.581494\pi$$
−0.896949 + 0.442135i $$0.854221\pi$$
$$54$$ 3.63957 4.20028i 0.495282 0.571586i
$$55$$ −4.35562 + 2.66436i −0.587312 + 0.359262i
$$56$$ −2.15371 4.71597i −0.287802 0.630198i
$$57$$ −2.12585 + 7.23997i −0.281575 + 0.958957i
$$58$$ 0.415331 1.41449i 0.0545356 0.185731i
$$59$$ −4.59819 10.0686i −0.598633 1.31082i −0.930083 0.367350i $$-0.880265\pi$$
0.331450 0.943473i $$-0.392462\pi$$
$$60$$ −1.46846 2.40059i −0.189577 0.309915i
$$61$$ −1.22319 + 1.41164i −0.156614 + 0.180742i −0.828634 0.559791i $$-0.810881\pi$$
0.672020 + 0.740533i $$0.265427\pi$$
$$62$$ 0.0537376 + 0.0245411i 0.00682468 + 0.00311673i
$$63$$ −3.96941 + 6.17652i −0.500099 + 0.778168i
$$64$$ 0.142315 + 0.989821i 0.0177894 + 0.123728i
$$65$$ −1.74432 + 5.48665i −0.216356 + 0.680535i
$$66$$ 1.88188 + 2.17181i 0.231644 + 0.267331i
$$67$$ −1.16513 3.96806i −0.142343 0.484776i 0.857201 0.514983i $$-0.172202\pi$$
−0.999544 + 0.0302066i $$0.990383\pi$$
$$68$$ 6.41117i 0.777468i
$$69$$ −5.03401 + 3.32973i −0.606023 + 0.400853i
$$70$$ 7.39520 + 8.92778i 0.883896 + 1.06707i
$$71$$ 2.50686 0.736081i 0.297510 0.0873567i −0.129571 0.991570i $$-0.541360\pi$$
0.427081 + 0.904213i $$0.359542\pi$$
$$72$$ 1.07026 0.927386i 0.126131 0.109294i
$$73$$ −3.81970 5.94357i −0.447062 0.695642i 0.542451 0.840088i $$-0.317497\pi$$
−0.989513 + 0.144445i $$0.953860\pi$$
$$74$$ 0.405616 + 2.82112i 0.0471519 + 0.327949i
$$75$$ 4.56786 + 4.32790i 0.527451 + 0.499743i
$$76$$ −2.49070 + 5.45387i −0.285703 + 0.625601i
$$77$$ −8.94686 7.75250i −1.01959 0.883480i
$$78$$ 3.20733 + 0.461144i 0.363158 + 0.0522143i
$$79$$ −2.52526 5.52956i −0.284114 0.622124i 0.712736 0.701433i $$-0.247456\pi$$
−0.996850 + 0.0793090i $$0.974729\pi$$
$$80$$ −0.883483 2.05413i −0.0987764 0.229659i
$$81$$ 2.63479 + 0.773644i 0.292755 + 0.0859605i
$$82$$ 10.8252 4.94373i 1.19545 0.545943i
$$83$$ −0.603766 0.0868084i −0.0662719 0.00952846i 0.109099 0.994031i $$-0.465203\pi$$
−0.175371 + 0.984502i $$0.556113\pi$$
$$84$$ 4.27278 4.93105i 0.466198 0.538021i
$$85$$ 3.73230 + 13.8414i 0.404825 + 1.50131i
$$86$$ 2.41771 + 1.55377i 0.260709 + 0.167547i
$$87$$ 1.83641 0.264036i 0.196884 0.0283076i
$$88$$ 1.23452 + 1.92094i 0.131600 + 0.204773i
$$89$$ 1.26042 + 1.45461i 0.133605 + 0.154188i 0.818609 0.574351i $$-0.194745\pi$$
−0.685005 + 0.728539i $$0.740200\pi$$
$$90$$ −1.77076 + 2.62525i −0.186655 + 0.276725i
$$91$$ −13.3486 −1.39931
$$92$$ −4.33580 + 2.04959i −0.452039 + 0.213685i
$$93$$ 0.0743478i 0.00770951i
$$94$$ −2.41489 + 0.709075i −0.249077 + 0.0731355i
$$95$$ 2.20230 13.2246i 0.225951 1.35682i
$$96$$ −1.05872 + 0.680401i −0.108056 + 0.0694431i
$$97$$ −5.40298 + 0.776832i −0.548590 + 0.0788753i −0.411036 0.911619i $$-0.634833\pi$$
−0.137554 + 0.990494i $$0.543924\pi$$
$$98$$ −10.7473 + 16.7232i −1.08564 + 1.68929i
$$99$$ 1.34333 2.94147i 0.135009 0.295629i
$$100$$ 3.10323 + 3.92046i 0.310323 + 0.392046i
$$101$$ −0.137115 + 0.953658i −0.0136435 + 0.0948925i −0.995505 0.0947050i $$-0.969809\pi$$
0.981862 + 0.189597i $$0.0607183\pi$$
$$102$$ 7.33937 3.35178i 0.726706 0.331875i
$$103$$ 1.20605 4.10742i 0.118835 0.404716i −0.878494 0.477754i $$-0.841451\pi$$
0.997329 + 0.0730377i $$0.0232694\pi$$
$$104$$ 2.47043 + 0.725383i 0.242245 + 0.0711297i
$$105$$ −6.35410 + 13.1333i −0.620096 + 1.28168i
$$106$$ 1.31005 9.11162i 0.127244 0.884999i
$$107$$ 11.1022 + 9.62014i 1.07329 + 0.930014i 0.997744 0.0671276i $$-0.0213835\pi$$
0.0755495 + 0.997142i $$0.475929\pi$$
$$108$$ 5.05553 + 2.30878i 0.486468 + 0.222163i
$$109$$ 10.5609 + 6.78706i 1.01155 + 0.650083i 0.937793 0.347194i $$-0.112865\pi$$
0.0737550 + 0.997276i $$0.476502\pi$$
$$110$$ −3.78355 3.42855i −0.360748 0.326899i
$$111$$ −3.01750 + 1.93923i −0.286409 + 0.184064i
$$112$$ 3.91817 3.39511i 0.370232 0.320808i
$$113$$ −2.52010 8.58266i −0.237071 0.807389i −0.988971 0.148112i $$-0.952680\pi$$
0.751900 0.659277i $$-0.229138\pi$$
$$114$$ −7.54562 −0.706712
$$115$$ 8.16762 6.94910i 0.761635 0.648007i
$$116$$ 1.47420 0.136876
$$117$$ −1.02726 3.49852i −0.0949700 0.323438i
$$118$$ 8.36531 7.24859i 0.770090 0.667286i
$$119$$ −27.9621 + 17.9701i −2.56328 + 1.64732i
$$120$$ 1.88964 2.08530i 0.172500 0.190361i
$$121$$ −4.86745 3.12812i −0.442496 0.284375i
$$122$$ −1.69907 0.775940i −0.153827 0.0702503i
$$123$$ 11.3189 + 9.80792i 1.02060 + 0.884351i
$$124$$ −0.00840741 + 0.0584748i −0.000755008 + 0.00525120i
$$125$$ −8.98206 6.65753i −0.803379 0.595467i
$$126$$ −7.04464 2.06849i −0.627586 0.184276i
$$127$$ −4.01637 + 13.6785i −0.356395 + 1.21377i 0.564983 + 0.825103i $$0.308883\pi$$
−0.921378 + 0.388668i $$0.872935\pi$$
$$128$$ −0.909632 + 0.415415i −0.0804009 + 0.0367178i
$$129$$ −0.514736 + 3.58006i −0.0453199 + 0.315207i
$$130$$ −5.75584 0.127894i −0.504820 0.0112170i
$$131$$ −2.83256 + 6.20244i −0.247482 + 0.541910i −0.992081 0.125603i $$-0.959914\pi$$
0.744599 + 0.667512i $$0.232641\pi$$
$$132$$ −1.55365 + 2.41752i −0.135228 + 0.210418i
$$133$$ 30.7681 4.42379i 2.66793 0.383591i
$$134$$ 3.47907 2.23586i 0.300546 0.193149i
$$135$$ −12.2587 2.04145i −1.05506 0.175700i
$$136$$ 6.15147 1.80623i 0.527484 0.154883i
$$137$$ 6.35078i 0.542584i 0.962497 + 0.271292i $$0.0874509\pi$$
−0.962497 + 0.271292i $$0.912549\pi$$
$$138$$ −4.61310 3.89200i −0.392693 0.331309i
$$139$$ 4.15230 0.352194 0.176097 0.984373i $$-0.443653\pi$$
0.176097 + 0.984373i $$0.443653\pi$$
$$140$$ −6.48267 + 9.61089i −0.547886 + 0.812269i
$$141$$ −2.07425 2.39381i −0.174683 0.201595i
$$142$$ 1.41253 + 2.19794i 0.118537 + 0.184447i
$$143$$ 5.81936 0.836697i 0.486639 0.0699681i
$$144$$ 1.19135 + 0.765633i 0.0992790 + 0.0638027i
$$145$$ −3.18274 + 0.858217i −0.264312 + 0.0712710i
$$146$$ 4.62668 5.33947i 0.382907 0.441898i
$$147$$ −24.7630 3.56039i −2.04242 0.293656i
$$148$$ −2.59257 + 1.18399i −0.213108 + 0.0973232i
$$149$$ −6.77849 1.99034i −0.555315 0.163055i −0.00797916 0.999968i $$-0.502540\pi$$
−0.547336 + 0.836913i $$0.684358\pi$$
$$150$$ −2.86568 + 5.60214i −0.233982 + 0.457413i
$$151$$ 6.96279 + 15.2464i 0.566623 + 1.24073i 0.948576 + 0.316550i $$0.102525\pi$$
−0.381952 + 0.924182i $$0.624748\pi$$
$$152$$ −5.93466 0.853275i −0.481364 0.0692097i
$$153$$ −6.86162 5.94563i −0.554729 0.480675i
$$154$$ 4.91785 10.7686i 0.396291 0.867757i
$$155$$ −0.0158903 0.131139i −0.00127634 0.0105333i
$$156$$ 0.461144 + 3.20733i 0.0369211 + 0.256792i
$$157$$ 3.78167 + 5.88439i 0.301810 + 0.469625i 0.958723 0.284341i $$-0.0917747\pi$$
−0.656913 + 0.753966i $$0.728138\pi$$
$$158$$ 4.59412 3.98083i 0.365489 0.316698i
$$159$$ 11.1157 3.26386i 0.881532 0.258841i
$$160$$ 1.72202 1.42641i 0.136138 0.112768i
$$161$$ 21.0922 + 13.1655i 1.66230 + 1.03759i
$$162$$ 2.74602i 0.215748i
$$163$$ 4.38321 + 14.9278i 0.343319 + 1.16924i 0.932480 + 0.361222i $$0.117640\pi$$
−0.589161 + 0.808016i $$0.700542\pi$$
$$164$$ 7.79329 + 8.99394i 0.608554 + 0.702309i
$$165$$ 1.94688 6.12379i 0.151564 0.476736i
$$166$$ −0.0868084 0.603766i −0.00673764 0.0468613i
$$167$$ 0.520879 0.810504i 0.0403068 0.0627187i −0.820515 0.571624i $$-0.806313\pi$$
0.860822 + 0.508906i $$0.169950\pi$$
$$168$$ 5.93509 + 2.71046i 0.457902 + 0.209117i
$$169$$ −4.17199 + 4.81473i −0.320922 + 0.370364i
$$170$$ −12.2292 + 7.48070i −0.937940 + 0.573744i
$$171$$ 3.52722 + 7.72354i 0.269733 + 0.590634i
$$172$$ −0.809683 + 2.75753i −0.0617378 + 0.210259i
$$173$$ 2.08713 7.10812i 0.158682 0.540420i −0.841318 0.540540i $$-0.818220\pi$$
1.00000 0.000119804i $$3.81349e-5\pi$$
$$174$$ 0.770717 + 1.68763i 0.0584279 + 0.127939i
$$175$$ 8.40076 24.5234i 0.635037 1.85380i
$$176$$ −1.49533 + 1.72570i −0.112715 + 0.130080i
$$177$$ 12.6714 + 5.78685i 0.952444 + 0.434967i
$$178$$ −1.04058 + 1.61918i −0.0779950 + 0.121363i
$$179$$ 0.522586 + 3.63466i 0.0390599 + 0.271667i 0.999987 0.00513471i $$-0.00163444\pi$$
−0.960927 + 0.276802i $$0.910725\pi$$
$$180$$ −3.01779 0.959416i −0.224933 0.0715107i
$$181$$ 3.34960 + 3.86565i 0.248974 + 0.287331i 0.866456 0.499254i $$-0.166393\pi$$
−0.617482 + 0.786585i $$0.711847\pi$$
$$182$$ −3.76074 12.8079i −0.278764 0.949384i
$$183$$ 2.35073i 0.173771i
$$184$$ −3.18811 3.58273i −0.235030 0.264123i
$$185$$ 4.90798 4.06546i 0.360842 0.298899i
$$186$$ −0.0713362 + 0.0209462i −0.00523062 + 0.00153585i
$$187$$ 11.0638 9.58680i 0.809062 0.701056i
$$188$$ −1.36070 2.11730i −0.0992396 0.154420i
$$189$$ −4.10068 28.5209i −0.298281 2.07459i
$$190$$ 13.3094 1.61272i 0.965566 0.116999i
$$191$$ 6.61488 14.4846i 0.478636 1.04807i −0.504200 0.863587i $$-0.668213\pi$$
0.982836 0.184480i $$-0.0590601\pi$$
$$192$$ −0.951117 0.824147i −0.0686409 0.0594777i
$$193$$ −16.2334 2.33400i −1.16850 0.168005i −0.469373 0.883000i $$-0.655520\pi$$
−0.699130 + 0.714995i $$0.746429\pi$$
$$194$$ −2.26756 4.96527i −0.162801 0.356485i
$$195$$ −2.86276 6.65602i −0.205006 0.476648i
$$196$$ −19.0736 5.60052i −1.36240 0.400037i
$$197$$ −8.28190 + 3.78222i −0.590061 + 0.269472i −0.687988 0.725722i $$-0.741506\pi$$
0.0979275 + 0.995194i $$0.468779\pi$$
$$198$$ 3.20078 + 0.460203i 0.227470 + 0.0327052i
$$199$$ 15.5311 17.9239i 1.10097 1.27059i 0.141148 0.989989i $$-0.454921\pi$$
0.959824 0.280601i $$-0.0905338\pi$$
$$200$$ −2.88737 + 4.08205i −0.204168 + 0.288644i
$$201$$ 4.37844 + 2.81385i 0.308831 + 0.198474i
$$202$$ −0.953658 + 0.137115i −0.0670991 + 0.00964740i
$$203$$ −4.13210 6.42968i −0.290017 0.451275i
$$204$$ 5.28375 + 6.09777i 0.369936 + 0.426929i
$$205$$ −22.0613 14.8806i −1.54083 1.03931i
$$206$$ 4.28082 0.298259
$$207$$ −1.82736 + 6.54120i −0.127011 + 0.454645i
$$208$$ 2.57472i 0.178525i
$$209$$ −13.1362 + 3.85712i −0.908647 + 0.266803i
$$210$$ −14.3915 2.39662i −0.993108 0.165383i
$$211$$ 2.20758 1.41873i 0.151976 0.0976692i −0.462443 0.886649i $$-0.653027\pi$$
0.614419 + 0.788980i $$0.289391\pi$$
$$212$$ 9.11162 1.31005i 0.625789 0.0899748i
$$213$$ −1.77768 + 2.76612i −0.121805 + 0.189532i
$$214$$ −6.10260 + 13.3628i −0.417165 + 0.913464i
$$215$$ 0.142757 6.42474i 0.00973595 0.438164i
$$216$$ −0.790953 + 5.50120i −0.0538175 + 0.374309i
$$217$$ 0.278601 0.127233i 0.0189127 0.00863714i
$$218$$ −3.53680 + 12.0452i −0.239542 + 0.815805i
$$219$$ 8.53136 + 2.50503i 0.576496 + 0.169274i
$$220$$ 2.22372 4.59623i 0.149923 0.309878i
$$221$$ 2.34919 16.3390i 0.158023 1.09908i
$$222$$ −2.71081 2.34893i −0.181938 0.157650i
$$223$$ −13.0959 5.98069i −0.876966 0.400497i −0.0745183 0.997220i $$-0.523742\pi$$
−0.802447 + 0.596723i $$0.796469\pi$$
$$224$$ 4.36146 + 2.80294i 0.291413 + 0.187279i
$$225$$ 7.07380 + 0.314513i 0.471587 + 0.0209675i
$$226$$ 7.52501 4.83603i 0.500556 0.321688i
$$227$$ 1.86666 1.61747i 0.123894 0.107355i −0.590710 0.806884i $$-0.701152\pi$$
0.714604 + 0.699529i $$0.246607\pi$$
$$228$$ −2.12585 7.23997i −0.140788 0.479478i
$$229$$ −24.3983 −1.61228 −0.806142 0.591722i $$-0.798448\pi$$
−0.806142 + 0.591722i $$0.798448\pi$$
$$230$$ 8.96870 + 5.87899i 0.591378 + 0.387649i
$$231$$ 14.8987 0.980264
$$232$$ 0.415331 + 1.41449i 0.0272678 + 0.0928656i
$$233$$ −15.5592 + 13.4821i −1.01931 + 0.883241i −0.993200 0.116418i $$-0.962859\pi$$
−0.0261146 + 0.999659i $$0.508313\pi$$
$$234$$ 3.06739 1.97129i 0.200522 0.128867i
$$235$$ 4.17030 + 3.77901i 0.272041 + 0.246516i
$$236$$ 9.31175 + 5.98430i 0.606143 + 0.389545i
$$237$$ 6.95899 + 3.17806i 0.452035 + 0.206437i
$$238$$ −25.1200 21.7666i −1.62829 1.41092i
$$239$$ −0.442468 + 3.07743i −0.0286209 + 0.199062i −0.999115 0.0420623i $$-0.986607\pi$$
0.970494 + 0.241125i $$0.0775163\pi$$
$$240$$ 2.53320 + 1.22560i 0.163518 + 0.0791121i
$$241$$ 9.87037 + 2.89820i 0.635806 + 0.186690i 0.583723 0.811953i $$-0.301596\pi$$
0.0520837 + 0.998643i $$0.483414\pi$$
$$242$$ 1.63009 5.55158i 0.104786 0.356869i
$$243$$ 12.0230 5.49071i 0.771275 0.352229i
$$244$$ 0.265825 1.84886i 0.0170177 0.118361i
$$245$$ 44.4395 + 0.987440i 2.83914 + 0.0630852i
$$246$$ −6.22172 + 13.6237i −0.396682 + 0.868613i
$$247$$ −8.34600 + 12.9866i −0.531043 + 0.826319i
$$248$$ −0.0584748 + 0.00840741i −0.00371316 + 0.000533871i
$$249$$ 0.645795 0.415027i 0.0409256 0.0263013i
$$250$$ 3.85731 10.4939i 0.243958 0.663690i
$$251$$ −12.7825 + 3.75329i −0.806827 + 0.236906i −0.659035 0.752113i $$-0.729035\pi$$
−0.147793 + 0.989018i $$0.547217\pi$$
$$252$$ 7.34204i 0.462505i
$$253$$ −10.0204 4.41748i −0.629979 0.277725i
$$254$$ −14.2560 −0.894499
$$255$$ −14.9572 10.0888i −0.936659 0.631788i
$$256$$ −0.654861 0.755750i −0.0409288 0.0472343i
$$257$$ 2.22905 + 3.46846i 0.139044 + 0.216357i 0.903791 0.427974i $$-0.140772\pi$$
−0.764747 + 0.644331i $$0.777136\pi$$
$$258$$ −3.58006 + 0.514736i −0.222885 + 0.0320460i
$$259$$ 12.4307 + 7.98876i 0.772409 + 0.496397i
$$260$$ −1.49889 5.55872i −0.0929574 0.344737i
$$261$$ 1.36715 1.57778i 0.0846247 0.0976621i
$$262$$ −6.74922 0.970392i −0.416968 0.0599510i
$$263$$ −8.89016 + 4.06000i −0.548191 + 0.250350i −0.670202 0.742178i $$-0.733793\pi$$
0.122012 + 0.992529i $$0.461065\pi$$
$$264$$ −2.75731 0.809619i −0.169701 0.0498286i
$$265$$ −18.9089 + 8.13274i −1.16157 + 0.499590i
$$266$$ 12.9130 + 28.2755i 0.791745 + 1.73368i
$$267$$ −2.39762 0.344726i −0.146732 0.0210969i
$$268$$ 3.12547 + 2.70823i 0.190918 + 0.165432i
$$269$$ 9.72977 21.3052i 0.593234 1.29900i −0.340234 0.940341i $$-0.610506\pi$$
0.933468 0.358661i $$-0.116767\pi$$
$$270$$ −1.49493 12.3373i −0.0909784 0.750825i
$$271$$ 0.396200 + 2.75563i 0.0240675 + 0.167393i 0.998310 0.0581087i $$-0.0185070\pi$$
−0.974243 + 0.225502i $$0.927598\pi$$
$$272$$ 3.46614 + 5.39342i 0.210166 + 0.327024i
$$273$$ 12.6961 11.0012i 0.768402 0.665824i
$$274$$ −6.09353 + 1.78922i −0.368124 + 0.108091i
$$275$$ −2.12519 + 11.2176i −0.128154 + 0.676447i
$$276$$ 2.43469 5.52274i 0.146551 0.332430i
$$277$$ 5.14479i 0.309121i 0.987983 + 0.154560i $$0.0493961\pi$$
−0.987983 + 0.154560i $$0.950604\pi$$
$$278$$ 1.16984 + 3.98411i 0.0701623 + 0.238951i
$$279$$ 0.0547864 + 0.0632269i 0.00327998 + 0.00378529i
$$280$$ −11.0480 3.51237i −0.660242 0.209905i
$$281$$ 3.35457 + 23.3315i 0.200117 + 1.39184i 0.803934 + 0.594719i $$0.202737\pi$$
−0.603817 + 0.797123i $$0.706354\pi$$
$$282$$ 1.71246 2.66464i 0.101975 0.158677i
$$283$$ −21.6945 9.90757i −1.28961 0.588944i −0.351792 0.936078i $$-0.614427\pi$$
−0.937815 + 0.347135i $$0.887155\pi$$
$$284$$ −1.71095 + 1.97454i −0.101526 + 0.117168i
$$285$$ 8.80441 + 14.3932i 0.521528 + 0.852579i
$$286$$ 2.44231 + 5.34791i 0.144417 + 0.316228i
$$287$$ 17.3826 59.1997i 1.02606 3.49445i
$$288$$ −0.398978 + 1.35879i −0.0235100 + 0.0800677i
$$289$$ −10.0128 21.9249i −0.588987 1.28970i
$$290$$ −1.72013 2.81203i −0.101010 0.165128i
$$291$$ 4.49865 5.19171i 0.263715 0.304344i
$$292$$ 6.42667 + 2.93496i 0.376093 + 0.171756i
$$293$$ 0.570702 0.888029i 0.0333407 0.0518792i −0.824183 0.566323i $$-0.808365\pi$$
0.857524 + 0.514444i $$0.172002\pi$$
$$294$$ −3.56039 24.7630i −0.207646 1.44421i
$$295$$ −23.5875 7.49894i −1.37332 0.436605i
$$296$$ −1.86644 2.15399i −0.108485 0.125198i
$$297$$ 3.57540 + 12.1767i 0.207466 + 0.706564i
$$298$$ 7.06465i 0.409244i
$$299$$ −11.8009 + 3.63469i −0.682462 + 0.210200i
$$300$$ −6.18257 1.17129i −0.356951 0.0676247i
$$301$$ 14.2964 4.19779i 0.824028 0.241956i
$$302$$ −12.6671 + 10.9761i −0.728912 + 0.631606i
$$303$$ −0.655542 1.02004i −0.0376599 0.0585999i
$$304$$ −0.853275 5.93466i −0.0489387 0.340376i
$$305$$ 0.502419 + 4.14635i 0.0287684 + 0.237419i
$$306$$ 3.77165 8.25875i 0.215611 0.472121i
$$307$$ 15.4098 + 13.3526i 0.879482 + 0.762075i 0.972332 0.233605i $$-0.0750522\pi$$
−0.0928499 + 0.995680i $$0.529598\pi$$
$$308$$ 11.7179 + 1.68478i 0.667689 + 0.0959992i
$$309$$ 2.23803 + 4.90059i 0.127317 + 0.278785i
$$310$$ 0.121350 0.0521928i 0.00689223 0.00296435i
$$311$$ 18.1903 + 5.34115i 1.03148 + 0.302869i 0.753311 0.657664i $$-0.228455\pi$$
0.278166 + 0.960533i $$0.410274\pi$$
$$312$$ −2.94749 + 1.34607i −0.166869 + 0.0762064i
$$313$$ 18.8059 + 2.70388i 1.06297 + 0.152832i 0.651544 0.758610i $$-0.274121\pi$$
0.411427 + 0.911443i $$0.365030\pi$$
$$314$$ −4.58061 + 5.28631i −0.258499 + 0.298324i
$$315$$ 4.27422 + 15.8512i 0.240825 + 0.893111i
$$316$$ 5.11389 + 3.28650i 0.287679 + 0.184880i
$$317$$ 6.25125 0.898794i 0.351105 0.0504813i 0.0354940 0.999370i $$-0.488700\pi$$
0.315611 + 0.948889i $$0.397790\pi$$
$$318$$ 6.26331 + 9.74589i 0.351229 + 0.546523i
$$319$$ 2.20441 + 2.54403i 0.123424 + 0.142438i
$$320$$ 1.85378 + 1.25040i 0.103629 + 0.0698994i
$$321$$ −18.4879 −1.03190
$$322$$ −6.68989 + 23.9470i −0.372813 + 1.33451i
$$323$$ 38.4393i 2.13882i
$$324$$ −2.63479 + 0.773644i −0.146377 + 0.0429802i
$$325$$ 6.47209 + 11.1284i 0.359007 + 0.617294i
$$326$$ −13.0883 + 8.41131i −0.724891 + 0.465859i
$$327$$ −15.6382 + 2.24843i −0.864793 + 0.124338i
$$328$$ −6.43400 + 10.0115i −0.355258 + 0.552792i
$$329$$ −5.42054 + 11.8693i −0.298844 + 0.654377i
$$330$$ 6.42423 + 0.142746i 0.353642 + 0.00785789i
$$331$$ −3.10124 + 21.5696i −0.170460 + 1.18557i 0.707456 + 0.706757i $$0.249843\pi$$
−0.877916 + 0.478815i $$0.841066\pi$$
$$332$$ 0.554852 0.253393i 0.0304515 0.0139067i
$$333$$ −1.13714 + 3.87274i −0.0623149 + 0.212225i
$$334$$ 0.924421 + 0.271435i 0.0505821 + 0.0148522i
$$335$$ −8.32436 4.02744i −0.454808 0.220043i
$$336$$ −0.928563 + 6.45830i −0.0506573 + 0.352329i
$$337$$ −5.28719 4.58138i −0.288012 0.249563i 0.498857 0.866685i $$-0.333753\pi$$
−0.786868 + 0.617121i $$0.788299\pi$$
$$338$$ −5.79508 2.64653i −0.315211 0.143952i
$$339$$ 9.47029 + 6.08618i 0.514355 + 0.330556i
$$340$$ −10.6231 9.62632i −0.576116 0.522060i
$$341$$ −0.113482 + 0.0729304i −0.00614539 + 0.00394940i
$$342$$ −6.41695 + 5.56031i −0.346989 + 0.300667i
$$343$$ 18.8113 + 64.0655i 1.01572 + 3.45921i
$$344$$ −2.87394 −0.154953
$$345$$ −2.04128 + 13.3407i −0.109899 + 0.718241i
$$346$$ 7.40820 0.398267
$$347$$ −4.65039 15.8378i −0.249646 0.850216i −0.985003 0.172536i $$-0.944804\pi$$
0.735357 0.677680i $$-0.237014\pi$$
$$348$$ −1.40214 + 1.21496i −0.0751625 + 0.0651287i
$$349$$ 16.0887 10.3396i 0.861206 0.553464i −0.0338450 0.999427i $$-0.510775\pi$$
0.895051 + 0.445964i $$0.147139\pi$$
$$350$$ 25.8968 + 1.15142i 1.38424 + 0.0615458i
$$351$$ 12.0381 + 7.73642i 0.642546 + 0.412939i
$$352$$ −2.07708 0.948571i −0.110709 0.0505590i
$$353$$ 10.3411 + 8.96065i 0.550404 + 0.476927i 0.885102 0.465398i $$-0.154089\pi$$
−0.334698 + 0.942325i $$0.608634\pi$$
$$354$$ −1.98249 + 13.7885i −0.105368 + 0.732851i
$$355$$ 2.54437 5.25899i 0.135041 0.279118i
$$356$$ −1.84676 0.542257i −0.0978779 0.0287395i
$$357$$ 11.7852 40.1366i 0.623737 2.12425i
$$358$$ −3.34020 + 1.52542i −0.176535 + 0.0806209i
$$359$$ −3.09393 + 21.5187i −0.163291 + 1.13571i 0.729085 + 0.684423i $$0.239946\pi$$
−0.892376 + 0.451292i $$0.850963\pi$$
$$360$$ 0.0703446 3.16584i 0.00370749 0.166855i
$$361$$ 7.04055 15.4167i 0.370555 0.811403i
$$362$$ −2.76537 + 4.30300i −0.145345 + 0.226161i
$$363$$ 7.20755 1.03629i 0.378298 0.0543911i
$$364$$ 11.2296 7.21680i 0.588589 0.378263i
$$365$$ −15.5835 2.59513i −0.815679 0.135835i
$$366$$ 2.25551 0.662276i 0.117897 0.0346177i
$$367$$ 1.23164i 0.0642910i −0.999483 0.0321455i $$-0.989766\pi$$
0.999483 0.0321455i $$-0.0102340\pi$$
$$368$$ 2.53941 4.06834i 0.132376 0.212077i
$$369$$ 16.8533 0.877345
$$370$$ 5.28352 + 3.56380i 0.274677 + 0.185273i
$$371$$ −31.2531 36.0680i −1.62258 1.87256i
$$372$$ −0.0401955 0.0625454i −0.00208404 0.00324283i
$$373$$ 1.37341 0.197466i 0.0711124 0.0102244i −0.106667 0.994295i $$-0.534018\pi$$
0.177779 + 0.984070i $$0.443109\pi$$
$$374$$ 12.3155 + 7.91468i 0.636819 + 0.409258i
$$375$$ 14.0298 1.07045i 0.724494 0.0552779i
$$376$$ 1.64818 1.90210i 0.0849983 0.0980933i
$$377$$ 3.75703 + 0.540179i 0.193497 + 0.0278206i
$$378$$ 26.2103 11.9698i 1.34811 0.615662i
$$379$$ −20.3174 5.96573i −1.04364 0.306439i −0.285392 0.958411i $$-0.592124\pi$$
−0.758243 + 0.651972i $$0.773942\pi$$
$$380$$ 5.29709 + 12.3159i 0.271735 + 0.631794i
$$381$$ −7.45306 16.3199i −0.381832 0.836095i
$$382$$ 15.7615 + 2.26616i 0.806427 + 0.115947i
$$383$$ −2.48962 2.15726i −0.127213 0.110231i 0.588931 0.808184i $$-0.299549\pi$$
−0.716144 + 0.697953i $$0.754095\pi$$
$$384$$ 0.522803 1.14478i 0.0266792 0.0584193i
$$385$$ −26.2792 + 3.18429i −1.33931 + 0.162286i
$$386$$ −2.33400 16.2334i −0.118798 0.826256i
$$387$$ 2.20038 + 3.42386i 0.111852 + 0.174045i
$$388$$ 4.12529 3.57459i 0.209430 0.181472i
$$389$$ −19.1664 + 5.62777i −0.971777 + 0.285339i −0.728826 0.684699i $$-0.759934\pi$$
−0.242951 + 0.970039i $$0.578115\pi$$
$$390$$ 5.57988 4.62201i 0.282548 0.234045i
$$391$$ −19.8269 + 23.5003i −1.00269 + 1.18846i
$$392$$ 19.8789i 1.00403i
$$393$$ −2.41763 8.23369i −0.121953 0.415335i
$$394$$ −5.96229 6.88085i −0.300376 0.346652i
$$395$$ −12.9539 4.11832i −0.651783 0.207215i
$$396$$ 0.460203 + 3.20078i 0.0231261 + 0.160845i
$$397$$ −5.40887 + 8.41637i −0.271463 + 0.422405i −0.950042 0.312123i $$-0.898960\pi$$
0.678578 + 0.734528i $$0.262596\pi$$
$$398$$ 21.5735 + 9.85227i 1.08138 + 0.493849i
$$399$$ −25.6182 + 29.5650i −1.28252 + 1.48010i
$$400$$ −4.73016 1.62037i −0.236508 0.0810183i
$$401$$ 4.05546 + 8.88023i 0.202520 + 0.443457i 0.983454 0.181156i $$-0.0579839\pi$$
−0.780934 + 0.624613i $$0.785257\pi$$
$$402$$ −1.46632 + 4.99384i −0.0731336 + 0.249070i
$$403$$ −0.0428529 + 0.145943i −0.00213465 + 0.00726996i
$$404$$ −0.400238 0.876398i −0.0199126 0.0436024i
$$405$$ 5.23802 3.20413i 0.260279 0.159214i
$$406$$ 5.00508 5.77617i 0.248398 0.286667i
$$407$$ −5.91995 2.70355i −0.293441 0.134010i
$$408$$ −4.36216 + 6.78766i −0.215959 + 0.336039i
$$409$$ −3.17875 22.1087i −0.157179 1.09321i −0.903800 0.427955i $$-0.859234\pi$$
0.746621 0.665250i $$-0.231675\pi$$
$$410$$ 8.06246 25.3600i 0.398177 1.25244i
$$411$$ −5.23398 6.04033i −0.258173 0.297948i
$$412$$ 1.20605 + 4.10742i 0.0594176 + 0.202358i
$$413$$ 57.3865i 2.82380i
$$414$$ −6.79106 + 0.0895267i −0.333763 + 0.00440000i
$$415$$ −1.05039 + 0.870075i −0.0515615 + 0.0427103i
$$416$$ −2.47043 + 0.725383i −0.121123 + 0.0355648i
$$417$$ −3.94933 + 3.42211i −0.193399 + 0.167582i
$$418$$ −7.40176 11.5174i −0.362032 0.563333i
$$419$$ 2.15594 + 14.9949i 0.105325 + 0.732549i 0.972222 + 0.234062i $$0.0752017\pi$$
−0.866897 + 0.498487i $$0.833889\pi$$
$$420$$ −1.75502 14.4838i −0.0856360 0.706735i
$$421$$ 5.95606 13.0420i 0.290281 0.635626i −0.707166 0.707048i $$-0.750026\pi$$
0.997446 + 0.0714221i $$0.0227537\pi$$
$$422$$ 1.98321 + 1.71846i 0.0965410 + 0.0836532i
$$423$$ −3.52796 0.507244i −0.171535 0.0246631i
$$424$$ 3.82403 + 8.37345i 0.185711 + 0.406651i
$$425$$ 28.5387 + 14.5985i 1.38433 + 0.708132i
$$426$$ −3.15491 0.926364i −0.152856 0.0448825i
$$427$$ −8.80881 + 4.02285i −0.426288 + 0.194679i
$$428$$ −14.5408 2.09066i −0.702858 0.101056i
$$429$$ −4.84533 + 5.59180i −0.233935 + 0.269975i
$$430$$ 6.20472 1.67309i 0.299218 0.0806833i
$$431$$ 16.9948 + 10.9219i 0.818610 + 0.526089i 0.881640 0.471923i $$-0.156440\pi$$
−0.0630297 + 0.998012i $$0.520076\pi$$
$$432$$ −5.50120 + 0.790953i −0.264677 + 0.0380547i
$$433$$ −8.01987 12.4792i −0.385411 0.599711i 0.593294 0.804986i $$-0.297827\pi$$
−0.978704 + 0.205276i $$0.934191\pi$$
$$434$$ 0.200570 + 0.231470i 0.00962768 + 0.0111109i
$$435$$ 2.31986 3.43931i 0.111229 0.164902i
$$436$$ −12.5537 −0.601215
$$437$$ 25.9961 12.2887i 1.24356 0.587849i
$$438$$ 8.89153i 0.424854i
$$439$$ 23.8354 6.99872i 1.13760 0.334031i 0.341912 0.939732i $$-0.388926\pi$$
0.795692 + 0.605701i $$0.207107\pi$$
$$440$$ 5.03654 + 0.838736i 0.240108 + 0.0399852i
$$441$$ −23.6826 + 15.2199i −1.12774 + 0.724757i
$$442$$ 16.3390 2.34919i 0.777165 0.111739i
$$443$$ −0.857306 + 1.33399i −0.0407318 + 0.0633800i −0.861022 0.508567i $$-0.830175\pi$$
0.820291 + 0.571947i $$0.193812\pi$$
$$444$$ 1.49006 3.26277i 0.0707150 0.154844i
$$445$$ 4.30275 + 0.0956065i 0.203970 + 0.00453218i
$$446$$ 2.04889 14.2504i 0.0970179 0.674775i
$$447$$ 8.08747 3.69342i 0.382524 0.174693i
$$448$$ −1.46064 + 4.97447i −0.0690086 + 0.235022i
$$449$$ 28.5778 + 8.39119i 1.34867 + 0.396005i 0.874755 0.484566i $$-0.161023\pi$$
0.473914 + 0.880571i $$0.342841\pi$$
$$450$$ 1.69115 + 6.87587i 0.0797214 + 0.324132i
$$451$$ −3.86732 + 26.8978i −0.182105 + 1.26657i
$$452$$ 6.76018 + 5.85773i 0.317972 + 0.275524i
$$453$$ −19.1877 8.76272i −0.901516 0.411709i
$$454$$ 2.07785 + 1.33535i 0.0975183 + 0.0626712i
$$455$$ −20.0428 + 22.1181i −0.939622 + 1.03691i
$$456$$ 6.34778 4.07947i 0.297262 0.191039i
$$457$$ −24.0354 + 20.8268i −1.12433 + 0.974235i −0.999838 0.0179862i $$-0.994275\pi$$
−0.124489 + 0.992221i $$0.539729\pi$$
$$458$$ −6.87379 23.4100i −0.321191 1.09388i
$$459$$ 35.6318 1.66315
$$460$$ −3.11407 + 10.2617i −0.145194 + 0.478454i
$$461$$ −4.24198 −0.197569 −0.0987843 0.995109i $$-0.531495\pi$$
−0.0987843 + 0.995109i $$0.531495\pi$$
$$462$$ 4.19745 + 14.2952i 0.195283 + 0.665074i
$$463$$ −15.4907 + 13.4227i −0.719912 + 0.623807i −0.935767 0.352618i $$-0.885291\pi$$
0.215855 + 0.976425i $$0.430746\pi$$
$$464$$ −1.24018 + 0.797013i −0.0575738 + 0.0370004i
$$465$$ 0.123191 + 0.111633i 0.00571287 + 0.00517684i
$$466$$ −17.3195 11.1306i −0.802310 0.515614i
$$467$$ −28.8610 13.1804i −1.33553 0.609915i −0.385682 0.922632i $$-0.626034\pi$$
−0.949847 + 0.312716i $$0.898761\pi$$
$$468$$ 2.75562 + 2.38776i 0.127379 + 0.110374i
$$469$$ 3.05135 21.2226i 0.140898 0.979969i
$$470$$ −2.45102 + 5.06605i −0.113057 + 0.233679i
$$471$$ −8.44641 2.48009i −0.389190 0.114277i
$$472$$ −3.11847 + 10.6205i −0.143539 + 0.488849i
$$473$$ −5.96941 + 2.72614i −0.274474 + 0.125348i
$$474$$ −1.08876 + 7.57247i −0.0500082 + 0.347815i
$$475$$ −18.6060 23.5058i −0.853701 1.07852i
$$476$$ 13.8078 30.2349i 0.632880 1.38581i
$$477$$ 7.04789 10.9667i 0.322701 0.502132i
$$478$$ −3.07743 + 0.442468i −0.140758 + 0.0202380i
$$479$$ −11.7958 + 7.58073i −0.538966 + 0.346372i −0.781634 0.623737i $$-0.785614\pi$$
0.242669 + 0.970109i $$0.421977\pi$$
$$480$$ −0.462268 + 2.77588i −0.0210996 + 0.126701i
$$481$$ −7.04105 + 2.06744i −0.321044 + 0.0942671i
$$482$$ 10.2871i 0.468563i
$$483$$ −30.9115 + 4.86113i −1.40652 + 0.221189i
$$484$$ 5.78595 0.262998
$$485$$ −6.82536 + 10.1189i −0.309923 + 0.459478i
$$486$$ 8.65557 + 9.98906i 0.392624 + 0.453113i
$$487$$ −10.0725 15.6731i −0.456427 0.710214i 0.534418 0.845221i $$-0.320531\pi$$
−0.990845 + 0.135006i $$0.956895\pi$$
$$488$$ 1.84886 0.265825i 0.0836938 0.0120333i
$$489$$ −16.4717 10.5857i −0.744875 0.478702i
$$490$$ 11.5726 + 42.9176i 0.522797 + 1.93882i
$$491$$ 4.84920 5.59627i 0.218841 0.252556i −0.635704 0.771933i $$-0.719290\pi$$
0.854546 + 0.519376i $$0.173836\pi$$
$$492$$ −14.8247 2.13147i −0.668348 0.0960939i
$$493$$ 8.59725 3.92623i 0.387201 0.176829i
$$494$$ −14.8119 4.34917i −0.666419 0.195678i
$$495$$ −2.85692 6.64244i −0.128409 0.298555i
$$496$$ −0.0245411 0.0537376i −0.00110193 0.00241289i
$$497$$ 13.4076 + 1.92772i 0.601413 + 0.0864701i
$$498$$ 0.580157 + 0.502709i 0.0259975 + 0.0225269i
$$499$$ 4.72459 10.3454i 0.211502 0.463124i −0.773914 0.633291i $$-0.781704\pi$$
0.985415 + 0.170167i $$0.0544308\pi$$
$$500$$ 11.1555 + 0.744603i 0.498890 + 0.0332997i
$$501$$ 0.172558 + 1.20017i 0.00770931 + 0.0536194i
$$502$$ −7.20252 11.2073i −0.321464 0.500208i
$$503$$ 20.6382 17.8831i 0.920212 0.797368i −0.0594070 0.998234i $$-0.518921\pi$$
0.979619 + 0.200866i $$0.0643755\pi$$
$$504$$ 7.04464 2.06849i 0.313793 0.0921380i
$$505$$ 1.37430 + 1.65910i 0.0611554 + 0.0738292i
$$506$$ 1.41546 10.8591i 0.0629249 0.482745i
$$507$$ 8.01770i 0.356079i
$$508$$ −4.01637 13.6785i −0.178198 0.606885i
$$509$$ 10.3925 + 11.9936i 0.460639 + 0.531606i 0.937784 0.347218i $$-0.112874\pi$$
−0.477145 + 0.878825i $$0.658328\pi$$
$$510$$ 5.46624 17.1937i 0.242049 0.761351i
$$511$$ −5.21286 36.2562i −0.230603 1.60388i
$$512$$ 0.540641 0.841254i 0.0238932 0.0371785i
$$513$$ −30.3113 13.8427i −1.33828 0.611171i
$$514$$ −2.69997 + 3.11593i −0.119091 + 0.137438i
$$515$$ −4.99496 8.16563i −0.220104 0.359821i
$$516$$ −1.50251 3.29003i −0.0661441 0.144835i
$$517$$ 1.61912 5.51423i 0.0712089 0.242515i
$$518$$ −4.16301 + 14.1779i −0.182912 + 0.622942i
$$519$$ 3.87303 + 8.48076i 0.170007 + 0.372264i
$$520$$ 4.91126 3.00425i 0.215373 0.131745i
$$521$$ −7.20928 + 8.31996i −0.315844 + 0.364504i −0.891367 0.453282i $$-0.850253\pi$$
0.575523 + 0.817786i $$0.304799\pi$$
$$522$$ 1.89904 + 0.867263i 0.0831187 + 0.0379591i
$$523$$ 7.23208 11.2533i 0.316237 0.492074i −0.646352 0.763039i $$-0.723706\pi$$
0.962589 + 0.270965i $$0.0873428\pi$$
$$524$$ −0.970392 6.74922i −0.0423918 0.294841i
$$525$$ 12.2208 + 30.2481i 0.533360 + 1.32014i
$$526$$ −6.40019 7.38621i −0.279061 0.322054i
$$527$$ 0.106705 + 0.363405i 0.00464816 + 0.0158302i
$$528$$ 2.87371i 0.125062i
$$529$$ 22.2315 + 5.89584i 0.966586 + 0.256341i
$$530$$ −13.1306 15.8517i −0.570356 0.688555i
$$531$$ 15.0403 4.41624i 0.652695 0.191649i
$$532$$ −23.4921 + 20.3560i −1.01851 + 0.882546i
$$533$$ 16.5658 + 25.7768i 0.717543 + 1.11652i
$$534$$ −0.344726 2.39762i −0.0149178 0.103755i
$$535$$ 32.6101 3.95141i 1.40986 0.170834i
$$536$$ −1.71798 + 3.76186i −0.0742056 + 0.162488i
$$537$$ −3.49254 3.02630i −0.150714 0.130595i
$$538$$ 23.1834 + 3.33327i 0.999507 + 0.143707i
$$539$$ −18.8565 41.2900i −0.812207 1.77848i
$$540$$ 11.4164 4.91019i 0.491283 0.211301i
$$541$$ −25.6122 7.52043i −1.10116 0.323328i −0.319844 0.947470i $$-0.603631\pi$$
−0.781311 + 0.624142i $$0.785449\pi$$
$$542$$ −2.53239 + 1.15650i −0.108775 + 0.0496761i
$$543$$ −6.37173 0.916116i −0.273437 0.0393143i
$$544$$ −4.19842 + 4.84524i −0.180006 + 0.207738i
$$545$$ 27.1030 7.30824i 1.16096 0.313051i
$$546$$ 14.1325 + 9.08240i 0.604815 + 0.388691i
$$547$$ 20.1556 2.89794i 0.861791 0.123907i 0.302774 0.953063i $$-0.402087\pi$$
0.559018 + 0.829156i $$0.311178\pi$$
$$548$$ −3.43349 5.34262i −0.146671 0.228225i
$$549$$ −1.73223 1.99911i −0.0739300 0.0853198i
$$550$$ −11.3620 + 1.12126i −0.484475 + 0.0478108i
$$551$$ −8.83885 −0.376548
$$552$$ 5.98496 + 0.780129i 0.254737 + 0.0332045i
$$553$$ 31.5159i 1.34019i
$$554$$ −4.93639 + 1.44946i −0.209727 + 0.0615815i
$$555$$ −1.31753 + 7.91163i −0.0559258 + 0.335830i
$$556$$ −3.49314 + 2.24491i −0.148142 + 0.0952052i
$$557$$ 13.8849 1.99635i 0.588322 0.0845880i 0.158276 0.987395i $$-0.449406\pi$$
0.430046 + 0.902807i $$0.358497\pi$$
$$558$$ −0.0452306 + 0.0703802i −0.00191477 + 0.00297943i
$$559$$ −3.07391 + 6.73092i −0.130012 + 0.284687i
$$560$$ 0.257528 11.5900i 0.0108826 0.489767i
$$561$$ −2.62199 + 18.2363i −0.110700 + 0.769938i
$$562$$ −21.4413 + 9.79193i −0.904448 + 0.413048i
$$563$$ 0.372801 1.26964i 0.0157117 0.0535091i −0.951264 0.308378i $$-0.900214\pi$$
0.966976 + 0.254868i $$0.0820322\pi$$
$$564$$ 3.03916 + 0.892377i 0.127972 + 0.0375758i
$$565$$ −18.0050 8.71110i −0.757478 0.366479i
$$566$$ 3.39418 23.6071i 0.142668 0.992278i
$$567$$ 10.7594 + 9.32306i 0.451852 + 0.391532i
$$568$$ −2.37659 1.08535i −0.0997195 0.0455404i
$$569$$ 1.89726 + 1.21930i 0.0795375 + 0.0511156i 0.579805 0.814755i $$-0.303129\pi$$
−0.500268 + 0.865871i $$0.666765\pi$$
$$570$$ −11.3297 + 12.5028i −0.474548 + 0.523685i
$$571$$ 23.7275 15.2487i 0.992965 0.638140i 0.0600344 0.998196i $$-0.480879\pi$$
0.932930 + 0.360057i $$0.117243\pi$$
$$572$$ −4.44320 + 3.85006i −0.185780 + 0.160979i
$$573$$ 5.64590 + 19.2282i 0.235861 + 0.803268i
$$574$$ 61.6989 2.57526
$$575$$ 0.749231 23.9674i 0.0312451 0.999512i
$$576$$ −1.41616 −0.0590066
$$577$$ −10.0441 34.2072i −0.418143 1.42407i −0.852217 0.523188i $$-0.824743\pi$$
0.434074 0.900877i $$-0.357076\pi$$
$$578$$ 18.2159 15.7841i 0.757681 0.656534i
$$579$$ 17.3634 11.1588i 0.721598 0.463743i
$$580$$ 2.21350 2.44270i 0.0919107 0.101427i
$$581$$ −2.66038 1.70972i −0.110371 0.0709313i
$$582$$ 6.24883 + 2.85374i 0.259022 + 0.118291i
$$583$$ 15.8856 + 13.7650i 0.657915 + 0.570087i
$$584$$ −1.00547 + 6.99322i −0.0416068 + 0.289382i
$$585$$ −7.33933 3.55087i −0.303444 0.146810i
$$586$$ 1.01284 + 0.297398i 0.0418402 + 0.0122854i
$$587$$ −11.1756 + 38.0606i −0.461267 + 1.57093i 0.320430 + 0.947272i $$0.396173\pi$$
−0.781697 + 0.623659i $$0.785646\pi$$
$$588$$ 22.7569 10.3927i 0.938479 0.428589i
$$589$$ 0.0504082 0.350597i 0.00207703 0.0144461i
$$590$$ 0.549824 24.7447i 0.0226359 1.01872i
$$591$$ 4.75995 10.4228i 0.195798 0.428738i
$$592$$ 1.54090 2.39768i 0.0633305 0.0985442i
$$593$$ 33.5886 4.82930i 1.37932 0.198316i 0.587574 0.809171i $$-0.300083\pi$$
0.791743 + 0.610855i $$0.209174\pi$$
$$594$$ −10.6762 + 6.86115i −0.438048 + 0.281516i
$$595$$ −12.2090 + 73.3141i −0.500521 + 3.00558i
$$596$$ 6.77849 1.99034i 0.277658 0.0815276i
$$597$$ 29.8476i 1.22158i
$$598$$ −6.81215 10.2988i −0.278569 0.421151i
$$599$$ 7.55512 0.308694 0.154347 0.988017i $$-0.450673\pi$$
0.154347 + 0.988017i $$0.450673\pi$$
$$600$$ −0.617982 6.26212i −0.0252290 0.255650i
$$601$$ 6.29242 + 7.26184i 0.256673 + 0.296217i 0.869431 0.494054i $$-0.164485\pi$$
−0.612758 + 0.790270i $$0.709940\pi$$
$$602$$ 8.05549 + 12.5346i 0.328317 + 0.510872i
$$603$$ 5.79703 0.833486i 0.236073 0.0339422i
$$604$$ −14.1003 9.06170i −0.573732 0.368715i
$$605$$ −12.4916 + 3.36833i −0.507856 + 0.136942i
$$606$$ 0.794037 0.916367i 0.0322555 0.0372249i
$$607$$ −0.952905 0.137007i −0.0386772 0.00556094i 0.122949 0.992413i $$-0.460765\pi$$
−0.161626 + 0.986852i $$0.551674\pi$$
$$608$$ 5.45387 2.49070i 0.221184 0.101011i
$$609$$ 9.22911 + 2.70991i 0.373983 + 0.109811i
$$610$$ −3.83685 + 1.65023i −0.155349 + 0.0668158i
$$611$$ −2.69196 5.89456i −0.108905 0.238468i
$$612$$ 8.98681 + 1.29211i 0.363270 + 0.0522304i
$$613$$ 10.0312 + 8.69205i 0.405155 + 0.351068i 0.833474 0.552559i $$-0.186349\pi$$
−0.428319 + 0.903628i $$0.640894\pi$$
$$614$$ −8.47033 + 18.5474i −0.341835 + 0.748513i
$$615$$ 33.2467 4.02854i 1.34063 0.162446i
$$616$$ 1.68478 + 11.7179i 0.0678817 + 0.472128i
$$617$$ 25.3109 + 39.3845i 1.01898 + 1.58556i 0.790926 + 0.611912i $$0.209599\pi$$
0.228053 + 0.973649i $$0.426764\pi$$
$$618$$ −4.07156 + 3.52803i −0.163782 + 0.141918i
$$619$$ −44.9233 + 13.1907i −1.80562 + 0.530178i −0.998210 0.0598105i $$-0.980950\pi$$
−0.807411 + 0.589989i $$0.799132\pi$$
$$620$$ 0.0842669 + 0.101730i 0.00338424 + 0.00408559i
$$621$$ −11.3912 24.0974i −0.457112 0.966995i
$$622$$ 18.9582i 0.760156i
$$623$$ 2.81132 + 9.57448i 0.112633 + 0.383593i
$$624$$ −2.12195 2.44886i −0.0849460 0.0980330i
$$625$$ −24.5178 + 4.88670i −0.980710 + 0.195468i
$$626$$ 2.70388 + 18.8059i 0.108069 + 0.751634i
$$627$$ 9.31518 14.4947i 0.372012 0.578863i
$$628$$ −6.36268 2.90574i −0.253899 0.115952i
$$629$$ −11.9661 + 13.8096i −0.477118 + 0.550623i
$$630$$ −14.0049 + 8.56687i −0.557968 + 0.341312i
$$631$$ −9.16538 20.0694i −0.364868 0.798950i −0.999655 0.0262625i $$-0.991639\pi$$
0.634787 0.772687i $$-0.281088\pi$$
$$632$$ −1.71262 + 5.83266i −0.0681245 + 0.232011i
$$633$$ −0.930429 + 3.16875i −0.0369812 + 0.125946i
$$634$$ 2.62357 + 5.74481i 0.104195 + 0.228156i
$$635$$ 16.6342 + 27.1931i 0.660108 + 1.07913i
$$636$$ −7.58654 + 8.75533i −0.300826 + 0.347172i
$$637$$ −46.5573 21.2620i −1.84467 0.842431i
$$638$$ −1.81992 + 2.83186i −0.0720515 + 0.112114i
$$639$$ 0.526563 + 3.66233i 0.0208305 + 0.144879i
$$640$$ −0.677478 + 2.13097i −0.0267797 + 0.0842339i
$$641$$ −13.2573 15.2998i −0.523633 0.604305i 0.430904 0.902398i $$-0.358195\pi$$
−0.954537 + 0.298093i $$0.903649\pi$$
$$642$$ −5.20866 17.7391i −0.205569 0.700105i
$$643$$ 3.05833i 0.120609i −0.998180 0.0603043i $$-0.980793\pi$$
0.998180 0.0603043i $$-0.0192071\pi$$
$$644$$ −24.8617 + 0.327753i −0.979690 + 0.0129153i
$$645$$ 5.15916 + 6.22834i 0.203142 + 0.245240i
$$646$$ −36.8823 + 10.8296i −1.45111 + 0.426085i
$$647$$ 18.0228 15.6169i 0.708550 0.613962i −0.224176 0.974549i $$-0.571969\pi$$
0.932726 + 0.360587i $$0.117423\pi$$
$$648$$ −1.48461 2.31010i −0.0583211 0.0907494i
$$649$$ 3.59701 + 25.0178i 0.141195 + 0.982034i
$$650$$ −8.85426 + 9.34517i −0.347292 + 0.366548i
$$651$$ −0.160124 + 0.350622i −0.00627574 + 0.0137420i
$$652$$ −11.7580 10.1883i −0.460478 0.399006i
$$653$$ 39.6254 + 5.69727i 1.55066 + 0.222951i 0.863799 0.503837i $$-0.168079\pi$$
0.686861 + 0.726788i $$0.258988\pi$$
$$654$$ −6.56313 14.3713i −0.256639 0.561961i
$$655$$ 6.02414 + 14.0064i 0.235383 + 0.547274i
$$656$$ −11.4186 3.35281i −0.445823 0.130905i
$$657$$ 9.10119 4.15637i 0.355071 0.162156i
$$658$$ −12.9157 1.85699i −0.503506 0.0723932i
$$659$$ −7.98515 + 9.21535i −0.311057 + 0.358979i −0.889655 0.456634i $$-0.849055\pi$$
0.578597 + 0.815613i $$0.303600\pi$$
$$660$$ 1.67295 + 6.20422i 0.0651196 + 0.241499i
$$661$$ −11.2131 7.20620i −0.436138 0.280289i 0.304092 0.952643i $$-0.401647\pi$$
−0.740230 + 0.672354i $$0.765283\pi$$
$$662$$ −21.5696 + 3.10124i −0.838327 + 0.120533i
$$663$$ 11.2314 + 17.4763i 0.436190 + 0.678725i
$$664$$ 0.399448 + 0.460988i 0.0155016 + 0.0178898i
$$665$$ 38.8680 57.6239i 1.50724 2.23456i
$$666$$ −4.03624 −0.156401
$$667$$ −5.40373 4.55904i −0.209233 0.176527i
$$668$$ 0.963448i 0.0372769i
$$669$$ 17.3847 5.10461i 0.672131 0.197356i
$$670$$ 1.51906 9.12183i 0.0586864 0.352407i
$$671$$ 3.58807 2.30591i 0.138516 0.0890187i
$$672$$ −6.45830 + 0.928563i −0.249134 + 0.0358201i
$$673$$ −21.1368 + 32.8895i −0.814764 + 1.26780i 0.145682 + 0.989332i $$0.453462\pi$$
−0.960446 + 0.278467i $$0.910174\pi$$
$$674$$ 2.90622 6.36374i 0.111944 0.245122i
$$675$$ −21.7890 + 17.2470i −0.838659 + 0.663838i
$$676$$ 0.906660 6.30596i 0.0348715 0.242537i
$$677$$ −30.5911 + 13.9705i −1.17571 + 0.536929i −0.904867 0.425695i $$-0.860030\pi$$
−0.270843 + 0.962624i $$0.587302\pi$$
$$678$$ −3.17156 + 10.8013i −0.121803 + 0.414823i
$$679$$ −27.1534 7.97295i −1.04205 0.305974i
$$680$$ 6.24352 12.9048i 0.239428 0.494876i
$$681$$ −0.442378 + 3.07680i −0.0169519 + 0.117903i
$$682$$ −0.101948 0.0883382i −0.00390378 0.00338265i
$$683$$ −16.8684 7.70352i −0.645450 0.294767i 0.0656664 0.997842i $$-0.479083\pi$$
−0.711116 + 0.703075i $$0.751810\pi$$
$$684$$ −7.14295 4.59049i −0.273117 0.175522i
$$685$$ 10.5230 + 9.53565i 0.402063 + 0.364338i
$$686$$ −56.1706 + 36.0987i −2.14461 + 1.37825i
$$687$$ 23.2056 20.1078i 0.885350 0.767160i
$$688$$ −0.809683 2.75753i −0.0308689 0.105130i
$$689$$ 23.7011 0.902942
$$690$$ −13.3754 + 1.79992i −0.509194 + 0.0685219i
$$691$$ −20.4901 −0.779479 −0.389739 0.920925i $$-0.627435\pi$$
−0.389739 + 0.920925i $$0.627435\pi$$
$$692$$ 2.08713 + 7.10812i 0.0793408 + 0.270210i
$$693$$ 12.6702 10.9788i 0.481300 0.417049i
$$694$$ 13.8861 8.92403i 0.527108 0.338752i
$$695$$ 6.23465 6.88021i 0.236494 0.260981i
$$696$$ −1.56077 1.00305i −0.0591609 0.0380204i
$$697$$ 69.4025 + 31.6950i 2.62881 + 1.20054i
$$698$$ 14.4534 + 12.5240i 0.547070 + 0.474039i
$$699$$ 3.68735 25.6461i 0.139468 0.970024i
$$700$$ 6.19120 + 25.1722i 0.234005 + 0.951420i
$$701$$ −17.1244 5.02818i −0.646780 0.189912i −0.0581418 0.998308i $$-0.518518\pi$$
−0.588638 + 0.808397i $$0.700336\pi$$
$$702$$ −4.03151 + 13.7301i −0.152160 + 0.518208i
$$703$$ 15.5442 7.09882i 0.586262 0.267737i
$$704$$ 0.324966 2.26019i 0.0122476 0.0851840i
$$705$$ −7.08091 0.157337i −0.266682 0.00592565i
$$706$$ −5.68425 + 12.4468i −0.213929 + 0.468440i
$$707$$ −2.70054 + 4.20211i −0.101564 + 0.158037i
$$708$$ −13.7885 + 1.98249i −0.518204 + 0.0745065i
$$709$$ −29.6320 + 19.0433i −1.11285 + 0.715188i −0.961913 0.273355i $$-0.911867\pi$$
−0.150940 + 0.988543i $$0.548230\pi$$
$$710$$ 5.76280 + 0.959680i 0.216274 + 0.0360162i
$$711$$ 8.25996 2.42534i 0.309773 0.0909575i
$$712$$ 1.92472i 0.0721320i
$$713$$ 0.211654 0.188341i 0.00792651 0.00705343i
$$714$$ 41.8310 1.56549
$$715$$ 7.35134 10.8987i 0.274925 0.407590i
$$716$$ −2.40467 2.77514i −0.0898669 0.103712i
$$717$$ −2.11542 3.29166i −0.0790018 0.122929i
$$718$$ −21.5187 + 3.09393i −0.803072 + 0.115464i
$$719$$ 4.54145 + 2.91862i 0.169368 + 0.108846i 0.622578 0.782557i $$-0.286085\pi$$
−0.453211 + 0.891403i $$0.649722\pi$$
$$720$$ 3.05742 0.824426i 0.113943 0.0307245i
$$721$$ 14.5339 16.7730i 0.541270 0.624659i
$$722$$ 16.7757 + 2.41199i 0.624328 + 0.0897648i
$$723$$ −11.7764 + 5.37811i −0.437970 + 0.200014i
$$724$$ −4.90779 1.44106i −0.182397 0.0535565i
$$725$$ −3.35682 + 6.56228i −0.124669 + 0.243717i
$$726$$ 3.02491 + 6.62364i 0.112265 + 0.245826i
$$727$$ −35.4857 5.10207i −1.31609 0.189225i −0.551734 0.834020i $$-0.686034\pi$$
−0.764356 + 0.644795i $$0.776943\pi$$
$$728$$ 10.0882 + 8.74148i 0.373894 + 0.323981i
$$729$$ −10.3323 + 22.6246i −0.382679 + 0.837949i
$$730$$ −1.90038 15.6834i −0.0703362 0.580469i
$$731$$ 2.62220 + 18.2378i 0.0969854 + 0.674549i
$$732$$ 1.27090 + 1.97756i 0.0469738 + 0.0730926i
$$733$$ 19.4711 16.8718i 0.719181 0.623174i −0.216392 0.976307i $$-0.569429\pi$$
0.935573 + 0.353133i $$0.114884\pi$$
$$734$$ 1.18175 0.346993i 0.0436192 0.0128077i
$$735$$ −43.0809 + 35.6855i −1.58906 + 1.31628i
$$736$$ 4.61898 + 1.29037i 0.170258 + 0.0475636i
$$737$$ 9.44331i 0.347849i
$$738$$ 4.74811 + 16.1706i 0.174780 + 0.595247i
$$739$$ 13.0349 + 15.0431i 0.479497 + 0.553369i 0.943029 0.332711i $$-0.107963\pi$$
−0.463532 + 0.886080i $$0.653418\pi$$
$$740$$ −1.93090 + 6.07354i −0.0709814 + 0.223268i
$$741$$ −2.76487 19.2301i −0.101570 0.706436i
$$742$$ 25.8020 40.1487i 0.947220 1.47390i
$$743$$ −26.9014 12.2855i −0.986916 0.450710i −0.144481 0.989508i $$-0.546151\pi$$
−0.842435 + 0.538798i $$0.818879\pi$$
$$744$$ 0.0486875 0.0561883i 0.00178497 0.00205996i
$$745$$ −13.4758 + 8.24321i −0.493714 + 0.302008i
$$746$$ 0.576401 + 1.26214i 0.0211035 + 0.0462103i
$$747$$ 0.243366 0.828829i 0.00890431 0.0303253i
$$748$$ −4.12441 + 14.0464i −0.150803 + 0.513589i
$$749$$ 31.6388 + 69.2793i 1.15606 + 2.53141i
$$750$$ 4.97973 + 13.1599i 0.181834 + 0.480531i
$$751$$ −18.5605 + 21.4199i −0.677281 + 0.781624i −0.985497 0.169693i $$-0.945723\pi$$
0.308216 + 0.951316i $$0.400268\pi$$
$$752$$ 2.28940 + 1.04553i 0.0834857 + 0.0381266i
$$753$$ 9.06443 14.1045i 0.330326 0.513997i
$$754$$ 0.540179 + 3.75703i 0.0196722 + 0.136823i
$$755$$ 35.7172 + 11.3552i 1.29988 + 0.413260i
$$756$$ 18.8693 + 21.7763i 0.686268 + 0.791996i
$$757$$ −8.44639 28.7658i −0.306989 1.04551i −0.958078 0.286508i $$-0.907505\pi$$
0.651088 0.759002i $$-0.274313\pi$$
$$758$$ 21.1752i 0.769116i
$$759$$ 13.1713 4.05677i 0.478086 0.147251i
$$760$$ −10.3247 + 8.55231i −0.374516 + 0.310225i
$$761$$ 45.2253 13.2794i 1.63942 0.481376i 0.673276 0.739391i $$-0.264886\pi$$
0.966141 + 0.258015i $$0.0830683\pi$$
$$762$$ 13.5591 11.7490i 0.491194 0.425622i
$$763$$ 35.1874 + 54.7527i 1.27387 + 1.98218i
$$764$$ 2.26616 + 15.7615i 0.0819867 + 0.570230i
$$765$$ −20.1543 + 2.44213i −0.728682 + 0.0882953i
$$766$$ 1.36847 2.99654i 0.0494450 0.108269i
$$767$$ 21.5384 + 18.6631i 0.777705 + 0.673886i
$$768$$ 1.24570 + 0.179104i 0.0449503 + 0.00646287i