# Properties

 Label 230.2.j.a.9.4 Level $230$ Weight $2$ Character 230.9 Analytic conductor $1.837$ Analytic rank $0$ Dimension $120$ CM no Inner twists $4$

# Learn more

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [230,2,Mod(9,230)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(230, base_ring=CyclotomicField(22))

chi = DirichletCharacter(H, H._module([11, 10]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("230.9");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$230 = 2 \cdot 5 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 230.j (of order $$22$$, degree $$10$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.83655924649$$ Analytic rank: $$0$$ Dimension: $$120$$ Relative dimension: $$12$$ over $$\Q(\zeta_{22})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

## Embedding invariants

 Embedding label 9.4 Character $$\chi$$ $$=$$ 230.9 Dual form 230.2.j.a.179.4

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(-0.281733 - 0.959493i) q^{2} +(0.951117 - 0.824147i) q^{3} +(-0.841254 + 0.540641i) q^{4} +(-1.90749 - 1.16682i) q^{5} +(-1.05872 - 0.680401i) q^{6} +(-4.71597 - 2.15371i) q^{7} +(0.755750 + 0.654861i) q^{8} +(-0.201540 + 1.40174i) q^{9} +O(q^{10})$$ $$q+(-0.281733 - 0.959493i) q^{2} +(0.951117 - 0.824147i) q^{3} +(-0.841254 + 0.540641i) q^{4} +(-1.90749 - 1.16682i) q^{5} +(-1.05872 - 0.680401i) q^{6} +(-4.71597 - 2.15371i) q^{7} +(0.755750 + 0.654861i) q^{8} +(-0.201540 + 1.40174i) q^{9} +(-0.582157 + 2.15896i) q^{10} +(-2.19093 - 0.643316i) q^{11} +(-0.354563 + 1.20753i) q^{12} +(2.34205 - 1.06958i) q^{13} +(-0.737829 + 5.13171i) q^{14} +(-2.77588 + 0.462268i) q^{15} +(0.415415 - 0.909632i) q^{16} +(3.46614 - 5.39342i) q^{17} +(1.40174 - 0.201540i) q^{18} +(5.04389 - 3.24151i) q^{19} +(2.23552 - 0.0496729i) q^{20} +(-6.26041 + 1.83822i) q^{21} +2.28343i q^{22} +(-4.75560 - 0.619884i) q^{23} +1.25851 q^{24} +(2.27704 + 4.45141i) q^{25} +(-1.68609 - 1.94585i) q^{26} +(3.00476 + 4.67549i) q^{27} +(5.13171 - 0.737829i) q^{28} +(-1.24018 - 0.797013i) q^{29} +(1.22560 + 2.53320i) q^{30} +(0.0386867 - 0.0446468i) q^{31} +(-0.989821 - 0.142315i) q^{32} +(-2.61402 + 1.19378i) q^{33} +(-6.15147 - 1.80623i) q^{34} +(6.48267 + 9.61089i) q^{35} +(-0.588293 - 1.28818i) q^{36} +(-2.82112 - 0.405616i) q^{37} +(-4.53124 - 3.92634i) q^{38} +(1.34607 - 2.94749i) q^{39} +(-0.677478 - 2.13097i) q^{40} +(-1.69364 - 11.7796i) q^{41} +(3.52753 + 5.48894i) q^{42} +(-2.17198 + 1.88203i) q^{43} +(2.19093 - 0.643316i) q^{44} +(2.02002 - 2.43865i) q^{45} +(0.745033 + 4.73761i) q^{46} -2.51684i q^{47} +(-0.354563 - 1.20753i) q^{48} +(13.0179 + 15.0234i) q^{49} +(3.62958 - 3.43892i) q^{50} +(-1.14827 - 7.98638i) q^{51} +(-1.39200 + 2.16599i) q^{52} +(8.37345 + 3.82403i) q^{53} +(3.63957 - 4.20028i) q^{54} +(3.42855 + 3.78355i) q^{55} +(-2.15371 - 4.71597i) q^{56} +(2.12585 - 7.23997i) q^{57} +(-0.415331 + 1.41449i) q^{58} +(-4.59819 - 10.0686i) q^{59} +(2.08530 - 1.88964i) q^{60} +(-1.22319 + 1.41164i) q^{61} +(-0.0537376 - 0.0245411i) q^{62} +(3.96941 - 6.17652i) q^{63} +(0.142315 + 0.989821i) q^{64} +(-5.71545 - 0.692549i) q^{65} +(1.88188 + 2.17181i) q^{66} +(1.16513 + 3.96806i) q^{67} +6.41117i q^{68} +(-5.03401 + 3.32973i) q^{69} +(7.39520 - 8.92778i) q^{70} +(2.50686 - 0.736081i) q^{71} +(-1.07026 + 0.927386i) q^{72} +(3.81970 + 5.94357i) q^{73} +(0.405616 + 2.82112i) q^{74} +(5.83436 + 2.35719i) q^{75} +(-2.49070 + 5.45387i) q^{76} +(8.94686 + 7.75250i) q^{77} +(-3.20733 - 0.461144i) q^{78} +(-2.52526 - 5.52956i) q^{79} +(-1.85378 + 1.25040i) q^{80} +(2.63479 + 0.773644i) q^{81} +(-10.8252 + 4.94373i) q^{82} +(0.603766 + 0.0868084i) q^{83} +(4.27278 - 4.93105i) q^{84} +(-12.9048 + 6.24352i) q^{85} +(2.41771 + 1.55377i) q^{86} +(-1.83641 + 0.264036i) q^{87} +(-1.23452 - 1.92094i) q^{88} +(1.26042 + 1.45461i) q^{89} +(-2.90897 - 1.25115i) q^{90} -13.3486 q^{91} +(4.33580 - 2.04959i) q^{92} -0.0743478i q^{93} +(-2.41489 + 0.709075i) q^{94} +(-13.4035 + 0.297823i) q^{95} +(-1.05872 + 0.680401i) q^{96} +(5.40298 - 0.776832i) q^{97} +(10.7473 - 16.7232i) q^{98} +(1.34333 - 2.94147i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$120 q + 12 q^{4} - 4 q^{6} + 8 q^{9}+O(q^{10})$$ 120 * q + 12 * q^4 - 4 * q^6 + 8 * q^9 $$120 q + 12 q^{4} - 4 q^{6} + 8 q^{9} + 8 q^{11} - 6 q^{15} - 12 q^{16} - 16 q^{19} - 22 q^{20} + 4 q^{24} - 52 q^{25} - 4 q^{26} - 8 q^{29} - 44 q^{30} + 12 q^{31} + 16 q^{35} - 8 q^{36} - 36 q^{39} - 28 q^{41} - 8 q^{44} + 16 q^{45} - 4 q^{46} - 58 q^{49} + 12 q^{50} - 24 q^{51} - 6 q^{54} - 36 q^{55} + 22 q^{56} - 102 q^{59} - 38 q^{60} + 72 q^{61} + 12 q^{64} - 138 q^{65} + 80 q^{66} - 212 q^{69} - 108 q^{70} + 176 q^{71} - 88 q^{74} - 100 q^{75} + 16 q^{76} - 104 q^{79} - 22 q^{80} - 28 q^{81} - 22 q^{84} + 2 q^{85} + 62 q^{86} + 48 q^{89} + 24 q^{90} - 56 q^{91} + 24 q^{94} + 18 q^{95} - 4 q^{96} + 188 q^{99}+O(q^{100})$$ 120 * q + 12 * q^4 - 4 * q^6 + 8 * q^9 + 8 * q^11 - 6 * q^15 - 12 * q^16 - 16 * q^19 - 22 * q^20 + 4 * q^24 - 52 * q^25 - 4 * q^26 - 8 * q^29 - 44 * q^30 + 12 * q^31 + 16 * q^35 - 8 * q^36 - 36 * q^39 - 28 * q^41 - 8 * q^44 + 16 * q^45 - 4 * q^46 - 58 * q^49 + 12 * q^50 - 24 * q^51 - 6 * q^54 - 36 * q^55 + 22 * q^56 - 102 * q^59 - 38 * q^60 + 72 * q^61 + 12 * q^64 - 138 * q^65 + 80 * q^66 - 212 * q^69 - 108 * q^70 + 176 * q^71 - 88 * q^74 - 100 * q^75 + 16 * q^76 - 104 * q^79 - 22 * q^80 - 28 * q^81 - 22 * q^84 + 2 * q^85 + 62 * q^86 + 48 * q^89 + 24 * q^90 - 56 * q^91 + 24 * q^94 + 18 * q^95 - 4 * q^96 + 188 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/230\mathbb{Z}\right)^\times$$.

 $$n$$ $$47$$ $$51$$ $$\chi(n)$$ $$-1$$ $$e\left(\frac{5}{11}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.281733 0.959493i −0.199215 0.678464i
$$3$$ 0.951117 0.824147i 0.549128 0.475822i −0.335552 0.942022i $$-0.608923\pi$$
0.884679 + 0.466200i $$0.154377\pi$$
$$4$$ −0.841254 + 0.540641i −0.420627 + 0.270320i
$$5$$ −1.90749 1.16682i −0.853056 0.521819i
$$6$$ −1.05872 0.680401i −0.432222 0.277772i
$$7$$ −4.71597 2.15371i −1.78247 0.814026i −0.974360 0.224994i $$-0.927764\pi$$
−0.808109 0.589033i $$-0.799509\pi$$
$$8$$ 0.755750 + 0.654861i 0.267198 + 0.231528i
$$9$$ −0.201540 + 1.40174i −0.0671801 + 0.467248i
$$10$$ −0.582157 + 2.15896i −0.184094 + 0.682722i
$$11$$ −2.19093 0.643316i −0.660592 0.193967i −0.0657822 0.997834i $$-0.520954\pi$$
−0.594809 + 0.803867i $$0.702772\pi$$
$$12$$ −0.354563 + 1.20753i −0.102353 + 0.348584i
$$13$$ 2.34205 1.06958i 0.649568 0.296648i −0.0632491 0.997998i $$-0.520146\pi$$
0.712817 + 0.701350i $$0.247419\pi$$
$$14$$ −0.737829 + 5.13171i −0.197193 + 1.37151i
$$15$$ −2.77588 + 0.462268i −0.716730 + 0.119357i
$$16$$ 0.415415 0.909632i 0.103854 0.227408i
$$17$$ 3.46614 5.39342i 0.840662 1.30810i −0.108752 0.994069i $$-0.534685\pi$$
0.949414 0.314027i $$-0.101678\pi$$
$$18$$ 1.40174 0.201540i 0.330394 0.0475035i
$$19$$ 5.04389 3.24151i 1.15715 0.743654i 0.186098 0.982531i $$-0.440416\pi$$
0.971050 + 0.238877i $$0.0767794\pi$$
$$20$$ 2.23552 0.0496729i 0.499877 0.0111072i
$$21$$ −6.26041 + 1.83822i −1.36613 + 0.401133i
$$22$$ 2.28343i 0.486829i
$$23$$ −4.75560 0.619884i −0.991611 0.129255i
$$24$$ 1.25851 0.256892
$$25$$ 2.27704 + 4.45141i 0.455409 + 0.890282i
$$26$$ −1.68609 1.94585i −0.330668 0.381612i
$$27$$ 3.00476 + 4.67549i 0.578266 + 0.899799i
$$28$$ 5.13171 0.737829i 0.969802 0.139437i
$$29$$ −1.24018 0.797013i −0.230295 0.148002i 0.420405 0.907337i $$-0.361888\pi$$
−0.650700 + 0.759335i $$0.725524\pi$$
$$30$$ 1.22560 + 2.53320i 0.223763 + 0.462497i
$$31$$ 0.0386867 0.0446468i 0.00694833 0.00801880i −0.752265 0.658861i $$-0.771039\pi$$
0.759213 + 0.650842i $$0.225584\pi$$
$$32$$ −0.989821 0.142315i −0.174977 0.0251579i
$$33$$ −2.61402 + 1.19378i −0.455043 + 0.207811i
$$34$$ −6.15147 1.80623i −1.05497 0.309767i
$$35$$ 6.48267 + 9.61089i 1.09577 + 1.62454i
$$36$$ −0.588293 1.28818i −0.0980489 0.214697i
$$37$$ −2.82112 0.405616i −0.463790 0.0666829i −0.0935407 0.995615i $$-0.529819\pi$$
−0.370249 + 0.928933i $$0.620728\pi$$
$$38$$ −4.53124 3.92634i −0.735064 0.636936i
$$39$$ 1.34607 2.94749i 0.215544 0.471976i
$$40$$ −0.677478 2.13097i −0.107119 0.336936i
$$41$$ −1.69364 11.7796i −0.264503 1.83966i −0.497848 0.867264i $$-0.665876\pi$$
0.233346 0.972394i $$-0.425033\pi$$
$$42$$ 3.52753 + 5.48894i 0.544309 + 0.846961i
$$43$$ −2.17198 + 1.88203i −0.331224 + 0.287007i −0.804556 0.593877i $$-0.797597\pi$$
0.473332 + 0.880884i $$0.343051\pi$$
$$44$$ 2.19093 0.643316i 0.330296 0.0969836i
$$45$$ 2.02002 2.43865i 0.301127 0.363533i
$$46$$ 0.745033 + 4.73761i 0.109849 + 0.698522i
$$47$$ 2.51684i 0.367118i −0.983009 0.183559i $$-0.941238\pi$$
0.983009 0.183559i $$-0.0587619\pi$$
$$48$$ −0.354563 1.20753i −0.0511767 0.174292i
$$49$$ 13.0179 + 15.0234i 1.85970 + 2.14620i
$$50$$ 3.62958 3.43892i 0.513300 0.486336i
$$51$$ −1.14827 7.98638i −0.160790 1.11832i
$$52$$ −1.39200 + 2.16599i −0.193036 + 0.300369i
$$53$$ 8.37345 + 3.82403i 1.15018 + 0.525271i 0.896949 0.442135i $$-0.145779\pi$$
0.253233 + 0.967405i $$0.418506\pi$$
$$54$$ 3.63957 4.20028i 0.495282 0.571586i
$$55$$ 3.42855 + 3.78355i 0.462306 + 0.510174i
$$56$$ −2.15371 4.71597i −0.287802 0.630198i
$$57$$ 2.12585 7.23997i 0.281575 0.958957i
$$58$$ −0.415331 + 1.41449i −0.0545356 + 0.185731i
$$59$$ −4.59819 10.0686i −0.598633 1.31082i −0.930083 0.367350i $$-0.880265\pi$$
0.331450 0.943473i $$-0.392462\pi$$
$$60$$ 2.08530 1.88964i 0.269211 0.243951i
$$61$$ −1.22319 + 1.41164i −0.156614 + 0.180742i −0.828634 0.559791i $$-0.810881\pi$$
0.672020 + 0.740533i $$0.265427\pi$$
$$62$$ −0.0537376 0.0245411i −0.00682468 0.00311673i
$$63$$ 3.96941 6.17652i 0.500099 0.778168i
$$64$$ 0.142315 + 0.989821i 0.0177894 + 0.123728i
$$65$$ −5.71545 0.692549i −0.708914 0.0859001i
$$66$$ 1.88188 + 2.17181i 0.231644 + 0.267331i
$$67$$ 1.16513 + 3.96806i 0.142343 + 0.484776i 0.999544 0.0302066i $$-0.00961653\pi$$
−0.857201 + 0.514983i $$0.827798\pi$$
$$68$$ 6.41117i 0.777468i
$$69$$ −5.03401 + 3.32973i −0.606023 + 0.400853i
$$70$$ 7.39520 8.92778i 0.883896 1.06707i
$$71$$ 2.50686 0.736081i 0.297510 0.0873567i −0.129571 0.991570i $$-0.541360\pi$$
0.427081 + 0.904213i $$0.359542\pi$$
$$72$$ −1.07026 + 0.927386i −0.126131 + 0.109294i
$$73$$ 3.81970 + 5.94357i 0.447062 + 0.695642i 0.989513 0.144445i $$-0.0461398\pi$$
−0.542451 + 0.840088i $$0.682503\pi$$
$$74$$ 0.405616 + 2.82112i 0.0471519 + 0.327949i
$$75$$ 5.83436 + 2.35719i 0.673693 + 0.272185i
$$76$$ −2.49070 + 5.45387i −0.285703 + 0.625601i
$$77$$ 8.94686 + 7.75250i 1.01959 + 0.883480i
$$78$$ −3.20733 0.461144i −0.363158 0.0522143i
$$79$$ −2.52526 5.52956i −0.284114 0.622124i 0.712736 0.701433i $$-0.247456\pi$$
−0.996850 + 0.0793090i $$0.974729\pi$$
$$80$$ −1.85378 + 1.25040i −0.207259 + 0.139799i
$$81$$ 2.63479 + 0.773644i 0.292755 + 0.0859605i
$$82$$ −10.8252 + 4.94373i −1.19545 + 0.545943i
$$83$$ 0.603766 + 0.0868084i 0.0662719 + 0.00952846i 0.175371 0.984502i $$-0.443887\pi$$
−0.109099 + 0.994031i $$0.534797\pi$$
$$84$$ 4.27278 4.93105i 0.466198 0.538021i
$$85$$ −12.9048 + 6.24352i −1.39972 + 0.677205i
$$86$$ 2.41771 + 1.55377i 0.260709 + 0.167547i
$$87$$ −1.83641 + 0.264036i −0.196884 + 0.0283076i
$$88$$ −1.23452 1.92094i −0.131600 0.204773i
$$89$$ 1.26042 + 1.45461i 0.133605 + 0.154188i 0.818609 0.574351i $$-0.194745\pi$$
−0.685005 + 0.728539i $$0.740200\pi$$
$$90$$ −2.90897 1.25115i −0.306633 0.131883i
$$91$$ −13.3486 −1.39931
$$92$$ 4.33580 2.04959i 0.452039 0.213685i
$$93$$ 0.0743478i 0.00770951i
$$94$$ −2.41489 + 0.709075i −0.249077 + 0.0731355i
$$95$$ −13.4035 + 0.297823i −1.37517 + 0.0305560i
$$96$$ −1.05872 + 0.680401i −0.108056 + 0.0694431i
$$97$$ 5.40298 0.776832i 0.548590 0.0788753i 0.137554 0.990494i $$-0.456076\pi$$
0.411036 + 0.911619i $$0.365167\pi$$
$$98$$ 10.7473 16.7232i 1.08564 1.68929i
$$99$$ 1.34333 2.94147i 0.135009 0.295629i
$$100$$ −4.32219 2.51370i −0.432219 0.251370i
$$101$$ −0.137115 + 0.953658i −0.0136435 + 0.0948925i −0.995505 0.0947050i $$-0.969809\pi$$
0.981862 + 0.189597i $$0.0607183\pi$$
$$102$$ −7.33937 + 3.35178i −0.726706 + 0.331875i
$$103$$ −1.20605 + 4.10742i −0.118835 + 0.404716i −0.997329 0.0730377i $$-0.976731\pi$$
0.878494 + 0.477754i $$0.158549\pi$$
$$104$$ 2.47043 + 0.725383i 0.242245 + 0.0711297i
$$105$$ 14.0866 + 3.79841i 1.37471 + 0.370686i
$$106$$ 1.31005 9.11162i 0.127244 0.884999i
$$107$$ −11.1022 9.62014i −1.07329 0.930014i −0.0755495 0.997142i $$-0.524071\pi$$
−0.997744 + 0.0671276i $$0.978617\pi$$
$$108$$ −5.05553 2.30878i −0.486468 0.222163i
$$109$$ 10.5609 + 6.78706i 1.01155 + 0.650083i 0.937793 0.347194i $$-0.112865\pi$$
0.0737550 + 0.997276i $$0.476502\pi$$
$$110$$ 2.66436 4.35562i 0.254037 0.415292i
$$111$$ −3.01750 + 1.93923i −0.286409 + 0.184064i
$$112$$ −3.91817 + 3.39511i −0.370232 + 0.320808i
$$113$$ 2.52010 + 8.58266i 0.237071 + 0.807389i 0.988971 + 0.148112i $$0.0473195\pi$$
−0.751900 + 0.659277i $$0.770862\pi$$
$$114$$ −7.54562 −0.706712
$$115$$ 8.34797 + 6.73137i 0.778452 + 0.627704i
$$116$$ 1.47420 0.136876
$$117$$ 1.02726 + 3.49852i 0.0949700 + 0.323438i
$$118$$ −8.36531 + 7.24859i −0.770090 + 0.667286i
$$119$$ −27.9621 + 17.9701i −2.56328 + 1.64732i
$$120$$ −2.40059 1.46846i −0.219143 0.134051i
$$121$$ −4.86745 3.12812i −0.442496 0.284375i
$$122$$ 1.69907 + 0.775940i 0.153827 + 0.0702503i
$$123$$ −11.3189 9.80792i −1.02060 0.884351i
$$124$$ −0.00840741 + 0.0584748i −0.000755008 + 0.00525120i
$$125$$ 0.850572 11.1479i 0.0760774 0.997102i
$$126$$ −7.04464 2.06849i −0.627586 0.184276i
$$127$$ 4.01637 13.6785i 0.356395 1.21377i −0.564983 0.825103i $$-0.691117\pi$$
0.921378 0.388668i $$-0.127065\pi$$
$$128$$ 0.909632 0.415415i 0.0804009 0.0367178i
$$129$$ −0.514736 + 3.58006i −0.0453199 + 0.315207i
$$130$$ 0.945733 + 5.67905i 0.0829463 + 0.498085i
$$131$$ −2.83256 + 6.20244i −0.247482 + 0.541910i −0.992081 0.125603i $$-0.959914\pi$$
0.744599 + 0.667512i $$0.232641\pi$$
$$132$$ 1.55365 2.41752i 0.135228 0.210418i
$$133$$ −30.7681 + 4.42379i −2.66793 + 0.383591i
$$134$$ 3.47907 2.23586i 0.300546 0.193149i
$$135$$ −0.276070 12.4245i −0.0237604 1.06933i
$$136$$ 6.15147 1.80623i 0.527484 0.154883i
$$137$$ 6.35078i 0.542584i −0.962497 0.271292i $$-0.912549\pi$$
0.962497 0.271292i $$-0.0874509\pi$$
$$138$$ 4.61310 + 3.89200i 0.392693 + 0.331309i
$$139$$ 4.15230 0.352194 0.176097 0.984373i $$-0.443653\pi$$
0.176097 + 0.984373i $$0.443653\pi$$
$$140$$ −10.6496 4.58040i −0.900056 0.387115i
$$141$$ −2.07425 2.39381i −0.174683 0.201595i
$$142$$ −1.41253 2.19794i −0.118537 0.184447i
$$143$$ −5.81936 + 0.836697i −0.486639 + 0.0699681i
$$144$$ 1.19135 + 0.765633i 0.0992790 + 0.0638027i
$$145$$ 1.43565 + 2.96736i 0.119224 + 0.246426i
$$146$$ 4.62668 5.33947i 0.382907 0.441898i
$$147$$ 24.7630 + 3.56039i 2.04242 + 0.293656i
$$148$$ 2.59257 1.18399i 0.213108 0.0973232i
$$149$$ −6.77849 1.99034i −0.555315 0.163055i −0.00797916 0.999968i $$-0.502540\pi$$
−0.547336 + 0.836913i $$0.684358\pi$$
$$150$$ 0.617982 6.26212i 0.0504580 0.511300i
$$151$$ 6.96279 + 15.2464i 0.566623 + 1.24073i 0.948576 + 0.316550i $$0.102525\pi$$
−0.381952 + 0.924182i $$0.624748\pi$$
$$152$$ 5.93466 + 0.853275i 0.481364 + 0.0692097i
$$153$$ 6.86162 + 5.94563i 0.554729 + 0.480675i
$$154$$ 4.91785 10.7686i 0.396291 0.867757i
$$155$$ −0.125889 + 0.0400228i −0.0101117 + 0.00321471i
$$156$$ 0.461144 + 3.20733i 0.0369211 + 0.256792i
$$157$$ −3.78167 5.88439i −0.301810 0.469625i 0.656913 0.753966i $$-0.271862\pi$$
−0.958723 + 0.284341i $$0.908225\pi$$
$$158$$ −4.59412 + 3.98083i −0.365489 + 0.316698i
$$159$$ 11.1157 3.26386i 0.881532 0.258841i
$$160$$ 1.72202 + 1.42641i 0.136138 + 0.112768i
$$161$$ 21.0922 + 13.1655i 1.66230 + 1.03759i
$$162$$ 2.74602i 0.215748i
$$163$$ −4.38321 14.9278i −0.343319 1.16924i −0.932480 0.361222i $$-0.882360\pi$$
0.589161 0.808016i $$-0.299458\pi$$
$$164$$ 7.79329 + 8.99394i 0.608554 + 0.702309i
$$165$$ 6.37916 + 0.772971i 0.496617 + 0.0601757i
$$166$$ −0.0868084 0.603766i −0.00673764 0.0468613i
$$167$$ −0.520879 + 0.810504i −0.0403068 + 0.0627187i −0.860822 0.508906i $$-0.830050\pi$$
0.820515 + 0.571624i $$0.193687\pi$$
$$168$$ −5.93509 2.71046i −0.457902 0.209117i
$$169$$ −4.17199 + 4.81473i −0.320922 + 0.370364i
$$170$$ 9.62632 + 10.6231i 0.738305 + 0.814751i
$$171$$ 3.52722 + 7.72354i 0.269733 + 0.590634i
$$172$$ 0.809683 2.75753i 0.0617378 0.210259i
$$173$$ −2.08713 + 7.10812i −0.158682 + 0.540420i −1.00000 0.000119804i $$-0.999962\pi$$
0.841318 + 0.540540i $$0.181780\pi$$
$$174$$ 0.770717 + 1.68763i 0.0584279 + 0.127939i
$$175$$ −1.15142 25.8968i −0.0870389 1.95762i
$$176$$ −1.49533 + 1.72570i −0.112715 + 0.130080i
$$177$$ −12.6714 5.78685i −0.952444 0.434967i
$$178$$ 1.04058 1.61918i 0.0779950 0.121363i
$$179$$ 0.522586 + 3.63466i 0.0390599 + 0.271667i 0.999987 0.00513471i $$-0.00163444\pi$$
−0.960927 + 0.276802i $$0.910725\pi$$
$$180$$ −0.380918 + 3.14363i −0.0283919 + 0.234312i
$$181$$ 3.34960 + 3.86565i 0.248974 + 0.287331i 0.866456 0.499254i $$-0.166393\pi$$
−0.617482 + 0.786585i $$0.711847\pi$$
$$182$$ 3.76074 + 12.8079i 0.278764 + 0.949384i
$$183$$ 2.35073i 0.173771i
$$184$$ −3.18811 3.58273i −0.235030 0.264123i
$$185$$ 4.90798 + 4.06546i 0.360842 + 0.298899i
$$186$$ −0.0713362 + 0.0209462i −0.00523062 + 0.00153585i
$$187$$ −11.0638 + 9.58680i −0.809062 + 0.701056i
$$188$$ 1.36070 + 2.11730i 0.0992396 + 0.154420i
$$189$$ −4.10068 28.5209i −0.298281 2.07459i
$$190$$ 4.06195 + 12.7766i 0.294685 + 0.926913i
$$191$$ 6.61488 14.4846i 0.478636 1.04807i −0.504200 0.863587i $$-0.668213\pi$$
0.982836 0.184480i $$-0.0590601\pi$$
$$192$$ 0.951117 + 0.824147i 0.0686409 + 0.0594777i
$$193$$ 16.2334 + 2.33400i 1.16850 + 0.168005i 0.699130 0.714995i $$-0.253571\pi$$
0.469373 + 0.883000i $$0.344480\pi$$
$$194$$ −2.26756 4.96527i −0.162801 0.356485i
$$195$$ −6.00682 + 4.05168i −0.430158 + 0.290147i
$$196$$ −19.0736 5.60052i −1.36240 0.400037i
$$197$$ 8.28190 3.78222i 0.590061 0.269472i −0.0979275 0.995194i $$-0.531221\pi$$
0.687988 + 0.725722i $$0.258494\pi$$
$$198$$ −3.20078 0.460203i −0.227470 0.0327052i
$$199$$ 15.5311 17.9239i 1.10097 1.27059i 0.141148 0.989989i $$-0.454921\pi$$
0.959824 0.280601i $$-0.0905338\pi$$
$$200$$ −1.19418 + 4.85530i −0.0844412 + 0.343322i
$$201$$ 4.37844 + 2.81385i 0.308831 + 0.198474i
$$202$$ 0.953658 0.137115i 0.0670991 0.00964740i
$$203$$ 4.13210 + 6.42968i 0.290017 + 0.451275i
$$204$$ 5.28375 + 6.09777i 0.369936 + 0.426929i
$$205$$ −10.5141 + 24.4456i −0.734334 + 1.70735i
$$206$$ 4.28082 0.298259
$$207$$ 1.82736 6.54120i 0.127011 0.454645i
$$208$$ 2.57472i 0.178525i
$$209$$ −13.1362 + 3.85712i −0.908647 + 0.266803i
$$210$$ −0.324101 14.5861i −0.0223651 1.00654i
$$211$$ 2.20758 1.41873i 0.151976 0.0976692i −0.462443 0.886649i $$-0.653027\pi$$
0.614419 + 0.788980i $$0.289391\pi$$
$$212$$ −9.11162 + 1.31005i −0.625789 + 0.0899748i
$$213$$ 1.77768 2.76612i 0.121805 0.189532i
$$214$$ −6.10260 + 13.3628i −0.417165 + 0.913464i
$$215$$ 6.33903 1.05564i 0.432318 0.0719941i
$$216$$ −0.790953 + 5.50120i −0.0538175 + 0.374309i
$$217$$ −0.278601 + 0.127233i −0.0189127 + 0.00863714i
$$218$$ 3.53680 12.0452i 0.239542 0.815805i
$$219$$ 8.53136 + 2.50503i 0.576496 + 0.169274i
$$220$$ −4.92982 1.32931i −0.332369 0.0896223i
$$221$$ 2.34919 16.3390i 0.158023 1.09908i
$$222$$ 2.71081 + 2.34893i 0.181938 + 0.157650i
$$223$$ 13.0959 + 5.98069i 0.876966 + 0.400497i 0.802447 0.596723i $$-0.203531\pi$$
0.0745183 + 0.997220i $$0.476258\pi$$
$$224$$ 4.36146 + 2.80294i 0.291413 + 0.187279i
$$225$$ −6.69865 + 2.29469i −0.446577 + 0.152980i
$$226$$ 7.52501 4.83603i 0.500556 0.321688i
$$227$$ −1.86666 + 1.61747i −0.123894 + 0.107355i −0.714604 0.699529i $$-0.753393\pi$$
0.590710 + 0.806884i $$0.298848\pi$$
$$228$$ 2.12585 + 7.23997i 0.140788 + 0.479478i
$$229$$ −24.3983 −1.61228 −0.806142 0.591722i $$-0.798448\pi$$
−0.806142 + 0.591722i $$0.798448\pi$$
$$230$$ 4.10681 9.90627i 0.270795 0.653200i
$$231$$ 14.8987 0.980264
$$232$$ −0.415331 1.41449i −0.0272678 0.0928656i
$$233$$ 15.5592 13.4821i 1.01931 0.883241i 0.0261146 0.999659i $$-0.491687\pi$$
0.993200 + 0.116418i $$0.0371411\pi$$
$$234$$ 3.06739 1.97129i 0.200522 0.128867i
$$235$$ −2.93671 + 4.80084i −0.191570 + 0.313173i
$$236$$ 9.31175 + 5.98430i 0.606143 + 0.389545i
$$237$$ −6.95899 3.17806i −0.452035 0.206437i
$$238$$ 25.1200 + 21.7666i 1.62829 + 1.41092i
$$239$$ −0.442468 + 3.07743i −0.0286209 + 0.199062i −0.999115 0.0420623i $$-0.986607\pi$$
0.970494 + 0.241125i $$0.0775163\pi$$
$$240$$ −0.732649 + 2.71706i −0.0472923 + 0.175386i
$$241$$ 9.87037 + 2.89820i 0.635806 + 0.186690i 0.583723 0.811953i $$-0.301596\pi$$
0.0520837 + 0.998643i $$0.483414\pi$$
$$242$$ −1.63009 + 5.55158i −0.104786 + 0.356869i
$$243$$ −12.0230 + 5.49071i −0.771275 + 0.352229i
$$244$$ 0.265825 1.84886i 0.0170177 0.118361i
$$245$$ −7.30179 43.8466i −0.466494 2.80126i
$$246$$ −6.22172 + 13.6237i −0.396682 + 0.868613i
$$247$$ 8.34600 12.9866i 0.531043 0.826319i
$$248$$ 0.0584748 0.00840741i 0.00371316 0.000533871i
$$249$$ 0.645795 0.415027i 0.0409256 0.0263013i
$$250$$ −10.9360 + 2.32462i −0.691654 + 0.147022i
$$251$$ −12.7825 + 3.75329i −0.806827 + 0.236906i −0.659035 0.752113i $$-0.729035\pi$$
−0.147793 + 0.989018i $$0.547217\pi$$
$$252$$ 7.34204i 0.462505i
$$253$$ 10.0204 + 4.41748i 0.629979 + 0.277725i
$$254$$ −14.2560 −0.894499
$$255$$ −7.12839 + 16.5738i −0.446397 + 1.03789i
$$256$$ −0.654861 0.755750i −0.0409288 0.0472343i
$$257$$ −2.22905 3.46846i −0.139044 0.216357i 0.764747 0.644331i $$-0.222864\pi$$
−0.903791 + 0.427974i $$0.859228\pi$$
$$258$$ 3.58006 0.514736i 0.222885 0.0320460i
$$259$$ 12.4307 + 7.98876i 0.772409 + 0.496397i
$$260$$ 5.18256 2.50740i 0.321409 0.155502i
$$261$$ 1.36715 1.57778i 0.0846247 0.0976621i
$$262$$ 6.74922 + 0.970392i 0.416968 + 0.0599510i
$$263$$ 8.89016 4.06000i 0.548191 0.250350i −0.122012 0.992529i $$-0.538935\pi$$
0.670202 + 0.742178i $$0.266207\pi$$
$$264$$ −2.75731 0.809619i −0.169701 0.0498286i
$$265$$ −11.5103 17.0646i −0.707073 1.04827i
$$266$$ 12.9130 + 28.2755i 0.791745 + 1.73368i
$$267$$ 2.39762 + 0.344726i 0.146732 + 0.0210969i
$$268$$ −3.12547 2.70823i −0.190918 0.165432i
$$269$$ 9.72977 21.3052i 0.593234 1.29900i −0.340234 0.940341i $$-0.610506\pi$$
0.933468 0.358661i $$-0.116767\pi$$
$$270$$ −11.8434 + 3.76527i −0.720768 + 0.229147i
$$271$$ 0.396200 + 2.75563i 0.0240675 + 0.167393i 0.998310 0.0581087i $$-0.0185070\pi$$
−0.974243 + 0.225502i $$0.927598\pi$$
$$272$$ −3.46614 5.39342i −0.210166 0.327024i
$$273$$ −12.6961 + 11.0012i −0.768402 + 0.665824i
$$274$$ −6.09353 + 1.78922i −0.368124 + 0.108091i
$$275$$ −2.12519 11.2176i −0.128154 0.676447i
$$276$$ 2.43469 5.52274i 0.146551 0.332430i
$$277$$ 5.14479i 0.309121i −0.987983 0.154560i $$-0.950604\pi$$
0.987983 0.154560i $$-0.0493961\pi$$
$$278$$ −1.16984 3.98411i −0.0701623 0.238951i
$$279$$ 0.0547864 + 0.0632269i 0.00327998 + 0.00378529i
$$280$$ −1.39452 + 11.5087i −0.0833386 + 0.687775i
$$281$$ 3.35457 + 23.3315i 0.200117 + 1.39184i 0.803934 + 0.594719i $$0.202737\pi$$
−0.603817 + 0.797123i $$0.706354\pi$$
$$282$$ −1.71246 + 2.66464i −0.101975 + 0.158677i
$$283$$ 21.6945 + 9.90757i 1.28961 + 0.588944i 0.937815 0.347135i $$-0.112845\pi$$
0.351792 + 0.936078i $$0.385573\pi$$
$$284$$ −1.71095 + 1.97454i −0.101526 + 0.117168i
$$285$$ −12.5028 + 11.3297i −0.740602 + 0.671113i
$$286$$ 2.44231 + 5.34791i 0.144417 + 0.316228i
$$287$$ −17.3826 + 59.1997i −1.02606 + 3.49445i
$$288$$ 0.398978 1.35879i 0.0235100 0.0800677i
$$289$$ −10.0128 21.9249i −0.588987 1.28970i
$$290$$ 2.44270 2.21350i 0.143440 0.129981i
$$291$$ 4.49865 5.19171i 0.263715 0.304344i
$$292$$ −6.42667 2.93496i −0.376093 0.171756i
$$293$$ −0.570702 + 0.888029i −0.0333407 + 0.0518792i −0.857524 0.514444i $$-0.827998\pi$$
0.824183 + 0.566323i $$0.191635\pi$$
$$294$$ −3.56039 24.7630i −0.207646 1.44421i
$$295$$ −2.97731 + 24.5711i −0.173346 + 1.43058i
$$296$$ −1.86644 2.15399i −0.108485 0.125198i
$$297$$ −3.57540 12.1767i −0.207466 0.706564i
$$298$$ 7.06465i 0.409244i
$$299$$ −11.8009 + 3.63469i −0.682462 + 0.210200i
$$300$$ −6.18257 + 1.17129i −0.356951 + 0.0676247i
$$301$$ 14.2964 4.19779i 0.824028 0.241956i
$$302$$ 12.6671 10.9761i 0.728912 0.631606i
$$303$$ 0.655542 + 1.02004i 0.0376599 + 0.0585999i
$$304$$ −0.853275 5.93466i −0.0489387 0.340376i
$$305$$ 3.98037 1.26544i 0.227915 0.0724589i
$$306$$ 3.77165 8.25875i 0.215611 0.472121i
$$307$$ −15.4098 13.3526i −0.879482 0.762075i 0.0928499 0.995680i $$-0.470402\pi$$
−0.972332 + 0.233605i $$0.924948\pi$$
$$308$$ −11.7179 1.68478i −0.667689 0.0959992i
$$309$$ 2.23803 + 4.90059i 0.127317 + 0.278785i
$$310$$ 0.0738688 + 0.109514i 0.00419546 + 0.00621999i
$$311$$ 18.1903 + 5.34115i 1.03148 + 0.302869i 0.753311 0.657664i $$-0.228455\pi$$
0.278166 + 0.960533i $$0.410274\pi$$
$$312$$ 2.94749 1.34607i 0.166869 0.0762064i
$$313$$ −18.8059 2.70388i −1.06297 0.152832i −0.411427 0.911443i $$-0.634970\pi$$
−0.651544 + 0.758610i $$0.725879\pi$$
$$314$$ −4.58061 + 5.28631i −0.258499 + 0.298324i
$$315$$ −14.7785 + 7.15006i −0.832675 + 0.402860i
$$316$$ 5.11389 + 3.28650i 0.287679 + 0.184880i
$$317$$ −6.25125 + 0.898794i −0.351105 + 0.0504813i −0.315611 0.948889i $$-0.602210\pi$$
−0.0354940 + 0.999370i $$0.511300\pi$$
$$318$$ −6.26331 9.74589i −0.351229 0.546523i
$$319$$ 2.20441 + 2.54403i 0.123424 + 0.142438i
$$320$$ 0.883483 2.05413i 0.0493882 0.114829i
$$321$$ −18.4879 −1.03190
$$322$$ 6.68989 23.9470i 0.372813 1.33451i
$$323$$ 38.4393i 2.13882i
$$324$$ −2.63479 + 0.773644i −0.146377 + 0.0429802i
$$325$$ 10.0941 + 7.98995i 0.559919 + 0.443203i
$$326$$ −13.0883 + 8.41131i −0.724891 + 0.465859i
$$327$$ 15.6382 2.24843i 0.864793 0.124338i
$$328$$ 6.43400 10.0115i 0.355258 0.552792i
$$329$$ −5.42054 + 11.8693i −0.298844 + 0.654377i
$$330$$ −1.05556 6.33853i −0.0581065 0.348925i
$$331$$ −3.10124 + 21.5696i −0.170460 + 1.18557i 0.707456 + 0.706757i $$0.249843\pi$$
−0.877916 + 0.478815i $$0.841066\pi$$
$$332$$ −0.554852 + 0.253393i −0.0304515 + 0.0139067i
$$333$$ 1.13714 3.87274i 0.0623149 0.212225i
$$334$$ 0.924421 + 0.271435i 0.0505821 + 0.0148522i
$$335$$ 2.40756 8.92854i 0.131539 0.487818i
$$336$$ −0.928563 + 6.45830i −0.0506573 + 0.352329i
$$337$$ 5.28719 + 4.58138i 0.288012 + 0.249563i 0.786868 0.617121i $$-0.211701\pi$$
−0.498857 + 0.866685i $$0.666247\pi$$
$$338$$ 5.79508 + 2.64653i 0.315211 + 0.143952i
$$339$$ 9.47029 + 6.08618i 0.514355 + 0.330556i
$$340$$ 7.48070 12.2292i 0.405698 0.663224i
$$341$$ −0.113482 + 0.0729304i −0.00614539 + 0.00394940i
$$342$$ 6.41695 5.56031i 0.346989 0.300667i
$$343$$ −18.8113 64.0655i −1.01572 3.45921i
$$344$$ −2.87394 −0.154953
$$345$$ 13.4875 0.477638i 0.726145 0.0257152i
$$346$$ 7.40820 0.398267
$$347$$ 4.65039 + 15.8378i 0.249646 + 0.850216i 0.985003 + 0.172536i $$0.0551962\pi$$
−0.735357 + 0.677680i $$0.762986\pi$$
$$348$$ 1.40214 1.21496i 0.0751625 0.0651287i
$$349$$ 16.0887 10.3396i 0.861206 0.553464i −0.0338450 0.999427i $$-0.510775\pi$$
0.895051 + 0.445964i $$0.147139\pi$$
$$350$$ −24.5234 + 8.40076i −1.31083 + 0.449039i
$$351$$ 12.0381 + 7.73642i 0.642546 + 0.412939i
$$352$$ 2.07708 + 0.948571i 0.110709 + 0.0505590i
$$353$$ −10.3411 8.96065i −0.550404 0.476927i 0.334698 0.942325i $$-0.391366\pi$$
−0.885102 + 0.465398i $$0.845911\pi$$
$$354$$ −1.98249 + 13.7885i −0.105368 + 0.732851i
$$355$$ −5.64069 1.52100i −0.299377 0.0807262i
$$356$$ −1.84676 0.542257i −0.0978779 0.0287395i
$$357$$ −11.7852 + 40.1366i −0.623737 + 2.12425i
$$358$$ 3.34020 1.52542i 0.176535 0.0806209i
$$359$$ −3.09393 + 21.5187i −0.163291 + 1.13571i 0.729085 + 0.684423i $$0.239946\pi$$
−0.892376 + 0.451292i $$0.850963\pi$$
$$360$$ 3.12361 0.520175i 0.164629 0.0274156i
$$361$$ 7.04055 15.4167i 0.370555 0.811403i
$$362$$ 2.76537 4.30300i 0.145345 0.226161i
$$363$$ −7.20755 + 1.03629i −0.378298 + 0.0543911i
$$364$$ 11.2296 7.21680i 0.588589 0.378263i
$$365$$ −0.350946 15.7942i −0.0183693 0.826708i
$$366$$ 2.25551 0.662276i 0.117897 0.0346177i
$$367$$ 1.23164i 0.0642910i 0.999483 + 0.0321455i $$0.0102340\pi$$
−0.999483 + 0.0321455i $$0.989766\pi$$
$$368$$ −2.53941 + 4.06834i −0.132376 + 0.212077i
$$369$$ 16.8533 0.877345
$$370$$ 2.51804 5.85455i 0.130907 0.304363i
$$371$$ −31.2531 36.0680i −1.62258 1.87256i
$$372$$ 0.0401955 + 0.0625454i 0.00208404 + 0.00324283i
$$373$$ −1.37341 + 0.197466i −0.0711124 + 0.0102244i −0.177779 0.984070i $$-0.556891\pi$$
0.106667 + 0.994295i $$0.465982\pi$$
$$374$$ 12.3155 + 7.91468i 0.636819 + 0.409258i
$$375$$ −8.37855 11.3040i −0.432667 0.583735i
$$376$$ 1.64818 1.90210i 0.0849983 0.0980933i
$$377$$ −3.75703 0.540179i −0.193497 0.0278206i
$$378$$ −26.2103 + 11.9698i −1.34811 + 0.615662i
$$379$$ −20.3174 5.96573i −1.04364 0.306439i −0.285392 0.958411i $$-0.592124\pi$$
−0.758243 + 0.651972i $$0.773942\pi$$
$$380$$ 11.1147 7.49700i 0.570171 0.384588i
$$381$$ −7.45306 16.3199i −0.381832 0.836095i
$$382$$ −15.7615 2.26616i −0.806427 0.115947i
$$383$$ 2.48962 + 2.15726i 0.127213 + 0.110231i 0.716144 0.697953i $$-0.245905\pi$$
−0.588931 + 0.808184i $$0.700451\pi$$
$$384$$ 0.522803 1.14478i 0.0266792 0.0584193i
$$385$$ −8.02026 25.2272i −0.408750 1.28570i
$$386$$ −2.33400 16.2334i −0.118798 0.826256i
$$387$$ −2.20038 3.42386i −0.111852 0.174045i
$$388$$ −4.12529 + 3.57459i −0.209430 + 0.181472i
$$389$$ −19.1664 + 5.62777i −0.971777 + 0.285339i −0.728826 0.684699i $$-0.759934\pi$$
−0.242951 + 0.970039i $$0.578115\pi$$
$$390$$ 5.57988 + 4.62201i 0.282548 + 0.234045i
$$391$$ −19.8269 + 23.5003i −1.00269 + 1.18846i
$$392$$ 19.8789i 1.00403i
$$393$$ 2.41763 + 8.23369i 0.121953 + 0.415335i
$$394$$ −5.96229 6.88085i −0.300376 0.346652i
$$395$$ −1.63510 + 13.4941i −0.0822708 + 0.678963i
$$396$$ 0.460203 + 3.20078i 0.0231261 + 0.160845i
$$397$$ 5.40887 8.41637i 0.271463 0.422405i −0.678578 0.734528i $$-0.737404\pi$$
0.950042 + 0.312123i $$0.101040\pi$$
$$398$$ −21.5735 9.85227i −1.08138 0.493849i
$$399$$ −25.6182 + 29.5650i −1.28252 + 1.48010i
$$400$$ 4.99507 0.222089i 0.249753 0.0111045i
$$401$$ 4.05546 + 8.88023i 0.202520 + 0.443457i 0.983454 0.181156i $$-0.0579839\pi$$
−0.780934 + 0.624613i $$0.785257\pi$$
$$402$$ 1.46632 4.99384i 0.0731336 0.249070i
$$403$$ 0.0428529 0.145943i 0.00213465 0.00726996i
$$404$$ −0.400238 0.876398i −0.0199126 0.0436024i
$$405$$ −4.12313 4.55006i −0.204880 0.226094i
$$406$$ 5.00508 5.77617i 0.248398 0.286667i
$$407$$ 5.91995 + 2.70355i 0.293441 + 0.134010i
$$408$$ 4.36216 6.78766i 0.215959 0.336039i
$$409$$ −3.17875 22.1087i −0.157179 1.09321i −0.903800 0.427955i $$-0.859234\pi$$
0.746621 0.665250i $$-0.231675\pi$$
$$410$$ 26.4175 + 3.20105i 1.30467 + 0.158088i
$$411$$ −5.23398 6.04033i −0.258173 0.297948i
$$412$$ −1.20605 4.10742i −0.0594176 0.202358i
$$413$$ 57.3865i 2.82380i
$$414$$ −6.79106 + 0.0895267i −0.333763 + 0.00440000i
$$415$$ −1.05039 0.870075i −0.0515615 0.0427103i
$$416$$ −2.47043 + 0.725383i −0.121123 + 0.0355648i
$$417$$ 3.94933 3.42211i 0.193399 0.167582i
$$418$$ 7.40176 + 11.5174i 0.362032 + 0.563333i
$$419$$ 2.15594 + 14.9949i 0.105325 + 0.732549i 0.972222 + 0.234062i $$0.0752017\pi$$
−0.866897 + 0.498487i $$0.833889\pi$$
$$420$$ −13.9039 + 4.42035i −0.678443 + 0.215691i
$$421$$ 5.95606 13.0420i 0.290281 0.635626i −0.707166 0.707048i $$-0.750026\pi$$
0.997446 + 0.0714221i $$0.0227537\pi$$
$$422$$ −1.98321 1.71846i −0.0965410 0.0836532i
$$423$$ 3.52796 + 0.507244i 0.171535 + 0.0246631i
$$424$$ 3.82403 + 8.37345i 0.185711 + 0.406651i
$$425$$ 31.9009 + 3.14816i 1.54742 + 0.152708i
$$426$$ −3.15491 0.926364i −0.152856 0.0448825i
$$427$$ 8.80881 4.02285i 0.426288 0.194679i
$$428$$ 14.5408 + 2.09066i 0.702858 + 0.101056i
$$429$$ −4.84533 + 5.59180i −0.233935 + 0.269975i
$$430$$ −2.79879 5.78485i −0.134970 0.278970i
$$431$$ 16.9948 + 10.9219i 0.818610 + 0.526089i 0.881640 0.471923i $$-0.156440\pi$$
−0.0630297 + 0.998012i $$0.520076\pi$$
$$432$$ 5.50120 0.790953i 0.264677 0.0380547i
$$433$$ 8.01987 + 12.4792i 0.385411 + 0.599711i 0.978704 0.205276i $$-0.0658091\pi$$
−0.593294 + 0.804986i $$0.702173\pi$$
$$434$$ 0.200570 + 0.231470i 0.00962768 + 0.0111109i
$$435$$ 3.81102 + 1.63912i 0.182724 + 0.0785898i
$$436$$ −12.5537 −0.601215
$$437$$ −25.9961 + 12.2887i −1.24356 + 0.587849i
$$438$$ 8.89153i 0.424854i
$$439$$ 23.8354 6.99872i 1.13760 0.334031i 0.341912 0.939732i $$-0.388926\pi$$
0.795692 + 0.605701i $$0.207107\pi$$
$$440$$ 0.113425 + 5.10464i 0.00540730 + 0.243354i
$$441$$ −23.6826 + 15.2199i −1.12774 + 0.724757i
$$442$$ −16.3390 + 2.34919i −0.777165 + 0.111739i
$$443$$ 0.857306 1.33399i 0.0407318 0.0633800i −0.820291 0.571947i $$-0.806188\pi$$
0.861022 + 0.508567i $$0.169825\pi$$
$$444$$ 1.49006 3.26277i 0.0707150 0.154844i
$$445$$ −0.706978 4.24534i −0.0335140 0.201249i
$$446$$ 2.04889 14.2504i 0.0970179 0.674775i
$$447$$ −8.08747 + 3.69342i −0.382524 + 0.174693i
$$448$$ 1.46064 4.97447i 0.0690086 0.235022i
$$449$$ 28.5778 + 8.39119i 1.34867 + 0.396005i 0.874755 0.484566i $$-0.161023\pi$$
0.473914 + 0.880571i $$0.342841\pi$$
$$450$$ 4.08897 + 5.78082i 0.192756 + 0.272511i
$$451$$ −3.86732 + 26.8978i −0.182105 + 1.26657i
$$452$$ −6.76018 5.85773i −0.317972 0.275524i
$$453$$ 19.1877 + 8.76272i 0.901516 + 0.411709i
$$454$$ 2.07785 + 1.33535i 0.0975183 + 0.0626712i
$$455$$ 25.4623 + 15.5755i 1.19369 + 0.730189i
$$456$$ 6.34778 4.07947i 0.297262 0.191039i
$$457$$ 24.0354 20.8268i 1.12433 0.974235i 0.124489 0.992221i $$-0.460271\pi$$
0.999838 + 0.0179862i $$0.00572549\pi$$
$$458$$ 6.87379 + 23.4100i 0.321191 + 1.09388i
$$459$$ 35.6318 1.66315
$$460$$ −10.6620 1.14954i −0.497119 0.0535974i
$$461$$ −4.24198 −0.197569 −0.0987843 0.995109i $$-0.531495\pi$$
−0.0987843 + 0.995109i $$0.531495\pi$$
$$462$$ −4.19745 14.2952i −0.195283 0.665074i
$$463$$ 15.4907 13.4227i 0.719912 0.623807i −0.215855 0.976425i $$-0.569254\pi$$
0.935767 + 0.352618i $$0.114709\pi$$
$$464$$ −1.24018 + 0.797013i −0.0575738 + 0.0370004i
$$465$$ −0.0867508 + 0.141818i −0.00402297 + 0.00657664i
$$466$$ −17.3195 11.1306i −0.802310 0.515614i
$$467$$ 28.8610 + 13.1804i 1.33553 + 0.609915i 0.949847 0.312716i $$-0.101239\pi$$
0.385682 + 0.922632i $$0.373966\pi$$
$$468$$ −2.75562 2.38776i −0.127379 0.110374i
$$469$$ 3.05135 21.2226i 0.140898 0.979969i
$$470$$ 5.43374 + 1.46519i 0.250640 + 0.0675844i
$$471$$ −8.44641 2.48009i −0.389190 0.114277i
$$472$$ 3.11847 10.6205i 0.143539 0.488849i
$$473$$ 5.96941 2.72614i 0.274474 0.125348i
$$474$$ −1.08876 + 7.57247i −0.0500082 + 0.347815i
$$475$$ 25.9145 + 15.0714i 1.18904 + 0.691522i
$$476$$ 13.8078 30.2349i 0.632880 1.38581i
$$477$$ −7.04789 + 10.9667i −0.322701 + 0.502132i
$$478$$ 3.07743 0.442468i 0.140758 0.0202380i
$$479$$ −11.7958 + 7.58073i −0.538966 + 0.346372i −0.781634 0.623737i $$-0.785614\pi$$
0.242669 + 0.970109i $$0.421977\pi$$
$$480$$ 2.81341 0.0625137i 0.128414 0.00285335i
$$481$$ −7.04105 + 2.06744i −0.321044 + 0.0942671i
$$482$$ 10.2871i 0.468563i
$$483$$ 30.9115 4.86113i 1.40652 0.221189i
$$484$$ 5.78595 0.262998
$$485$$ −11.2126 4.82253i −0.509137 0.218980i
$$486$$ 8.65557 + 9.98906i 0.392624 + 0.453113i
$$487$$ 10.0725 + 15.6731i 0.456427 + 0.710214i 0.990845 0.135006i $$-0.0431054\pi$$
−0.534418 + 0.845221i $$0.679469\pi$$
$$488$$ −1.84886 + 0.265825i −0.0836938 + 0.0120333i
$$489$$ −16.4717 10.5857i −0.744875 0.478702i
$$490$$ −40.0134 + 19.3590i −1.80762 + 0.874552i
$$491$$ 4.84920 5.59627i 0.218841 0.252556i −0.635704 0.771933i $$-0.719290\pi$$
0.854546 + 0.519376i $$0.173836\pi$$
$$492$$ 14.8247 + 2.13147i 0.668348 + 0.0960939i
$$493$$ −8.59725 + 3.92623i −0.387201 + 0.176829i
$$494$$ −14.8119 4.34917i −0.666419 0.195678i
$$495$$ −5.99456 + 4.04341i −0.269436 + 0.181738i
$$496$$ −0.0245411 0.0537376i −0.00110193 0.00241289i
$$497$$ −13.4076 1.92772i −0.601413 0.0864701i
$$498$$ −0.580157 0.502709i −0.0259975 0.0225269i
$$499$$ 4.72459 10.3454i 0.211502 0.463124i −0.773914 0.633291i $$-0.781704\pi$$
0.985415 + 0.170167i $$0.0544308\pi$$
$$500$$ 5.31148 + 9.83810i 0.237537 + 0.439973i
$$501$$ 0.172558 + 1.20017i 0.00770931 + 0.0536194i
$$502$$ 7.20252 + 11.2073i 0.321464 + 0.500208i
$$503$$ −20.6382 + 17.8831i −0.920212 + 0.797368i −0.979619 0.200866i $$-0.935624\pi$$
0.0594070 + 0.998234i $$0.481079\pi$$
$$504$$ 7.04464 2.06849i 0.313793 0.0921380i
$$505$$ 1.37430 1.65910i 0.0611554 0.0738292i
$$506$$ 1.41546 10.8591i 0.0629249 0.482745i
$$507$$ 8.01770i 0.356079i
$$508$$ 4.01637 + 13.6785i 0.178198 + 0.606885i
$$509$$ 10.3925 + 11.9936i 0.460639 + 0.531606i 0.937784 0.347218i $$-0.112874\pi$$
−0.477145 + 0.878825i $$0.658328\pi$$
$$510$$ 17.9107 + 2.17026i 0.793100 + 0.0961009i
$$511$$ −5.21286 36.2562i −0.230603 1.60388i
$$512$$ −0.540641 + 0.841254i −0.0238932 + 0.0371785i
$$513$$ 30.3113 + 13.8427i 1.33828 + 0.611171i
$$514$$ −2.69997 + 3.11593i −0.119091 + 0.137438i
$$515$$ 7.09316 6.42762i 0.312562 0.283235i
$$516$$ −1.50251 3.29003i −0.0661441 0.144835i
$$517$$ −1.61912 + 5.51423i −0.0712089 + 0.242515i
$$518$$ 4.16301 14.1779i 0.182912 0.622942i
$$519$$ 3.87303 + 8.48076i 0.170007 + 0.372264i
$$520$$ −3.86593 4.26622i −0.169532 0.187086i
$$521$$ −7.20928 + 8.31996i −0.315844 + 0.364504i −0.891367 0.453282i $$-0.850253\pi$$
0.575523 + 0.817786i $$0.304799\pi$$
$$522$$ −1.89904 0.867263i −0.0831187 0.0379591i
$$523$$ −7.23208 + 11.2533i −0.316237 + 0.492074i −0.962589 0.270965i $$-0.912657\pi$$
0.646352 + 0.763039i $$0.276294\pi$$
$$524$$ −0.970392 6.74922i −0.0423918 0.294841i
$$525$$ −22.4379 23.6820i −0.979272 1.03357i
$$526$$ −6.40019 7.38621i −0.279061 0.322054i
$$527$$ −0.106705 0.363405i −0.00464816 0.0158302i
$$528$$ 2.87371i 0.125062i
$$529$$ 22.2315 + 5.89584i 0.966586 + 0.256341i
$$530$$ −13.1306 + 15.8517i −0.570356 + 0.688555i
$$531$$ 15.0403 4.41624i 0.652695 0.191649i
$$532$$ 23.4921 20.3560i 1.01851 0.882546i
$$533$$ −16.5658 25.7768i −0.717543 1.11652i
$$534$$ −0.344726 2.39762i −0.0149178 0.103755i
$$535$$ 9.95241 + 31.3047i 0.430280 + 1.35342i
$$536$$ −1.71798 + 3.76186i −0.0742056 + 0.162488i
$$537$$ 3.49254 + 3.02630i 0.150714 + 0.130595i
$$538$$ −23.1834 3.33327i −0.999507 0.143707i
$$539$$ −18.8565 41.2900i −0.812207 1.77848i
$$540$$ 6.94943 + 10.3029i 0.299056 + 0.443366i
$$541$$ −25.6122 7.52043i −1.10116 0.323328i −0.319844 0.947470i $$-0.603631\pi$$
−0.781311 + 0.624142i $$0.785449\pi$$
$$542$$ 2.53239 1.15650i 0.108775 0.0496761i
$$543$$ 6.37173 + 0.916116i 0.273437 + 0.0393143i
$$544$$ −4.19842 + 4.84524i −0.180006 + 0.207738i
$$545$$ −12.2255 25.2689i −0.523682 1.08240i
$$546$$ 14.1325 + 9.08240i 0.604815 + 0.388691i
$$547$$ −20.1556 + 2.89794i −0.861791 + 0.123907i −0.559018 0.829156i $$-0.688822\pi$$
−0.302774 + 0.953063i $$0.597913\pi$$
$$548$$ 3.43349 + 5.34262i 0.146671 + 0.228225i
$$549$$ −1.73223 1.99911i −0.0739300 0.0853198i
$$550$$ −10.1645 + 5.19947i −0.433415 + 0.221706i
$$551$$ −8.83885 −0.376548
$$552$$ −5.98496 0.780129i −0.254737 0.0332045i
$$553$$ 31.5159i 1.34019i
$$554$$ −4.93639 + 1.44946i −0.209727 + 0.0615815i
$$555$$ 8.01861 0.178172i 0.340371 0.00756300i
$$556$$ −3.49314 + 2.24491i −0.148142 + 0.0952052i
$$557$$ −13.8849 + 1.99635i −0.588322 + 0.0845880i −0.430046 0.902807i $$-0.641503\pi$$
−0.158276 + 0.987395i $$0.550594\pi$$
$$558$$ 0.0452306 0.0703802i 0.00191477 0.00297943i
$$559$$ −3.07391 + 6.73092i −0.130012 + 0.284687i
$$560$$ 11.4354 1.90433i 0.483233 0.0804728i
$$561$$ −2.62199 + 18.2363i −0.110700 + 0.769938i
$$562$$ 21.4413 9.79193i 0.904448 0.413048i
$$563$$ −0.372801 + 1.26964i −0.0157117 + 0.0535091i −0.966976 0.254868i $$-0.917968\pi$$
0.951264 + 0.308378i $$0.0997860\pi$$
$$564$$ 3.03916 + 0.892377i 0.127972 + 0.0375758i
$$565$$ 5.20739 19.3119i 0.219077 0.812456i
$$566$$ 3.39418 23.6071i 0.142668 0.992278i
$$567$$ −10.7594 9.32306i −0.451852 0.391532i
$$568$$ 2.37659 + 1.08535i 0.0997195 + 0.0455404i
$$569$$ 1.89726 + 1.21930i 0.0795375 + 0.0511156i 0.579805 0.814755i $$-0.303129\pi$$
−0.500268 + 0.865871i $$0.666765\pi$$
$$570$$ 14.3932 + 8.80441i 0.602865 + 0.368776i
$$571$$ 23.7275 15.2487i 0.992965 0.638140i 0.0600344 0.998196i $$-0.480879\pi$$
0.932930 + 0.360057i $$0.117243\pi$$
$$572$$ 4.44320 3.85006i 0.185780 0.160979i
$$573$$ −5.64590 19.2282i −0.235861 0.803268i
$$574$$ 61.6989 2.57526
$$575$$ −8.06936 22.5806i −0.336515 0.941678i
$$576$$ −1.41616 −0.0590066
$$577$$ 10.0441 + 34.2072i 0.418143 + 1.42407i 0.852217 + 0.523188i $$0.175257\pi$$
−0.434074 + 0.900877i $$0.642924\pi$$
$$578$$ −18.2159 + 15.7841i −0.757681 + 0.656534i
$$579$$ 17.3634 11.1588i 0.721598 0.463743i
$$580$$ −2.81203 1.72013i −0.116763 0.0714246i
$$581$$ −2.66038 1.70972i −0.110371 0.0709313i
$$582$$ −6.24883 2.85374i −0.259022 0.118291i
$$583$$ −15.8856 13.7650i −0.657915 0.570087i
$$584$$ −1.00547 + 6.99322i −0.0416068 + 0.289382i
$$585$$ 2.12267 7.87202i 0.0877615 0.325468i
$$586$$ 1.01284 + 0.297398i 0.0418402 + 0.0122854i
$$587$$ 11.1756 38.0606i 0.461267 1.57093i −0.320430 0.947272i $$-0.603827\pi$$
0.781697 0.623659i $$-0.214354\pi$$
$$588$$ −22.7569 + 10.3927i −0.938479 + 0.428589i
$$589$$ 0.0504082 0.350597i 0.00207703 0.0144461i
$$590$$ 24.4146 4.06577i 1.00513 0.167385i
$$591$$ 4.75995 10.4228i 0.195798 0.428738i
$$592$$ −1.54090 + 2.39768i −0.0633305 + 0.0985442i
$$593$$ −33.5886 + 4.82930i −1.37932 + 0.198316i −0.791743 0.610855i $$-0.790826\pi$$
−0.587574 + 0.809171i $$0.699917\pi$$
$$594$$ −10.6762 + 6.86115i −0.438048 + 0.281516i
$$595$$ 74.3054 1.65106i 3.04622 0.0676867i
$$596$$ 6.77849 1.99034i 0.277658 0.0815276i
$$597$$ 29.8476i 1.22158i
$$598$$ 6.81215 + 10.2988i 0.278569 + 0.421151i
$$599$$ 7.55512 0.308694 0.154347 0.988017i $$-0.450673\pi$$
0.154347 + 0.988017i $$0.450673\pi$$
$$600$$ 2.86568 + 5.60214i 0.116991 + 0.228706i
$$601$$ 6.29242 + 7.26184i 0.256673 + 0.296217i 0.869431 0.494054i $$-0.164485\pi$$
−0.612758 + 0.790270i $$0.709940\pi$$
$$602$$ −8.05549 12.5346i −0.328317 0.510872i
$$603$$ −5.79703 + 0.833486i −0.236073 + 0.0339422i
$$604$$ −14.1003 9.06170i −0.573732 0.368715i
$$605$$ 5.63465 + 11.6463i 0.229081 + 0.473490i
$$606$$ 0.794037 0.916367i 0.0322555 0.0372249i
$$607$$ 0.952905 + 0.137007i 0.0386772 + 0.00556094i 0.161626 0.986852i $$-0.448326\pi$$
−0.122949 + 0.992413i $$0.539235\pi$$
$$608$$ −5.45387 + 2.49070i −0.221184 + 0.101011i
$$609$$ 9.22911 + 2.70991i 0.373983 + 0.109811i
$$610$$ −2.33558 3.46262i −0.0945649 0.140197i
$$611$$ −2.69196 5.89456i −0.108905 0.238468i
$$612$$ −8.98681 1.29211i −0.363270 0.0522304i
$$613$$ −10.0312 8.69205i −0.405155 0.351068i 0.428319 0.903628i $$-0.359106\pi$$
−0.833474 + 0.552559i $$0.813651\pi$$
$$614$$ −8.47033 + 18.5474i −0.341835 + 0.748513i
$$615$$ 10.1467 + 31.9157i 0.409153 + 1.28697i
$$616$$ 1.68478 + 11.7179i 0.0678817 + 0.472128i
$$617$$ −25.3109 39.3845i −1.01898 1.58556i −0.790926 0.611912i $$-0.790401\pi$$
−0.228053 0.973649i $$-0.573236\pi$$
$$618$$ 4.07156 3.52803i 0.163782 0.141918i
$$619$$ −44.9233 + 13.1907i −1.80562 + 0.530178i −0.998210 0.0598105i $$-0.980950\pi$$
−0.807411 + 0.589989i $$0.799132\pi$$
$$620$$ 0.0842669 0.101730i 0.00338424 0.00408559i
$$621$$ −11.3912 24.0974i −0.457112 0.966995i
$$622$$ 18.9582i 0.760156i
$$623$$ −2.81132 9.57448i −0.112633 0.383593i
$$624$$ −2.12195 2.44886i −0.0849460 0.0980330i
$$625$$ −14.6301 + 20.2721i −0.585205 + 0.810885i
$$626$$ 2.70388 + 18.8059i 0.108069 + 0.751634i
$$627$$ −9.31518 + 14.4947i −0.372012 + 0.578863i
$$628$$ 6.36268 + 2.90574i 0.253899 + 0.115952i
$$629$$ −11.9661 + 13.8096i −0.477118 + 0.550623i
$$630$$ 11.0240 + 12.1655i 0.439208 + 0.484685i
$$631$$ −9.16538 20.0694i −0.364868 0.798950i −0.999655 0.0262625i $$-0.991639\pi$$
0.634787 0.772687i $$-0.281088\pi$$
$$632$$ 1.71262 5.83266i 0.0681245 0.232011i
$$633$$ 0.930429 3.16875i 0.0369812 0.125946i
$$634$$ 2.62357 + 5.74481i 0.104195 + 0.228156i
$$635$$ −23.6216 + 21.4052i −0.937394 + 0.849440i
$$636$$ −7.58654 + 8.75533i −0.300826 + 0.347172i
$$637$$ 46.5573 + 21.2620i 1.84467 + 0.842431i
$$638$$ 1.81992 2.83186i 0.0720515 0.112114i
$$639$$ 0.526563 + 3.66233i 0.0208305 + 0.144879i
$$640$$ −2.21983 0.268980i −0.0877465 0.0106324i
$$641$$ −13.2573 15.2998i −0.523633 0.604305i 0.430904 0.902398i $$-0.358195\pi$$
−0.954537 + 0.298093i $$0.903649\pi$$
$$642$$ 5.20866 + 17.7391i 0.205569 + 0.700105i
$$643$$ 3.05833i 0.120609i 0.998180 + 0.0603043i $$0.0192071\pi$$
−0.998180 + 0.0603043i $$0.980793\pi$$
$$644$$ −24.8617 + 0.327753i −0.979690 + 0.0129153i
$$645$$ 5.15916 6.22834i 0.203142 0.245240i
$$646$$ −36.8823 + 10.8296i −1.45111 + 0.426085i
$$647$$ −18.0228 + 15.6169i −0.708550 + 0.613962i −0.932726 0.360587i $$-0.882577\pi$$
0.224176 + 0.974549i $$0.428031\pi$$
$$648$$ 1.48461 + 2.31010i 0.0583211 + 0.0907494i
$$649$$ 3.59701 + 25.0178i 0.141195 + 0.982034i
$$650$$ 4.82247 11.9362i 0.189153 0.468178i
$$651$$ −0.160124 + 0.350622i −0.00627574 + 0.0137420i
$$652$$ 11.7580 + 10.1883i 0.460478 + 0.399006i
$$653$$ −39.6254 5.69727i −1.55066 0.222951i −0.686861 0.726788i $$-0.741012\pi$$
−0.863799 + 0.503837i $$0.831921\pi$$
$$654$$ −6.56313 14.3713i −0.256639 0.561961i
$$655$$ 12.6402 8.52600i 0.493895 0.333139i
$$656$$ −11.4186 3.35281i −0.445823 0.130905i
$$657$$ −9.10119 + 4.15637i −0.355071 + 0.162156i
$$658$$ 12.9157 + 1.85699i 0.503506 + 0.0723932i
$$659$$ −7.98515 + 9.21535i −0.311057 + 0.358979i −0.889655 0.456634i $$-0.849055\pi$$
0.578597 + 0.815613i $$0.303600\pi$$
$$660$$ −5.78439 + 2.79857i −0.225157 + 0.108934i
$$661$$ −11.2131 7.20620i −0.436138 0.280289i 0.304092 0.952643i $$-0.401647\pi$$
−0.740230 + 0.672354i $$0.765283\pi$$
$$662$$ 21.5696 3.10124i 0.838327 0.120533i
$$663$$ −11.2314 17.4763i −0.436190 0.678725i
$$664$$ 0.399448 + 0.460988i 0.0155016 + 0.0178898i
$$665$$ 63.8517 + 27.4626i 2.47606 + 1.06496i
$$666$$ −4.03624 −0.156401
$$667$$ 5.40373 + 4.55904i 0.209233 + 0.176527i
$$668$$ 0.963448i 0.0372769i
$$669$$ 17.3847 5.10461i 0.672131 0.197356i
$$670$$ −9.24516 + 0.205426i −0.357172 + 0.00793631i
$$671$$ 3.58807 2.30591i 0.138516 0.0890187i
$$672$$ 6.45830 0.928563i 0.249134 0.0358201i
$$673$$ 21.1368 32.8895i 0.814764 1.26780i −0.145682 0.989332i $$-0.546538\pi$$
0.960446 0.278467i $$-0.0898261\pi$$
$$674$$ 2.90622 6.36374i 0.111944 0.245122i
$$675$$ −13.9706 + 24.0217i −0.537728 + 0.924596i
$$676$$ 0.906660 6.30596i 0.0348715 0.242537i
$$677$$ 30.5911 13.9705i 1.17571 0.536929i 0.270843 0.962624i $$-0.412698\pi$$
0.904867 + 0.425695i $$0.139970\pi$$
$$678$$ 3.17156 10.8013i 0.121803 0.414823i
$$679$$ −27.1534 7.97295i −1.04205 0.305974i
$$680$$ −13.8414 3.73230i −0.530795 0.143127i
$$681$$ −0.442378 + 3.07680i −0.0169519 + 0.117903i
$$682$$ 0.101948 + 0.0883382i 0.00390378 + 0.00338265i
$$683$$ 16.8684 + 7.70352i 0.645450 + 0.294767i 0.711116 0.703075i $$-0.248190\pi$$
−0.0656664 + 0.997842i $$0.520917\pi$$
$$684$$ −7.14295 4.59049i −0.273117 0.175522i
$$685$$ −7.41024 + 12.1141i −0.283131 + 0.462854i
$$686$$ −56.1706 + 36.0987i −2.14461 + 1.37825i
$$687$$ −23.2056 + 20.1078i −0.885350 + 0.767160i
$$688$$ 0.809683 + 2.75753i 0.0308689 + 0.105130i
$$689$$ 23.7011 0.902942
$$690$$ −4.25817 12.8066i −0.162106 0.487540i
$$691$$ −20.4901 −0.779479 −0.389739 0.920925i $$-0.627435\pi$$
−0.389739 + 0.920925i $$0.627435\pi$$
$$692$$ −2.08713 7.10812i −0.0793408 0.270210i
$$693$$ −12.6702 + 10.9788i −0.481300 + 0.417049i
$$694$$ 13.8861 8.92403i 0.527108 0.338752i
$$695$$ −7.92048 4.84501i −0.300441 0.183782i
$$696$$ −1.56077 1.00305i −0.0591609 0.0380204i
$$697$$ −69.4025 31.6950i −2.62881 1.20054i
$$698$$ −14.4534 12.5240i −0.547070 0.474039i
$$699$$ 3.68735 25.6461i 0.139468 0.970024i
$$700$$ 14.9695 + 21.1633i 0.565794 + 0.799897i
$$701$$ −17.1244 5.02818i −0.646780 0.189912i −0.0581418 0.998308i $$-0.518518\pi$$
−0.588638 + 0.808397i $$0.700336\pi$$
$$702$$ 4.03151 13.7301i 0.152160 0.518208i
$$703$$ −15.5442 + 7.09882i −0.586262 + 0.267737i
$$704$$ 0.324966 2.26019i 0.0122476 0.0851840i
$$705$$ 1.16345 + 6.98644i 0.0438182 + 0.263125i
$$706$$ −5.68425 + 12.4468i −0.213929 + 0.468440i
$$707$$ 2.70054 4.20211i 0.101564 0.158037i
$$708$$ 13.7885 1.98249i 0.518204 0.0745065i
$$709$$ −29.6320 + 19.0433i −1.11285 + 0.715188i −0.961913 0.273355i $$-0.911867\pi$$
−0.150940 + 0.988543i $$0.548230\pi$$
$$710$$ 0.129780 + 5.84072i 0.00487056 + 0.219198i
$$711$$ 8.25996 2.42534i 0.309773 0.0909575i
$$712$$ 1.92472i 0.0721320i
$$713$$ −0.211654 + 0.188341i −0.00792651 + 0.00705343i
$$714$$ 41.8310 1.56549
$$715$$ 12.0766 + 5.19417i 0.451641 + 0.194251i
$$716$$ −2.40467 2.77514i −0.0898669 0.103712i
$$717$$ 2.11542 + 3.29166i 0.0790018 + 0.122929i
$$718$$ 21.5187 3.09393i 0.803072 0.115464i
$$719$$ 4.54145 + 2.91862i 0.169368 + 0.108846i 0.622578 0.782557i $$-0.286085\pi$$
−0.453211 + 0.891403i $$0.649722\pi$$
$$720$$ −1.37913 2.85053i −0.0513970 0.106233i
$$721$$ 14.5339 16.7730i 0.541270 0.624659i
$$722$$ −16.7757 2.41199i −0.624328 0.0897648i
$$723$$ 11.7764 5.37811i 0.437970 0.200014i
$$724$$ −4.90779 1.44106i −0.182397 0.0535565i
$$725$$ 0.723897 7.33537i 0.0268849 0.272429i
$$726$$ 3.02491 + 6.62364i 0.112265 + 0.245826i
$$727$$ 35.4857 + 5.10207i 1.31609 + 0.189225i 0.764356 0.644795i $$-0.223057\pi$$
0.551734 + 0.834020i $$0.313966\pi$$
$$728$$ −10.0882 8.74148i −0.373894 0.323981i
$$729$$ −10.3323 + 22.6246i −0.382679 + 0.837949i
$$730$$ −15.0556 + 4.78648i −0.557232 + 0.177156i
$$731$$ 2.62220 + 18.2378i 0.0969854 + 0.674549i
$$732$$ −1.27090 1.97756i −0.0469738 0.0730926i
$$733$$ −19.4711 + 16.8718i −0.719181 + 0.623174i −0.935573 0.353133i $$-0.885116\pi$$
0.216392 + 0.976307i $$0.430571\pi$$
$$734$$ 1.18175 0.346993i 0.0436192 0.0128077i
$$735$$ −43.0809 35.6855i −1.58906 1.31628i
$$736$$ 4.61898 + 1.29037i 0.170258 + 0.0475636i
$$737$$ 9.44331i 0.347849i
$$738$$ −4.74811 16.1706i −0.174780 0.595247i
$$739$$ 13.0349 + 15.0431i 0.479497 + 0.553369i 0.943029 0.332711i $$-0.107963\pi$$
−0.463532 + 0.886080i $$0.653418\pi$$
$$740$$ −6.32681 0.766628i −0.232578 0.0281818i
$$741$$ −2.76487 19.2301i −0.101570 0.706436i
$$742$$ −25.8020 + 40.1487i −0.947220 + 1.47390i
$$743$$ 26.9014 + 12.2855i 0.986916 + 0.450710i 0.842435 0.538798i $$-0.181121\pi$$
0.144481 + 0.989508i $$0.453849\pi$$
$$744$$ 0.0486875 0.0561883i 0.00178497 0.00205996i
$$745$$ 10.6075 + 11.7059i 0.388630 + 0.428870i
$$746$$ 0.576401 + 1.26214i 0.0211035 + 0.0462103i
$$747$$ −0.243366 + 0.828829i −0.00890431 + 0.0303253i
$$748$$ 4.12441 14.0464i 0.150803 0.513589i
$$749$$ 31.6388 + 69.2793i 1.15606 + 2.53141i
$$750$$ −8.48559 + 11.2239i −0.309850 + 0.409838i
$$751$$ −18.5605 + 21.4199i −0.677281 + 0.781624i −0.985497 0.169693i $$-0.945723\pi$$
0.308216 + 0.951316i $$0.400268\pi$$
$$752$$ −2.28940 1.04553i −0.0834857 0.0381266i
$$753$$ −9.06443 + 14.1045i −0.330326 + 0.513997i
$$754$$ 0.540179 + 3.75703i 0.0196722 + 0.136823i
$$755$$ 4.50838 37.2067i 0.164077 1.35409i
$$756$$ 18.8693 + 21.7763i 0.686268 + 0.791996i
$$757$$ 8.44639 + 28.7658i 0.306989 + 1.04551i 0.958078 + 0.286508i $$0.0924945\pi$$
−0.651088 + 0.759002i $$0.725687\pi$$
$$758$$ 21.1752i 0.769116i
$$759$$ 13.1713 4.05677i 0.478086 0.147251i
$$760$$ −10.3247 8.55231i −0.374516 0.310225i
$$761$$ 45.2253 13.2794i 1.63942 0.481376i 0.673276 0.739391i $$-0.264886\pi$$
0.966141 + 0.258015i $$0.0830683\pi$$
$$762$$ −13.5591 + 11.7490i −0.491194 + 0.425622i
$$763$$ −35.1874 54.7527i −1.27387 1.98218i
$$764$$ 2.26616 + 15.7615i 0.0819867 + 0.570230i
$$765$$ −6.15098 19.3475i −0.222389 0.699511i
$$766$$ 1.36847 2.99654i 0.0494450 0.108269i
$$767$$ −21.5384 18.6631i −0.777705 0.673886i
$$768$$ −1.24570 0.179104i −0.0449503 0.00646287i