# Properties

 Label 230.2.j.a.9.12 Level $230$ Weight $2$ Character 230.9 Analytic conductor $1.837$ Analytic rank $0$ Dimension $120$ CM no Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [230,2,Mod(9,230)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(230, base_ring=CyclotomicField(22))

chi = DirichletCharacter(H, H._module([11, 10]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("230.9");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$230 = 2 \cdot 5 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 230.j (of order $$22$$, degree $$10$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.83655924649$$ Analytic rank: $$0$$ Dimension: $$120$$ Relative dimension: $$12$$ over $$\Q(\zeta_{22})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

## Embedding invariants

 Embedding label 9.12 Character $$\chi$$ $$=$$ 230.9 Dual form 230.2.j.a.179.12

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(0.281733 + 0.959493i) q^{2} +(1.95972 - 1.69811i) q^{3} +(-0.841254 + 0.540641i) q^{4} +(-0.542800 - 2.16919i) q^{5} +(2.18144 + 1.40193i) q^{6} +(-0.748675 - 0.341908i) q^{7} +(-0.755750 - 0.654861i) q^{8} +(0.529991 - 3.68617i) q^{9} +O(q^{10})$$ $$q+(0.281733 + 0.959493i) q^{2} +(1.95972 - 1.69811i) q^{3} +(-0.841254 + 0.540641i) q^{4} +(-0.542800 - 2.16919i) q^{5} +(2.18144 + 1.40193i) q^{6} +(-0.748675 - 0.341908i) q^{7} +(-0.755750 - 0.654861i) q^{8} +(0.529991 - 3.68617i) q^{9} +(1.92839 - 1.13194i) q^{10} +(4.65913 + 1.36805i) q^{11} +(-0.730556 + 2.48804i) q^{12} +(-1.40114 + 0.639880i) q^{13} +(0.117133 - 0.814675i) q^{14} +(-4.74725 - 3.32927i) q^{15} +(0.415415 - 0.909632i) q^{16} +(-2.11270 + 3.28743i) q^{17} +(3.68617 - 0.529991i) q^{18} +(4.15438 - 2.66986i) q^{19} +(1.62938 + 1.53138i) q^{20} +(-2.04779 + 0.601286i) q^{21} +4.85583i q^{22} +(-4.76216 + 0.567295i) q^{23} -2.59308 q^{24} +(-4.41074 + 2.35487i) q^{25} +(-1.00871 - 1.16411i) q^{26} +(-1.01510 - 1.57953i) q^{27} +(0.814675 - 0.117133i) q^{28} +(3.23027 + 2.07597i) q^{29} +(1.85695 - 5.49291i) q^{30} +(-5.44700 + 6.28618i) q^{31} +(0.989821 + 0.142315i) q^{32} +(11.4537 - 5.23073i) q^{33} +(-3.74949 - 1.10095i) q^{34} +(-0.335282 + 1.80960i) q^{35} +(1.54704 + 3.38754i) q^{36} +(4.74986 + 0.682927i) q^{37} +(3.73214 + 3.23391i) q^{38} +(-1.65926 + 3.63328i) q^{39} +(-1.01029 + 1.99482i) q^{40} +(0.536960 + 3.73464i) q^{41} +(-1.15386 - 1.79544i) q^{42} +(-0.999683 + 0.866230i) q^{43} +(-4.65913 + 1.36805i) q^{44} +(-8.28367 + 0.851205i) q^{45} +(-1.88597 - 4.40943i) q^{46} +6.16285i q^{47} +(-0.730556 - 2.48804i) q^{48} +(-4.14041 - 4.77829i) q^{49} +(-3.50213 - 3.56863i) q^{50} +(1.44210 + 10.0301i) q^{51} +(0.832770 - 1.29582i) q^{52} +(-5.78267 - 2.64086i) q^{53} +(1.22956 - 1.41899i) q^{54} +(0.438565 - 10.8491i) q^{55} +(0.341908 + 0.748675i) q^{56} +(3.60772 - 12.2868i) q^{57} +(-1.08181 + 3.68429i) q^{58} +(0.542072 + 1.18697i) q^{59} +(5.79358 + 0.234200i) q^{60} +(8.65101 - 9.98380i) q^{61} +(-7.56614 - 3.45534i) q^{62} +(-1.65712 + 2.57853i) q^{63} +(0.142315 + 0.989821i) q^{64} +(2.14856 + 2.69201i) q^{65} +(8.24572 + 9.51607i) q^{66} +(-4.59599 - 15.6525i) q^{67} -3.90778i q^{68} +(-8.36918 + 9.19840i) q^{69} +(-1.83076 + 0.188123i) q^{70} +(-9.62477 + 2.82609i) q^{71} +(-2.81447 + 2.43875i) q^{72} +(3.34358 + 5.20271i) q^{73} +(0.682927 + 4.74986i) q^{74} +(-4.64499 + 12.1048i) q^{75} +(-2.05145 + 4.49206i) q^{76} +(-3.02043 - 2.61722i) q^{77} +(-3.95357 - 0.568438i) q^{78} +(-2.95556 - 6.47177i) q^{79} +(-2.19865 - 0.407364i) q^{80} +(6.04814 + 1.77590i) q^{81} +(-3.43208 + 1.56738i) q^{82} +(-11.8009 - 1.69671i) q^{83} +(1.39763 - 1.61295i) q^{84} +(8.27783 + 2.79843i) q^{85} +(-1.11278 - 0.715143i) q^{86} +(9.85565 - 1.41703i) q^{87} +(-2.62526 - 4.08498i) q^{88} +(3.58733 + 4.14000i) q^{89} +(-3.15051 - 7.70831i) q^{90} +1.26778 q^{91} +(3.69948 - 3.05186i) q^{92} +21.5688i q^{93} +(-5.91321 + 1.73627i) q^{94} +(-8.04642 - 7.56243i) q^{95} +(2.18144 - 1.40193i) q^{96} +(11.2508 - 1.61762i) q^{97} +(3.41825 - 5.31890i) q^{98} +(7.51215 - 16.4493i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$120 q + 12 q^{4} - 4 q^{6} + 8 q^{9}+O(q^{10})$$ 120 * q + 12 * q^4 - 4 * q^6 + 8 * q^9 $$120 q + 12 q^{4} - 4 q^{6} + 8 q^{9} + 8 q^{11} - 6 q^{15} - 12 q^{16} - 16 q^{19} - 22 q^{20} + 4 q^{24} - 52 q^{25} - 4 q^{26} - 8 q^{29} - 44 q^{30} + 12 q^{31} + 16 q^{35} - 8 q^{36} - 36 q^{39} - 28 q^{41} - 8 q^{44} + 16 q^{45} - 4 q^{46} - 58 q^{49} + 12 q^{50} - 24 q^{51} - 6 q^{54} - 36 q^{55} + 22 q^{56} - 102 q^{59} - 38 q^{60} + 72 q^{61} + 12 q^{64} - 138 q^{65} + 80 q^{66} - 212 q^{69} - 108 q^{70} + 176 q^{71} - 88 q^{74} - 100 q^{75} + 16 q^{76} - 104 q^{79} - 22 q^{80} - 28 q^{81} - 22 q^{84} + 2 q^{85} + 62 q^{86} + 48 q^{89} + 24 q^{90} - 56 q^{91} + 24 q^{94} + 18 q^{95} - 4 q^{96} + 188 q^{99}+O(q^{100})$$ 120 * q + 12 * q^4 - 4 * q^6 + 8 * q^9 + 8 * q^11 - 6 * q^15 - 12 * q^16 - 16 * q^19 - 22 * q^20 + 4 * q^24 - 52 * q^25 - 4 * q^26 - 8 * q^29 - 44 * q^30 + 12 * q^31 + 16 * q^35 - 8 * q^36 - 36 * q^39 - 28 * q^41 - 8 * q^44 + 16 * q^45 - 4 * q^46 - 58 * q^49 + 12 * q^50 - 24 * q^51 - 6 * q^54 - 36 * q^55 + 22 * q^56 - 102 * q^59 - 38 * q^60 + 72 * q^61 + 12 * q^64 - 138 * q^65 + 80 * q^66 - 212 * q^69 - 108 * q^70 + 176 * q^71 - 88 * q^74 - 100 * q^75 + 16 * q^76 - 104 * q^79 - 22 * q^80 - 28 * q^81 - 22 * q^84 + 2 * q^85 + 62 * q^86 + 48 * q^89 + 24 * q^90 - 56 * q^91 + 24 * q^94 + 18 * q^95 - 4 * q^96 + 188 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/230\mathbb{Z}\right)^\times$$.

 $$n$$ $$47$$ $$51$$ $$\chi(n)$$ $$-1$$ $$e\left(\frac{5}{11}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.281733 + 0.959493i 0.199215 + 0.678464i
$$3$$ 1.95972 1.69811i 1.13145 0.980403i 0.131505 0.991316i $$-0.458019\pi$$
0.999940 + 0.0109124i $$0.00347359\pi$$
$$4$$ −0.841254 + 0.540641i −0.420627 + 0.270320i
$$5$$ −0.542800 2.16919i −0.242748 0.970089i
$$6$$ 2.18144 + 1.40193i 0.890569 + 0.572334i
$$7$$ −0.748675 0.341908i −0.282972 0.129229i 0.268873 0.963176i $$-0.413349\pi$$
−0.551845 + 0.833946i $$0.686076\pi$$
$$8$$ −0.755750 0.654861i −0.267198 0.231528i
$$9$$ 0.529991 3.68617i 0.176664 1.22872i
$$10$$ 1.92839 1.13194i 0.609812 0.357952i
$$11$$ 4.65913 + 1.36805i 1.40478 + 0.412481i 0.894323 0.447421i $$-0.147658\pi$$
0.510458 + 0.859902i $$0.329476\pi$$
$$12$$ −0.730556 + 2.48804i −0.210893 + 0.718237i
$$13$$ −1.40114 + 0.639880i −0.388607 + 0.177471i −0.600131 0.799902i $$-0.704885\pi$$
0.211524 + 0.977373i $$0.432157\pi$$
$$14$$ 0.117133 0.814675i 0.0313050 0.217731i
$$15$$ −4.74725 3.32927i −1.22573 0.859613i
$$16$$ 0.415415 0.909632i 0.103854 0.227408i
$$17$$ −2.11270 + 3.28743i −0.512406 + 0.797320i −0.996999 0.0774206i $$-0.975332\pi$$
0.484592 + 0.874740i $$0.338968\pi$$
$$18$$ 3.68617 0.529991i 0.868839 0.124920i
$$19$$ 4.15438 2.66986i 0.953081 0.612508i 0.0310058 0.999519i $$-0.490129\pi$$
0.922075 + 0.387011i $$0.126493\pi$$
$$20$$ 1.62938 + 1.53138i 0.364341 + 0.342426i
$$21$$ −2.04779 + 0.601286i −0.446865 + 0.131211i
$$22$$ 4.85583i 1.03527i
$$23$$ −4.76216 + 0.567295i −0.992979 + 0.118289i
$$24$$ −2.59308 −0.529311
$$25$$ −4.41074 + 2.35487i −0.882147 + 0.470974i
$$26$$ −1.00871 1.16411i −0.197824 0.228301i
$$27$$ −1.01510 1.57953i −0.195357 0.303981i
$$28$$ 0.814675 0.117133i 0.153959 0.0221360i
$$29$$ 3.23027 + 2.07597i 0.599846 + 0.385498i 0.805037 0.593224i $$-0.202145\pi$$
−0.205191 + 0.978722i $$0.565782\pi$$
$$30$$ 1.85695 5.49291i 0.339032 1.00286i
$$31$$ −5.44700 + 6.28618i −0.978311 + 1.12903i 0.0133182 + 0.999911i $$0.495761\pi$$
−0.991629 + 0.129120i $$0.958785\pi$$
$$32$$ 0.989821 + 0.142315i 0.174977 + 0.0251579i
$$33$$ 11.4537 5.23073i 1.99383 0.910552i
$$34$$ −3.74949 1.10095i −0.643032 0.188811i
$$35$$ −0.335282 + 1.80960i −0.0566729 + 0.305879i
$$36$$ 1.54704 + 3.38754i 0.257840 + 0.564590i
$$37$$ 4.74986 + 0.682927i 0.780873 + 0.112273i 0.521212 0.853427i $$-0.325480\pi$$
0.259661 + 0.965700i $$0.416389\pi$$
$$38$$ 3.73214 + 3.23391i 0.605432 + 0.524610i
$$39$$ −1.65926 + 3.63328i −0.265695 + 0.581790i
$$40$$ −1.01029 + 1.99482i −0.159741 + 0.315409i
$$41$$ 0.536960 + 3.73464i 0.0838590 + 0.583252i 0.987816 + 0.155628i $$0.0497402\pi$$
−0.903957 + 0.427624i $$0.859351\pi$$
$$42$$ −1.15386 1.79544i −0.178044 0.277042i
$$43$$ −0.999683 + 0.866230i −0.152450 + 0.132099i −0.727746 0.685846i $$-0.759432\pi$$
0.575296 + 0.817945i $$0.304887\pi$$
$$44$$ −4.65913 + 1.36805i −0.702391 + 0.206241i
$$45$$ −8.28367 + 0.851205i −1.23486 + 0.126890i
$$46$$ −1.88597 4.40943i −0.278071 0.650136i
$$47$$ 6.16285i 0.898944i 0.893295 + 0.449472i $$0.148388\pi$$
−0.893295 + 0.449472i $$0.851612\pi$$
$$48$$ −0.730556 2.48804i −0.105447 0.359118i
$$49$$ −4.14041 4.77829i −0.591488 0.682613i
$$50$$ −3.50213 3.56863i −0.495276 0.504680i
$$51$$ 1.44210 + 10.0301i 0.201935 + 1.40449i
$$52$$ 0.832770 1.29582i 0.115484 0.179697i
$$53$$ −5.78267 2.64086i −0.794311 0.362750i −0.0234273 0.999726i $$-0.507458\pi$$
−0.770884 + 0.636976i $$0.780185\pi$$
$$54$$ 1.22956 1.41899i 0.167322 0.193100i
$$55$$ 0.438565 10.8491i 0.0591360 1.46289i
$$56$$ 0.341908 + 0.748675i 0.0456894 + 0.100046i
$$57$$ 3.60772 12.2868i 0.477854 1.62742i
$$58$$ −1.08181 + 3.68429i −0.142048 + 0.483771i
$$59$$ 0.542072 + 1.18697i 0.0705718 + 0.154531i 0.941630 0.336648i $$-0.109293\pi$$
−0.871059 + 0.491179i $$0.836566\pi$$
$$60$$ 5.79358 + 0.234200i 0.747948 + 0.0302351i
$$61$$ 8.65101 9.98380i 1.10765 1.27829i 0.150527 0.988606i $$-0.451903\pi$$
0.957121 0.289688i $$-0.0935517\pi$$
$$62$$ −7.56614 3.45534i −0.960901 0.438829i
$$63$$ −1.65712 + 2.57853i −0.208778 + 0.324865i
$$64$$ 0.142315 + 0.989821i 0.0177894 + 0.123728i
$$65$$ 2.14856 + 2.69201i 0.266496 + 0.333903i
$$66$$ 8.24572 + 9.51607i 1.01498 + 1.17135i
$$67$$ −4.59599 15.6525i −0.561490 1.91226i −0.361010 0.932562i $$-0.617568\pi$$
−0.200480 0.979698i $$-0.564250\pi$$
$$68$$ 3.90778i 0.473888i
$$69$$ −8.36918 + 9.19840i −1.00753 + 1.10736i
$$70$$ −1.83076 + 0.188123i −0.218818 + 0.0224851i
$$71$$ −9.62477 + 2.82609i −1.14225 + 0.335395i −0.797511 0.603304i $$-0.793851\pi$$
−0.344739 + 0.938699i $$0.612032\pi$$
$$72$$ −2.81447 + 2.43875i −0.331688 + 0.287410i
$$73$$ 3.34358 + 5.20271i 0.391336 + 0.608931i 0.979893 0.199525i $$-0.0639398\pi$$
−0.588556 + 0.808456i $$0.700303\pi$$
$$74$$ 0.682927 + 4.74986i 0.0793887 + 0.552160i
$$75$$ −4.64499 + 12.1048i −0.536357 + 1.39774i
$$76$$ −2.05145 + 4.49206i −0.235318 + 0.515274i
$$77$$ −3.02043 2.61722i −0.344210 0.298260i
$$78$$ −3.95357 0.568438i −0.447654 0.0643629i
$$79$$ −2.95556 6.47177i −0.332526 0.728131i 0.667335 0.744757i $$-0.267435\pi$$
−0.999862 + 0.0166262i $$0.994707\pi$$
$$80$$ −2.19865 0.407364i −0.245816 0.0455447i
$$81$$ 6.04814 + 1.77590i 0.672016 + 0.197322i
$$82$$ −3.43208 + 1.56738i −0.379010 + 0.173088i
$$83$$ −11.8009 1.69671i −1.29531 0.186238i −0.540035 0.841643i $$-0.681589\pi$$
−0.755278 + 0.655405i $$0.772498\pi$$
$$84$$ 1.39763 1.61295i 0.152494 0.175988i
$$85$$ 8.27783 + 2.79843i 0.897857 + 0.303532i
$$86$$ −1.11278 0.715143i −0.119995 0.0771159i
$$87$$ 9.85565 1.41703i 1.05664 0.151921i
$$88$$ −2.62526 4.08498i −0.279854 0.435461i
$$89$$ 3.58733 + 4.14000i 0.380256 + 0.438839i 0.913324 0.407234i $$-0.133506\pi$$
−0.533068 + 0.846072i $$0.678961\pi$$
$$90$$ −3.15051 7.70831i −0.332092 0.812527i
$$91$$ 1.26778 0.132899
$$92$$ 3.69948 3.05186i 0.385698 0.318178i
$$93$$ 21.5688i 2.23658i
$$94$$ −5.91321 + 1.73627i −0.609901 + 0.179083i
$$95$$ −8.04642 7.56243i −0.825545 0.775889i
$$96$$ 2.18144 1.40193i 0.222642 0.143084i
$$97$$ 11.2508 1.61762i 1.14235 0.164245i 0.454943 0.890520i $$-0.349660\pi$$
0.687403 + 0.726276i $$0.258750\pi$$
$$98$$ 3.41825 5.31890i 0.345295 0.537290i
$$99$$ 7.51215 16.4493i 0.755000 1.65322i
$$100$$ 2.43741 4.36567i 0.243741 0.436567i
$$101$$ 1.24825 8.68177i 0.124206 0.863868i −0.828503 0.559984i $$-0.810807\pi$$
0.952709 0.303884i $$-0.0982837\pi$$
$$102$$ −9.21748 + 4.20948i −0.912666 + 0.416801i
$$103$$ 0.711708 2.42386i 0.0701267 0.238830i −0.916970 0.398957i $$-0.869372\pi$$
0.987096 + 0.160127i $$0.0511905\pi$$
$$104$$ 1.47794 + 0.433964i 0.144924 + 0.0425536i
$$105$$ 2.41584 + 4.11566i 0.235762 + 0.401647i
$$106$$ 0.904718 6.29245i 0.0878739 0.611177i
$$107$$ 10.6370 + 9.21698i 1.02831 + 0.891039i 0.994110 0.108376i $$-0.0345651\pi$$
0.0342037 + 0.999415i $$0.489111\pi$$
$$108$$ 1.70792 + 0.779980i 0.164345 + 0.0750536i
$$109$$ −0.000631598 0 0.000405903i −6.04961e−5 0 3.88785e-5i 0.540611 0.841273i $$-0.318193\pi$$
−0.540671 + 0.841234i $$0.681830\pi$$
$$110$$ 10.5332 2.63575i 1.00430 0.251309i
$$111$$ 10.4681 6.72743i 0.993587 0.638540i
$$112$$ −0.622021 + 0.538985i −0.0587755 + 0.0509293i
$$113$$ 1.28201 + 4.36614i 0.120602 + 0.410732i 0.997558 0.0698376i $$-0.0222481\pi$$
−0.876957 + 0.480570i $$0.840430\pi$$
$$114$$ 12.8055 1.19934
$$115$$ 3.81547 + 10.0221i 0.355795 + 0.934564i
$$116$$ −3.83983 −0.356519
$$117$$ 1.61611 + 5.50398i 0.149410 + 0.508843i
$$118$$ −0.986172 + 0.854523i −0.0907845 + 0.0786652i
$$119$$ 2.70573 1.73887i 0.248034 0.159402i
$$120$$ 1.40753 + 5.62488i 0.128489 + 0.513479i
$$121$$ 10.5822 + 6.80076i 0.962018 + 0.618251i
$$122$$ 12.0167 + 5.48782i 1.08794 + 0.496844i
$$123$$ 7.39411 + 6.40703i 0.666704 + 0.577702i
$$124$$ 1.18375 8.23314i 0.106304 0.739358i
$$125$$ 7.50230 + 8.28948i 0.671026 + 0.741434i
$$126$$ −2.94095 0.863541i −0.262001 0.0769304i
$$127$$ 5.13644 17.4931i 0.455785 1.55226i −0.336241 0.941776i $$-0.609156\pi$$
0.792027 0.610487i $$-0.209026\pi$$
$$128$$ −0.909632 + 0.415415i −0.0804009 + 0.0367178i
$$129$$ −0.488147 + 3.39514i −0.0429790 + 0.298925i
$$130$$ −1.97765 + 2.81995i −0.173451 + 0.247326i
$$131$$ −8.14822 + 17.8421i −0.711914 + 1.55887i 0.112988 + 0.993596i $$0.463958\pi$$
−0.824901 + 0.565277i $$0.808769\pi$$
$$132$$ −6.80751 + 10.5927i −0.592518 + 0.921976i
$$133$$ −4.02313 + 0.578438i −0.348849 + 0.0501570i
$$134$$ 13.7236 8.81965i 1.18554 0.761902i
$$135$$ −2.87530 + 3.05932i −0.247466 + 0.263304i
$$136$$ 3.74949 1.10095i 0.321516 0.0944056i
$$137$$ 17.6600i 1.50880i −0.656416 0.754399i $$-0.727928\pi$$
0.656416 0.754399i $$-0.272072\pi$$
$$138$$ −11.1837 5.43868i −0.952018 0.462971i
$$139$$ 0.370257 0.0314048 0.0157024 0.999877i $$-0.495002\pi$$
0.0157024 + 0.999877i $$0.495002\pi$$
$$140$$ −0.696288 1.70360i −0.0588471 0.143981i
$$141$$ 10.4652 + 12.0775i 0.881327 + 1.01711i
$$142$$ −5.42322 8.43870i −0.455107 0.708160i
$$143$$ −7.40349 + 1.06446i −0.619111 + 0.0890148i
$$144$$ −3.13289 2.01339i −0.261074 0.167782i
$$145$$ 2.74977 8.13389i 0.228356 0.675483i
$$146$$ −4.04997 + 4.67392i −0.335178 + 0.386816i
$$147$$ −16.2281 2.33325i −1.33847 0.192443i
$$148$$ −4.36506 + 1.99345i −0.358805 + 0.163861i
$$149$$ −0.922676 0.270922i −0.0755886 0.0221948i 0.243720 0.969846i $$-0.421632\pi$$
−0.319308 + 0.947651i $$0.603451\pi$$
$$150$$ −12.9231 1.04652i −1.05517 0.0854479i
$$151$$ −8.48941 18.5892i −0.690859 1.51277i −0.850714 0.525629i $$-0.823830\pi$$
0.159855 0.987140i $$-0.448897\pi$$
$$152$$ −4.88806 0.702797i −0.396474 0.0570043i
$$153$$ 10.9983 + 9.53010i 0.889162 + 0.770463i
$$154$$ 1.66025 3.63544i 0.133787 0.292952i
$$155$$ 16.5925 + 8.40342i 1.33274 + 0.674979i
$$156$$ −0.568438 3.95357i −0.0455114 0.316539i
$$157$$ 10.4562 + 16.2702i 0.834498 + 1.29850i 0.952206 + 0.305457i $$0.0988091\pi$$
−0.117708 + 0.993048i $$0.537555\pi$$
$$158$$ 5.37694 4.65915i 0.427766 0.370662i
$$159$$ −15.8169 + 4.64426i −1.25436 + 0.368314i
$$160$$ −0.228568 2.22436i −0.0180699 0.175851i
$$161$$ 3.75927 + 1.20350i 0.296272 + 0.0948493i
$$162$$ 6.30348i 0.495248i
$$163$$ −5.64839 19.2366i −0.442416 1.50673i −0.815403 0.578894i $$-0.803485\pi$$
0.372987 0.927837i $$-0.378334\pi$$
$$164$$ −2.47082 2.85147i −0.192938 0.222663i
$$165$$ −17.5635 22.0059i −1.36732 1.71316i
$$166$$ −1.69671 11.8009i −0.131690 0.915924i
$$167$$ −6.42298 + 9.99436i −0.497025 + 0.773387i −0.995624 0.0934462i $$-0.970212\pi$$
0.498599 + 0.866833i $$0.333848\pi$$
$$168$$ 1.94138 + 0.886596i 0.149780 + 0.0684024i
$$169$$ −6.95944 + 8.03162i −0.535341 + 0.617817i
$$170$$ −0.352939 + 8.73093i −0.0270692 + 0.669632i
$$171$$ −7.63977 16.7288i −0.584228 1.27928i
$$172$$ 0.372667 1.26919i 0.0284156 0.0967747i
$$173$$ −1.47201 + 5.01320i −0.111915 + 0.381147i −0.996334 0.0855462i $$-0.972736\pi$$
0.884419 + 0.466693i $$0.154555\pi$$
$$174$$ 4.13629 + 9.05720i 0.313571 + 0.686625i
$$175$$ 4.10736 0.254965i 0.310487 0.0192735i
$$176$$ 3.17989 3.66979i 0.239693 0.276621i
$$177$$ 3.07792 + 1.40564i 0.231350 + 0.105654i
$$178$$ −2.96163 + 4.60839i −0.221984 + 0.345413i
$$179$$ −0.489136 3.40201i −0.0365597 0.254278i 0.963342 0.268275i $$-0.0864536\pi$$
−0.999902 + 0.0139968i $$0.995545\pi$$
$$180$$ 6.50847 5.19457i 0.485113 0.387180i
$$181$$ −2.33877 2.69908i −0.173839 0.200621i 0.662143 0.749377i $$-0.269647\pi$$
−0.835983 + 0.548756i $$0.815102\pi$$
$$182$$ 0.357175 + 1.21643i 0.0264756 + 0.0901675i
$$183$$ 34.2558i 2.53226i
$$184$$ 3.97050 + 2.68982i 0.292709 + 0.198296i
$$185$$ −1.09683 10.6740i −0.0806406 0.784770i
$$186$$ −20.6951 + 6.07662i −1.51744 + 0.445559i
$$187$$ −14.3407 + 12.4263i −1.04870 + 0.908702i
$$188$$ −3.33189 5.18452i −0.243003 0.378120i
$$189$$ 0.219927 + 1.52963i 0.0159974 + 0.111264i
$$190$$ 4.98916 9.85107i 0.361951 0.714672i
$$191$$ −2.15349 + 4.71548i −0.155821 + 0.341200i −0.971401 0.237444i $$-0.923691\pi$$
0.815580 + 0.578644i $$0.196418\pi$$
$$192$$ 1.95972 + 1.69811i 0.141431 + 0.122550i
$$193$$ −16.4760 2.36889i −1.18597 0.170516i −0.479033 0.877797i $$-0.659013\pi$$
−0.706933 + 0.707281i $$0.749922\pi$$
$$194$$ 4.72182 + 10.3393i 0.339007 + 0.742321i
$$195$$ 8.78190 + 1.62710i 0.628885 + 0.116519i
$$196$$ 6.06648 + 1.78128i 0.433320 + 0.127234i
$$197$$ −0.639181 + 0.291904i −0.0455398 + 0.0207973i −0.438055 0.898948i $$-0.644332\pi$$
0.392515 + 0.919746i $$0.371605\pi$$
$$198$$ 17.8994 + 2.57355i 1.27206 + 0.182894i
$$199$$ −16.5808 + 19.1353i −1.17538 + 1.35646i −0.254284 + 0.967130i $$0.581840\pi$$
−0.921097 + 0.389333i $$0.872706\pi$$
$$200$$ 4.87552 + 1.10873i 0.344752 + 0.0783987i
$$201$$ −35.5865 22.8701i −2.51008 1.61313i
$$202$$ 8.68177 1.24825i 0.610847 0.0878266i
$$203$$ −1.70863 2.65868i −0.119922 0.186603i
$$204$$ −6.63583 7.65816i −0.464601 0.536178i
$$205$$ 7.80966 3.19193i 0.545450 0.222934i
$$206$$ 2.52618 0.176008
$$207$$ −0.432758 + 17.8548i −0.0300788 + 1.24099i
$$208$$ 1.54034i 0.106803i
$$209$$ 23.0083 6.75585i 1.59152 0.467312i
$$210$$ −3.26833 + 3.47750i −0.225536 + 0.239970i
$$211$$ −3.12062 + 2.00550i −0.214832 + 0.138064i −0.643632 0.765335i $$-0.722573\pi$$
0.428799 + 0.903400i $$0.358937\pi$$
$$212$$ 6.29245 0.904718i 0.432167 0.0621363i
$$213$$ −14.0629 + 21.8822i −0.963571 + 1.49935i
$$214$$ −5.84685 + 12.8028i −0.399682 + 0.875182i
$$215$$ 2.42164 + 1.69831i 0.165155 + 0.115824i
$$216$$ −0.267209 + 1.85848i −0.0181813 + 0.126454i
$$217$$ 6.22733 2.84393i 0.422739 0.193058i
$$218$$ 0.000211520 0 0.000720370i 1.43259e−5 0 4.87896e-5i
$$219$$ 15.3873 + 4.51811i 1.03977 + 0.305305i
$$220$$ 5.49652 + 9.36395i 0.370576 + 0.631318i
$$221$$ 0.856636 5.95804i 0.0576236 0.400781i
$$222$$ 9.40413 + 8.14872i 0.631164 + 0.546906i
$$223$$ 14.6384 + 6.68515i 0.980262 + 0.447670i 0.840084 0.542456i $$-0.182505\pi$$
0.140177 + 0.990126i $$0.455233\pi$$
$$224$$ −0.692396 0.444976i −0.0462626 0.0297312i
$$225$$ 6.34280 + 17.5068i 0.422854 + 1.16712i
$$226$$ −3.82810 + 2.46017i −0.254641 + 0.163648i
$$227$$ 2.71777 2.35496i 0.180385 0.156304i −0.559988 0.828501i $$-0.689194\pi$$
0.740373 + 0.672196i $$0.234649\pi$$
$$228$$ 3.60772 + 12.2868i 0.238927 + 0.813711i
$$229$$ −16.9260 −1.11850 −0.559251 0.828998i $$-0.688911\pi$$
−0.559251 + 0.828998i $$0.688911\pi$$
$$230$$ −8.54118 + 6.48447i −0.563189 + 0.427573i
$$231$$ −10.3635 −0.681869
$$232$$ −1.08181 3.68429i −0.0710240 0.241885i
$$233$$ 17.4851 15.1509i 1.14548 0.992568i 0.145490 0.989360i $$-0.453524\pi$$
0.999995 0.00320806i $$-0.00102116\pi$$
$$234$$ −4.82572 + 3.10130i −0.315467 + 0.202738i
$$235$$ 13.3684 3.34520i 0.872056 0.218217i
$$236$$ −1.09775 0.705478i −0.0714572 0.0459227i
$$237$$ −16.7818 7.66401i −1.09010 0.497831i
$$238$$ 2.43072 + 2.10623i 0.157560 + 0.136527i
$$239$$ 1.86242 12.9534i 0.120470 0.837888i −0.836555 0.547883i $$-0.815434\pi$$
0.957025 0.290005i $$-0.0936570\pi$$
$$240$$ −5.00049 + 2.93522i −0.322780 + 0.189468i
$$241$$ 0.584949 + 0.171757i 0.0376799 + 0.0110638i 0.300518 0.953776i $$-0.402840\pi$$
−0.262838 + 0.964840i $$0.584659\pi$$
$$242$$ −3.54394 + 12.0695i −0.227813 + 0.775859i
$$243$$ 19.9921 9.13008i 1.28249 0.585695i
$$244$$ −1.88004 + 13.0760i −0.120357 + 0.837105i
$$245$$ −8.11758 + 11.5750i −0.518613 + 0.739499i
$$246$$ −4.06434 + 8.89966i −0.259133 + 0.567422i
$$247$$ −4.11249 + 6.39916i −0.261671 + 0.407169i
$$248$$ 8.23314 1.18375i 0.522805 0.0751680i
$$249$$ −26.0076 + 16.7141i −1.64816 + 1.05921i
$$250$$ −5.84006 + 9.53382i −0.369358 + 0.602972i
$$251$$ −10.6634 + 3.13106i −0.673068 + 0.197630i −0.600369 0.799723i $$-0.704979\pi$$
−0.0726991 + 0.997354i $$0.523161\pi$$
$$252$$ 3.06511i 0.193084i
$$253$$ −22.9636 3.87175i −1.44371 0.243415i
$$254$$ 18.2316 1.14395
$$255$$ 20.9743 8.57251i 1.31346 0.536831i
$$256$$ −0.654861 0.755750i −0.0409288 0.0472343i
$$257$$ 4.48404 + 6.97731i 0.279707 + 0.435233i 0.952473 0.304623i $$-0.0985303\pi$$
−0.672766 + 0.739855i $$0.734894\pi$$
$$258$$ −3.39514 + 0.488147i −0.211372 + 0.0303907i
$$259$$ −3.32260 2.13531i −0.206456 0.132682i
$$260$$ −3.26289 1.10306i −0.202356 0.0684091i
$$261$$ 9.36439 10.8071i 0.579641 0.668942i
$$262$$ −19.4150 2.79146i −1.19946 0.172457i
$$263$$ 3.66223 1.67248i 0.225823 0.103130i −0.299291 0.954162i $$-0.596750\pi$$
0.525114 + 0.851032i $$0.324023\pi$$
$$264$$ −12.0815 3.54745i −0.743566 0.218331i
$$265$$ −2.58967 + 13.9771i −0.159082 + 0.858609i
$$266$$ −1.68845 3.69720i −0.103526 0.226690i
$$267$$ 14.0603 + 2.02157i 0.860478 + 0.123718i
$$268$$ 12.3288 + 10.6830i 0.753101 + 0.652565i
$$269$$ 6.96519 15.2516i 0.424675 0.929909i −0.569486 0.822001i $$-0.692858\pi$$
0.994161 0.107908i $$-0.0344151\pi$$
$$270$$ −3.74546 1.89692i −0.227941 0.115443i
$$271$$ 1.43396 + 9.97339i 0.0871067 + 0.605840i 0.985883 + 0.167433i $$0.0535479\pi$$
−0.898777 + 0.438407i $$0.855543\pi$$
$$272$$ 2.11270 + 3.28743i 0.128102 + 0.199330i
$$273$$ 2.48449 2.15283i 0.150368 0.130295i
$$274$$ 16.9447 4.97541i 1.02367 0.300575i
$$275$$ −23.7718 + 4.93757i −1.43349 + 0.297747i
$$276$$ 2.06757 12.2629i 0.124453 0.738140i
$$277$$ 20.5207i 1.23297i −0.787367 0.616485i $$-0.788556\pi$$
0.787367 0.616485i $$-0.211444\pi$$
$$278$$ 0.104313 + 0.355259i 0.00625630 + 0.0213070i
$$279$$ 20.2851 + 23.4102i 1.21444 + 1.40153i
$$280$$ 1.43843 1.14804i 0.0859624 0.0686087i
$$281$$ −3.52636 24.5264i −0.210365 1.46312i −0.771940 0.635695i $$-0.780713\pi$$
0.561575 0.827426i $$-0.310196\pi$$
$$282$$ −8.63986 + 13.4439i −0.514496 + 0.800571i
$$283$$ −8.67802 3.96312i −0.515855 0.235583i 0.140438 0.990090i $$-0.455149\pi$$
−0.656293 + 0.754506i $$0.727876\pi$$
$$284$$ 6.56897 7.58100i 0.389797 0.449850i
$$285$$ −28.6106 1.15655i −1.69474 0.0685084i
$$286$$ −3.10715 6.80371i −0.183730 0.402312i
$$287$$ 0.874895 2.97962i 0.0516434 0.175881i
$$288$$ 1.04919 3.57323i 0.0618243 0.210554i
$$289$$ 0.718363 + 1.57300i 0.0422566 + 0.0925291i
$$290$$ 8.57911 + 0.346802i 0.503783 + 0.0203649i
$$291$$ 19.3015 22.2752i 1.13148 1.30579i
$$292$$ −5.62560 2.56912i −0.329213 0.150347i
$$293$$ −9.35142 + 14.5511i −0.546316 + 0.850084i −0.999138 0.0415169i $$-0.986781\pi$$
0.452822 + 0.891601i $$0.350417\pi$$
$$294$$ −2.33325 16.2281i −0.136078 0.946442i
$$295$$ 2.28053 1.82014i 0.132777 0.105973i
$$296$$ −3.14248 3.62662i −0.182653 0.210793i
$$297$$ −2.56863 8.74796i −0.149047 0.507608i
$$298$$ 0.961629i 0.0557057i
$$299$$ 6.30946 3.84207i 0.364886 0.222193i
$$300$$ −2.63673 12.6945i −0.152232 0.732916i
$$301$$ 1.04461 0.306725i 0.0602102 0.0176793i
$$302$$ 15.4445 13.3827i 0.888730 0.770089i
$$303$$ −12.2964 19.1335i −0.706407 1.09919i
$$304$$ −0.702797 4.88806i −0.0403082 0.280349i
$$305$$ −26.3525 13.3464i −1.50894 0.764215i
$$306$$ −6.04548 + 13.2378i −0.345597 + 0.756752i
$$307$$ −7.44626 6.45222i −0.424980 0.368248i 0.415953 0.909386i $$-0.363448\pi$$
−0.840933 + 0.541139i $$0.817993\pi$$
$$308$$ 3.95592 + 0.568776i 0.225410 + 0.0324090i
$$309$$ −2.72122 5.95864i −0.154805 0.338975i
$$310$$ −3.38837 + 18.2879i −0.192447 + 1.03868i
$$311$$ 8.06552 + 2.36825i 0.457354 + 0.134291i 0.502291 0.864699i $$-0.332491\pi$$
−0.0449372 + 0.998990i $$0.514309\pi$$
$$312$$ 3.63328 1.65926i 0.205694 0.0939372i
$$313$$ 18.7663 + 2.69819i 1.06074 + 0.152511i 0.650529 0.759481i $$-0.274547\pi$$
0.410207 + 0.911992i $$0.365456\pi$$
$$314$$ −12.6653 + 14.6165i −0.714744 + 0.824859i
$$315$$ 6.49281 + 2.19498i 0.365828 + 0.123673i
$$316$$ 5.98528 + 3.84650i 0.336698 + 0.216383i
$$317$$ −18.9449 + 2.72386i −1.06405 + 0.152987i −0.652035 0.758189i $$-0.726084\pi$$
−0.412016 + 0.911177i $$0.635175\pi$$
$$318$$ −8.91226 13.8678i −0.499775 0.777665i
$$319$$ 12.2102 + 14.0914i 0.683642 + 0.788965i
$$320$$ 2.06986 0.845983i 0.115709 0.0472919i
$$321$$ 36.4969 2.03706
$$322$$ −0.0956431 + 3.94606i −0.00532998 + 0.219905i
$$323$$ 19.2979i 1.07376i
$$324$$ −6.04814 + 1.77590i −0.336008 + 0.0986609i
$$325$$ 4.67323 6.12185i 0.259224 0.339579i
$$326$$ 16.8661 10.8392i 0.934126 0.600327i
$$327$$ −0.00192702 0.000277064i −0.000106565 1.53217e-5i
$$328$$ 2.03986 3.17408i 0.112632 0.175259i
$$329$$ 2.10713 4.61397i 0.116170 0.254376i
$$330$$ 16.1663 23.0518i 0.889928 1.26896i
$$331$$ −4.43315 + 30.8332i −0.243668 + 1.69475i 0.389736 + 0.920927i $$0.372566\pi$$
−0.633404 + 0.773821i $$0.718343\pi$$
$$332$$ 10.8448 4.95266i 0.595187 0.271813i
$$333$$ 5.03477 17.1469i 0.275904 0.939642i
$$334$$ −11.3991 3.34707i −0.623730 0.183144i
$$335$$ −31.4585 + 18.4658i −1.71876 + 1.00889i
$$336$$ −0.303734 + 2.11252i −0.0165701 + 0.115247i
$$337$$ −3.40702 2.95220i −0.185592 0.160816i 0.557109 0.830439i $$-0.311910\pi$$
−0.742702 + 0.669623i $$0.766456\pi$$
$$338$$ −9.66698 4.41476i −0.525814 0.240131i
$$339$$ 9.92657 + 6.37942i 0.539137 + 0.346483i
$$340$$ −8.47670 + 2.12114i −0.459714 + 0.115035i
$$341$$ −33.9781 + 21.8364i −1.84002 + 1.18251i
$$342$$ 13.8988 12.0433i 0.751559 0.651230i
$$343$$ 3.08925 + 10.5210i 0.166804 + 0.568081i
$$344$$ 1.32277 0.0713190
$$345$$ 24.4958 + 13.1614i 1.31881 + 0.708586i
$$346$$ −5.22484 −0.280889
$$347$$ −0.684336 2.33063i −0.0367371 0.125115i 0.939083 0.343691i $$-0.111677\pi$$
−0.975820 + 0.218576i $$0.929859\pi$$
$$348$$ −7.52500 + 6.52045i −0.403382 + 0.349533i
$$349$$ 23.8539 15.3300i 1.27687 0.820595i 0.286373 0.958118i $$-0.407550\pi$$
0.990499 + 0.137523i $$0.0439141\pi$$
$$350$$ 1.40181 + 3.86915i 0.0749300 + 0.206815i
$$351$$ 2.43301 + 1.56360i 0.129865 + 0.0834590i
$$352$$ 4.41702 + 2.01718i 0.235428 + 0.107516i
$$353$$ 5.93958 + 5.14667i 0.316132 + 0.273930i 0.798443 0.602070i $$-0.205657\pi$$
−0.482312 + 0.876000i $$0.660203\pi$$
$$354$$ −0.481550 + 3.34925i −0.0255941 + 0.178011i
$$355$$ 11.3546 + 19.3439i 0.602642 + 1.02667i
$$356$$ −5.25610 1.54333i −0.278573 0.0817964i
$$357$$ 2.34969 8.00231i 0.124359 0.423527i
$$358$$ 3.12640 1.42778i 0.165235 0.0754605i
$$359$$ −0.576914 + 4.01253i −0.0304484 + 0.211773i −0.999366 0.0356117i $$-0.988662\pi$$
0.968917 + 0.247385i $$0.0795711\pi$$
$$360$$ 6.81780 + 4.78135i 0.359330 + 0.251999i
$$361$$ 2.23786 4.90023i 0.117782 0.257907i
$$362$$ 1.93084 3.00445i 0.101483 0.157911i
$$363$$ 32.2866 4.64211i 1.69461 0.243648i
$$364$$ −1.06652 + 0.685413i −0.0559011 + 0.0359254i
$$365$$ 9.47075 10.0769i 0.495722 0.527448i
$$366$$ 32.8682 9.65098i 1.71805 0.504465i
$$367$$ 0.00287537i 0.000150093i 1.00000 7.50466e-5i $$2.38881e-5\pi$$
−1.00000 7.50466e-5i $$0.999976\pi$$
$$368$$ −1.46224 + 4.56748i −0.0762247 + 0.238096i
$$369$$ 14.0511 0.731471
$$370$$ 9.93264 4.05962i 0.516373 0.211050i
$$371$$ 3.42641 + 3.95429i 0.177890 + 0.205296i
$$372$$ −11.6609 18.1448i −0.604592 0.940764i
$$373$$ 5.56203 0.799699i 0.287991 0.0414069i 0.00319464 0.999995i $$-0.498983\pi$$
0.284796 + 0.958588i $$0.408074\pi$$
$$374$$ −15.9632 10.2589i −0.825438 0.530477i
$$375$$ 28.7788 + 3.50536i 1.48613 + 0.181016i
$$376$$ 4.03581 4.65757i 0.208131 0.240196i
$$377$$ −5.85444 0.841741i −0.301519 0.0433519i
$$378$$ −1.40571 + 0.641964i −0.0723017 + 0.0330191i
$$379$$ −16.8263 4.94063i −0.864307 0.253783i −0.180615 0.983554i $$-0.557809\pi$$
−0.683692 + 0.729771i $$0.739627\pi$$
$$380$$ 10.8576 + 2.01169i 0.556985 + 0.103198i
$$381$$ −19.6392 43.0038i −1.00615 2.20315i
$$382$$ −5.13118 0.737752i −0.262534 0.0377467i
$$383$$ 5.00087 + 4.33327i 0.255532 + 0.221420i 0.773201 0.634161i $$-0.218654\pi$$
−0.517668 + 0.855581i $$0.673200\pi$$
$$384$$ −1.07721 + 2.35875i −0.0549709 + 0.120370i
$$385$$ −4.03774 + 7.97250i −0.205782 + 0.406316i
$$386$$ −2.36889 16.4760i −0.120573 0.838605i
$$387$$ 2.66325 + 4.14410i 0.135381 + 0.210656i
$$388$$ −8.59023 + 7.44348i −0.436103 + 0.377885i
$$389$$ 28.1129 8.25468i 1.42538 0.418529i 0.524058 0.851682i $$-0.324417\pi$$
0.901320 + 0.433154i $$0.142599\pi$$
$$390$$ 0.912953 + 8.88458i 0.0462292 + 0.449888i
$$391$$ 8.19610 16.8538i 0.414494 0.852334i
$$392$$ 6.32259i 0.319339i
$$393$$ 14.3296 + 48.8021i 0.722833 + 2.46174i
$$394$$ −0.460158 0.531051i −0.0231824 0.0267539i
$$395$$ −12.4342 + 9.92404i −0.625632 + 0.499332i
$$396$$ 2.57355 + 17.8994i 0.129326 + 0.899480i
$$397$$ 9.57991 14.9066i 0.480802 0.748143i −0.513110 0.858323i $$-0.671507\pi$$
0.993912 + 0.110181i $$0.0351429\pi$$
$$398$$ −23.0315 10.5181i −1.15446 0.527226i
$$399$$ −6.90196 + 7.96528i −0.345530 + 0.398763i
$$400$$ 0.309779 + 4.99039i 0.0154890 + 0.249520i
$$401$$ 4.73969 + 10.3785i 0.236689 + 0.518276i 0.990284 0.139063i $$-0.0444091\pi$$
−0.753595 + 0.657339i $$0.771682\pi$$
$$402$$ 11.9178 40.5883i 0.594406 2.02436i
$$403$$ 3.60963 12.2933i 0.179808 0.612371i
$$404$$ 3.64362 + 7.97842i 0.181277 + 0.396941i
$$405$$ 0.569312 14.0835i 0.0282894 0.699815i
$$406$$ 2.06961 2.38846i 0.102713 0.118537i
$$407$$ 21.1960 + 9.67987i 1.05065 + 0.479814i
$$408$$ 5.47842 8.52458i 0.271222 0.422030i
$$409$$ 0.436149 + 3.03349i 0.0215662 + 0.149996i 0.997759 0.0669076i $$-0.0213133\pi$$
−0.976193 + 0.216904i $$0.930404\pi$$
$$410$$ 5.26287 + 6.59404i 0.259914 + 0.325656i
$$411$$ −29.9886 34.6087i −1.47923 1.70712i
$$412$$ 0.711708 + 2.42386i 0.0350633 + 0.119415i
$$413$$ 1.07399i 0.0528478i
$$414$$ −17.2535 + 4.61505i −0.847962 + 0.226817i
$$415$$ 2.72504 + 26.5192i 0.133767 + 1.30178i
$$416$$ −1.47794 + 0.433964i −0.0724622 + 0.0212768i
$$417$$ 0.725600 0.628736i 0.0355328 0.0307893i
$$418$$ 12.9644 + 20.1730i 0.634109 + 0.986692i
$$419$$ −4.74194 32.9809i −0.231659 1.61122i −0.690927 0.722925i $$-0.742797\pi$$
0.459268 0.888298i $$-0.348112\pi$$
$$420$$ −4.25743 2.15621i −0.207741 0.105212i
$$421$$ −13.3875 + 29.3145i −0.652466 + 1.42870i 0.236914 + 0.971531i $$0.423864\pi$$
−0.889379 + 0.457170i $$0.848863\pi$$
$$422$$ −2.80344 2.42920i −0.136470 0.118252i
$$423$$ 22.7173 + 3.26626i 1.10455 + 0.158811i
$$424$$ 2.64086 + 5.78267i 0.128251 + 0.280831i
$$425$$ 1.57711 19.4751i 0.0765008 0.944683i
$$426$$ −24.9578 7.32828i −1.20921 0.355056i
$$427$$ −9.89033 + 4.51676i −0.478627 + 0.218582i
$$428$$ −13.9315 2.00304i −0.673402 0.0968206i
$$429$$ −12.7012 + 14.6580i −0.613220 + 0.707694i
$$430$$ −0.947259 + 2.80202i −0.0456809 + 0.135125i
$$431$$ −7.59443 4.88064i −0.365811 0.235092i 0.344802 0.938675i $$-0.387946\pi$$
−0.710613 + 0.703583i $$0.751582\pi$$
$$432$$ −1.85848 + 0.267209i −0.0894162 + 0.0128561i
$$433$$ −9.33815 14.5304i −0.448763 0.698289i 0.540998 0.841024i $$-0.318047\pi$$
−0.989761 + 0.142735i $$0.954410\pi$$
$$434$$ 4.48317 + 5.17385i 0.215199 + 0.248353i
$$435$$ −8.42345 20.6096i −0.403873 0.988153i
$$436$$ 0.000750782 0 3.59559e−5 0
$$437$$ −18.2692 + 15.0711i −0.873936 + 0.720947i
$$438$$ 16.0369i 0.766271i
$$439$$ 12.5452 3.68360i 0.598749 0.175809i 0.0317066 0.999497i $$-0.489906\pi$$
0.567042 + 0.823689i $$0.308088\pi$$
$$440$$ −7.43610 + 7.91201i −0.354502 + 0.377190i
$$441$$ −19.8080 + 12.7298i −0.943237 + 0.606182i
$$442$$ 5.95804 0.856636i 0.283395 0.0407460i
$$443$$ −12.2792 + 19.1068i −0.583401 + 0.907790i −0.999999 0.00130107i $$-0.999586\pi$$
0.416598 + 0.909091i $$0.363222\pi$$
$$444$$ −5.16919 + 11.3190i −0.245319 + 0.537174i
$$445$$ 7.03322 10.0288i 0.333407 0.475409i
$$446$$ −2.29023 + 15.9289i −0.108445 + 0.754255i
$$447$$ −2.26824 + 1.03587i −0.107284 + 0.0489951i
$$448$$ 0.231881 0.789713i 0.0109553 0.0373104i
$$449$$ −2.22247 0.652576i −0.104885 0.0307970i 0.228869 0.973457i $$-0.426497\pi$$
−0.333754 + 0.942660i $$0.608315\pi$$
$$450$$ −15.0107 + 11.0181i −0.707610 + 0.519399i
$$451$$ −2.60738 + 18.1348i −0.122777 + 0.853932i
$$452$$ −3.43901 2.97992i −0.161758 0.140164i
$$453$$ −48.2034 22.0137i −2.26479 1.03430i
$$454$$ 3.02525 + 1.94421i 0.141982 + 0.0912463i
$$455$$ −0.688151 2.75005i −0.0322610 0.128924i
$$456$$ −10.7727 + 6.92317i −0.504476 + 0.324207i
$$457$$ −17.5450 + 15.2028i −0.820721 + 0.711158i −0.960275 0.279056i $$-0.909979\pi$$
0.139554 + 0.990214i $$0.455433\pi$$
$$458$$ −4.76861 16.2404i −0.222822 0.758864i
$$459$$ 7.33722 0.342472
$$460$$ −8.62813 6.36831i −0.402288 0.296924i
$$461$$ 8.06438 0.375595 0.187798 0.982208i $$-0.439865\pi$$
0.187798 + 0.982208i $$0.439865\pi$$
$$462$$ −2.91974 9.94372i −0.135839 0.462624i
$$463$$ −12.7129 + 11.0158i −0.590817 + 0.511946i −0.898169 0.439650i $$-0.855102\pi$$
0.307352 + 0.951596i $$0.400557\pi$$
$$464$$ 3.23027 2.07597i 0.149962 0.0963744i
$$465$$ 46.7866 11.7075i 2.16968 0.542924i
$$466$$ 19.4633 + 12.5083i 0.901619 + 0.579435i
$$467$$ 17.1332 + 7.82445i 0.792828 + 0.362072i 0.770306 0.637674i $$-0.220103\pi$$
0.0225214 + 0.999746i $$0.492831\pi$$
$$468$$ −4.33524 3.75651i −0.200396 0.173645i
$$469$$ −1.91082 + 13.2901i −0.0882335 + 0.613678i
$$470$$ 6.97599 + 11.8844i 0.321779 + 0.548186i
$$471$$ 48.1199 + 14.1293i 2.21725 + 0.651043i
$$472$$ 0.367631 1.25204i 0.0169216 0.0576296i
$$473$$ −5.84270 + 2.66827i −0.268647 + 0.122687i
$$474$$ 2.62557 18.2613i 0.120597 0.838767i
$$475$$ −12.0367 + 21.5591i −0.552282 + 0.989198i
$$476$$ −1.33610 + 2.92565i −0.0612401 + 0.134097i
$$477$$ −12.7994 + 19.9163i −0.586045 + 0.911904i
$$478$$ 12.9534 1.86242i 0.592476 0.0851853i
$$479$$ −5.18475 + 3.33204i −0.236897 + 0.152245i −0.653704 0.756751i $$-0.726786\pi$$
0.416806 + 0.908995i $$0.363149\pi$$
$$480$$ −4.22513 3.97098i −0.192850 0.181250i
$$481$$ −7.09222 + 2.08246i −0.323378 + 0.0949522i
$$482$$ 0.609644i 0.0277685i
$$483$$ 9.41080 4.02512i 0.428206 0.183149i
$$484$$ −12.5791 −0.571776
$$485$$ −9.61587 23.5271i −0.436634 1.06831i
$$486$$ 14.3927 + 16.6100i 0.652865 + 0.753446i
$$487$$ 14.0453 + 21.8549i 0.636452 + 0.990339i 0.998310 + 0.0581061i $$0.0185062\pi$$
−0.361858 + 0.932233i $$0.617857\pi$$
$$488$$ −13.0760 + 1.88004i −0.591922 + 0.0851056i
$$489$$ −43.7352 28.1069i −1.97777 1.27104i
$$490$$ −13.3931 4.52772i −0.605039 0.204541i
$$491$$ −16.4557 + 18.9909i −0.742634 + 0.857046i −0.993833 0.110890i $$-0.964630\pi$$
0.251198 + 0.967936i $$0.419175\pi$$
$$492$$ −9.68422 1.39238i −0.436598 0.0627734i
$$493$$ −13.6492 + 6.23339i −0.614730 + 0.280738i
$$494$$ −7.29857 2.14305i −0.328378 0.0964205i
$$495$$ −39.7592 7.36656i −1.78704 0.331102i
$$496$$ 3.45534 + 7.56614i 0.155149 + 0.339730i
$$497$$ 8.17208 + 1.17497i 0.366568 + 0.0527045i
$$498$$ −23.3642 20.2452i −1.04697 0.907209i
$$499$$ 5.75654 12.6051i 0.257698 0.564281i −0.735921 0.677068i $$-0.763250\pi$$
0.993619 + 0.112787i $$0.0359778\pi$$
$$500$$ −10.7930 2.91751i −0.482676 0.130475i
$$501$$ 4.38424 + 30.4931i 0.195873 + 1.36233i
$$502$$ −6.00845 9.34933i −0.268170 0.417281i
$$503$$ 25.1422 21.7858i 1.12104 0.971383i 0.121261 0.992621i $$-0.461306\pi$$
0.999774 + 0.0212380i $$0.00676079\pi$$
$$504$$ 2.94095 0.863541i 0.131000 0.0384652i
$$505$$ −19.5099 + 2.00478i −0.868180 + 0.0892116i
$$506$$ −2.75469 23.1242i −0.122461 1.02800i
$$507$$ 27.5576i 1.22388i
$$508$$ 5.13644 + 17.4931i 0.227893 + 0.776131i
$$509$$ 5.23195 + 6.03799i 0.231902 + 0.267629i 0.859759 0.510699i $$-0.170613\pi$$
−0.627858 + 0.778328i $$0.716068\pi$$
$$510$$ 14.1344 + 17.7095i 0.625882 + 0.784190i
$$511$$ −0.724403 5.03834i −0.0320457 0.222883i
$$512$$ 0.540641 0.841254i 0.0238932 0.0371785i
$$513$$ −8.43425 3.85179i −0.372381 0.170061i
$$514$$ −5.43138 + 6.26814i −0.239568 + 0.276476i
$$515$$ −5.64411 0.228158i −0.248709 0.0100538i
$$516$$ −1.42489 3.12008i −0.0627275 0.137354i
$$517$$ −8.43105 + 28.7135i −0.370797 + 1.26282i
$$518$$ 1.11273 3.78960i 0.0488904 0.166505i
$$519$$ 5.62823 + 12.3241i 0.247052 + 0.540968i
$$520$$ 0.139119 3.44149i 0.00610077 0.150919i
$$521$$ −1.78669 + 2.06195i −0.0782763 + 0.0903356i −0.793537 0.608522i $$-0.791763\pi$$
0.715261 + 0.698858i $$0.246308\pi$$
$$522$$ 13.0076 + 5.94036i 0.569326 + 0.260003i
$$523$$ 17.6517 27.4665i 0.771853 1.20103i −0.203218 0.979133i $$-0.565140\pi$$
0.975071 0.221893i $$-0.0712235\pi$$
$$524$$ −2.79146 19.4150i −0.121945 0.848149i
$$525$$ 7.61631 7.47439i 0.332403 0.326209i
$$526$$ 2.63650 + 3.04269i 0.114957 + 0.132668i
$$527$$ −9.15747 31.1875i −0.398906 1.35855i
$$528$$ 12.5916i 0.547978i
$$529$$ 22.3564 5.40310i 0.972015 0.234917i
$$530$$ −14.1406 + 1.45304i −0.614227 + 0.0631162i
$$531$$ 4.66268 1.36909i 0.202343 0.0594133i
$$532$$ 3.07174 2.66168i 0.133177 0.115398i
$$533$$ −3.14208 4.88916i −0.136098 0.211773i
$$534$$ 2.02157 + 14.0603i 0.0874819 + 0.608450i
$$535$$ 14.2196 28.0765i 0.614767 1.21385i
$$536$$ −6.77680 + 14.8391i −0.292713 + 0.640952i
$$537$$ −6.73555 5.83639i −0.290661 0.251859i
$$538$$ 16.5962 + 2.38617i 0.715511 + 0.102875i
$$539$$ −12.7538 27.9270i −0.549346 1.20290i
$$540$$ 0.764863 4.12817i 0.0329145 0.177648i
$$541$$ 37.5294 + 11.0196i 1.61352 + 0.473771i 0.959266 0.282506i $$-0.0911656\pi$$
0.654251 + 0.756277i $$0.272984\pi$$
$$542$$ −9.16540 + 4.18570i −0.393688 + 0.179791i
$$543$$ −9.16667 1.31797i −0.393379 0.0565594i
$$544$$ −2.55905 + 2.95330i −0.109718 + 0.126622i
$$545$$ −0.000537648 0.00159038i −2.30303e−5 6.81243e-5i
$$546$$ 2.76559 + 1.77733i 0.118356 + 0.0760629i
$$547$$ 42.8941 6.16724i 1.83402 0.263692i 0.863436 0.504459i $$-0.168308\pi$$
0.970583 + 0.240767i $$0.0773990\pi$$
$$548$$ 9.54773 + 14.8566i 0.407859 + 0.634641i
$$549$$ −32.2170 37.1804i −1.37499 1.58682i
$$550$$ −11.4348 21.4178i −0.487583 0.913257i
$$551$$ 18.9623 0.807822
$$552$$ 12.3487 1.47104i 0.525595 0.0626117i
$$553$$ 5.85578i 0.249013i
$$554$$ 19.6895 5.78135i 0.836525 0.245626i
$$555$$ −20.2751 19.0556i −0.860632 0.808864i
$$556$$ −0.311480 + 0.200176i −0.0132097 + 0.00848935i
$$557$$ −18.0128 + 2.58985i −0.763228 + 0.109736i −0.512927 0.858432i $$-0.671439\pi$$
−0.250301 + 0.968168i $$0.580530\pi$$
$$558$$ −16.7470 + 26.0588i −0.708956 + 1.10316i
$$559$$ 0.846414 1.85339i 0.0357995 0.0783900i
$$560$$ 1.50679 + 1.05672i 0.0636735 + 0.0446545i
$$561$$ −7.00261 + 48.7042i −0.295650 + 2.05629i
$$562$$ 22.5394 10.2934i 0.950767 0.434201i
$$563$$ 1.76606 6.01463i 0.0744304 0.253487i −0.913870 0.406007i $$-0.866921\pi$$
0.988300 + 0.152520i $$0.0487390\pi$$
$$564$$ −15.3334 4.50230i −0.645654 0.189581i
$$565$$ 8.77509 5.15087i 0.369171 0.216699i
$$566$$ 1.35770 9.44304i 0.0570686 0.396921i
$$567$$ −3.92090 3.39748i −0.164662 0.142681i
$$568$$ 9.12461 + 4.16707i 0.382860 + 0.174846i
$$569$$ 34.4512 + 22.1404i 1.44427 + 0.928175i 0.999470 + 0.0325443i $$0.0103610\pi$$
0.444798 + 0.895631i $$0.353275\pi$$
$$570$$ −6.95082 27.7775i −0.291138 1.16347i
$$571$$ 14.7398 9.47273i 0.616843 0.396421i −0.194574 0.980888i $$-0.562333\pi$$
0.811418 + 0.584467i $$0.198696\pi$$
$$572$$ 5.65272 4.89811i 0.236352 0.204800i
$$573$$ 3.78716 + 12.8979i 0.158211 + 0.538817i
$$574$$ 3.10541 0.129617
$$575$$ 19.6687 13.7165i 0.820243 0.572016i
$$576$$ 3.72408 0.155170
$$577$$ −4.73519 16.1266i −0.197129 0.671358i −0.997423 0.0717504i $$-0.977141\pi$$
0.800294 0.599608i $$-0.204677\pi$$
$$578$$ −1.30689 + 1.13243i −0.0543595 + 0.0471028i
$$579$$ −36.3109 + 23.3356i −1.50903 + 0.969795i
$$580$$ 2.08426 + 8.32930i 0.0865442 + 0.345856i
$$581$$ 8.25488 + 5.30509i 0.342470 + 0.220092i
$$582$$ 26.8107 + 12.2441i 1.11134 + 0.507533i
$$583$$ −23.3294 20.2151i −0.966206 0.837223i
$$584$$ 0.880143 6.12153i 0.0364206 0.253311i
$$585$$ 11.0619 6.49322i 0.457355 0.268461i
$$586$$ −16.5963 4.87311i −0.685586 0.201306i
$$587$$ −12.0781 + 41.1342i −0.498516 + 1.69779i 0.197962 + 0.980210i $$0.436568\pi$$
−0.696477 + 0.717579i $$0.745250\pi$$
$$588$$ 14.9134 6.81072i 0.615018 0.280869i
$$589$$ −5.84573 + 40.6579i −0.240869 + 1.67528i
$$590$$ 2.38891 + 1.67536i 0.0983500 + 0.0689733i
$$591$$ −0.756932 + 1.65745i −0.0311360 + 0.0681783i
$$592$$ 2.59438 4.03693i 0.106628 0.165917i
$$593$$ 15.4713 2.22443i 0.635329 0.0913466i 0.182878 0.983136i $$-0.441459\pi$$
0.452451 + 0.891789i $$0.350550\pi$$
$$594$$ 7.66994 4.92917i 0.314701 0.202246i
$$595$$ −5.24059 4.92537i −0.214843 0.201921i
$$596$$ 0.922676 0.270922i 0.0377943 0.0110974i
$$597$$ 65.6557i 2.68711i
$$598$$ 5.46402 + 4.97145i 0.223441 + 0.203298i
$$599$$ −23.4056 −0.956327 −0.478163 0.878271i $$-0.658697\pi$$
−0.478163 + 0.878271i $$0.658697\pi$$
$$600$$ 11.4374 6.10637i 0.466930 0.249292i
$$601$$ 6.80010 + 7.84774i 0.277382 + 0.320116i 0.877297 0.479948i $$-0.159344\pi$$
−0.599915 + 0.800064i $$0.704799\pi$$
$$602$$ 0.588600 + 0.915880i 0.0239896 + 0.0373285i
$$603$$ −60.1337 + 8.64592i −2.44883 + 0.352089i
$$604$$ 17.1918 + 11.0485i 0.699526 + 0.449558i
$$605$$ 9.00810 26.6462i 0.366231 1.08332i
$$606$$ 14.8942 17.1888i 0.605035 0.698247i
$$607$$ −6.99194 1.00529i −0.283794 0.0408035i −0.00105223 0.999999i $$-0.500335\pi$$
−0.282742 + 0.959196i $$0.591244\pi$$
$$608$$ 4.49206 2.05145i 0.182177 0.0831974i
$$609$$ −7.86317 2.30883i −0.318632 0.0935587i
$$610$$ 5.38146 29.0452i 0.217889 1.17600i
$$611$$ −3.94348 8.63502i −0.159536 0.349336i
$$612$$ −14.4047 2.07109i −0.582277 0.0837188i
$$613$$ 0.680540 + 0.589691i 0.0274867 + 0.0238174i 0.668496 0.743716i $$-0.266938\pi$$
−0.641009 + 0.767533i $$0.721484\pi$$
$$614$$ 4.09300 8.96243i 0.165180 0.361694i
$$615$$ 9.88451 19.5169i 0.398582 0.786998i
$$616$$ 0.568776 + 3.95592i 0.0229166 + 0.159389i
$$617$$ −17.4211 27.1078i −0.701349 1.09132i −0.990958 0.134175i $$-0.957162\pi$$
0.289609 0.957145i $$-0.406475\pi$$
$$618$$ 4.95061 4.28973i 0.199143 0.172558i
$$619$$ −24.3150 + 7.13951i −0.977301 + 0.286961i −0.731110 0.682260i $$-0.760997\pi$$
−0.246191 + 0.969221i $$0.579179\pi$$
$$620$$ −18.5018 + 1.90118i −0.743048 + 0.0763534i
$$621$$ 5.73015 + 6.94612i 0.229943 + 0.278738i
$$622$$ 8.40603i 0.337051i
$$623$$ −1.27024 4.32605i −0.0508912 0.173319i
$$624$$ 2.61566 + 3.01864i 0.104710 + 0.120842i
$$625$$ 13.9092 20.7734i 0.556367 0.830937i
$$626$$ 2.69819 + 18.7663i 0.107841 + 0.750054i
$$627$$ 33.6177 52.3102i 1.34256 2.08907i
$$628$$ −17.5927 8.03431i −0.702025 0.320604i
$$629$$ −12.2801 + 14.1720i −0.489641 + 0.565076i
$$630$$ −0.276832 + 6.84820i −0.0110293 + 0.272839i
$$631$$ 2.43194 + 5.32520i 0.0968139 + 0.211993i 0.951842 0.306589i $$-0.0991876\pi$$
−0.855028 + 0.518581i $$0.826460\pi$$
$$632$$ −2.00445 + 6.82652i −0.0797326 + 0.271544i
$$633$$ −2.70999 + 9.22937i −0.107712 + 0.366835i
$$634$$ −7.95092 17.4101i −0.315771 0.691443i
$$635$$ −40.7339 1.64663i −1.61647 0.0653444i
$$636$$ 10.7951 12.4583i 0.428055 0.494002i
$$637$$ 8.85884 + 4.04570i 0.351000 + 0.160296i
$$638$$ −10.0805 + 15.6856i −0.399093 + 0.621000i
$$639$$ 5.31640 + 36.9764i 0.210313 + 1.46276i
$$640$$ 1.39486 + 1.74767i 0.0551367 + 0.0690829i
$$641$$ 8.76323 + 10.1133i 0.346127 + 0.399452i 0.901944 0.431853i $$-0.142140\pi$$
−0.555817 + 0.831304i $$0.687595\pi$$
$$642$$ 10.2824 + 35.0185i 0.405813 + 1.38207i
$$643$$ 16.5420i 0.652352i −0.945309 0.326176i $$-0.894240\pi$$
0.945309 0.326176i $$-0.105760\pi$$
$$644$$ −3.81316 + 1.01996i −0.150260 + 0.0401922i
$$645$$ 7.62965 0.784000i 0.300417 0.0308700i
$$646$$ −18.5162 + 5.43684i −0.728509 + 0.213910i
$$647$$ −26.1354 + 22.6464i −1.02749 + 0.890323i −0.994029 0.109117i $$-0.965198\pi$$
−0.0334586 + 0.999440i $$0.510652\pi$$
$$648$$ −3.40792 5.30282i −0.133876 0.208315i
$$649$$ 0.901755 + 6.27184i 0.0353970 + 0.246191i
$$650$$ 7.19047 + 2.75921i 0.282034 + 0.108225i
$$651$$ 7.37454 16.1480i 0.289031 0.632889i
$$652$$ 15.1518 + 13.1291i 0.593392 + 0.514177i
$$653$$ 45.9652 + 6.60880i 1.79876 + 0.258622i 0.958810 0.284047i $$-0.0916772\pi$$
0.839946 + 0.542669i $$0.182586\pi$$
$$654$$ −0.000808746 0.00177091i −3.16245e−5 6.92480e-5i
$$655$$ 43.1257 + 7.99030i 1.68506 + 0.312207i
$$656$$ 3.62020 + 1.06299i 0.141345 + 0.0415027i
$$657$$ 20.9502 9.56762i 0.817344 0.373268i
$$658$$ 5.02072 + 0.721870i 0.195728 + 0.0281414i
$$659$$ 24.3323 28.0810i 0.947852 1.09388i −0.0476238 0.998865i $$-0.515165\pi$$
0.995476 0.0950144i $$-0.0302897\pi$$
$$660$$ 26.6727 + 9.01704i 1.03823 + 0.350988i
$$661$$ −22.3758 14.3800i −0.870317 0.559319i 0.0275324 0.999621i $$-0.491235\pi$$
−0.897850 + 0.440302i $$0.854871\pi$$
$$662$$ −30.8332 + 4.43315i −1.19837 + 0.172299i
$$663$$ −8.43862 13.1308i −0.327729 0.509956i
$$664$$ 7.80738 + 9.01020i 0.302985 + 0.349664i
$$665$$ 3.43850 + 8.41294i 0.133339 + 0.326240i
$$666$$ 17.8708 0.692478
$$667$$ −16.5608 8.05358i −0.641235 0.311836i
$$668$$ 11.8803i 0.459663i
$$669$$ 40.0393 11.7566i 1.54801 0.454537i
$$670$$ −26.5807 24.9818i −1.02690 0.965132i
$$671$$ 53.9645 34.6809i 2.08328 1.33884i
$$672$$ −2.11252 + 0.303734i −0.0814922 + 0.0117168i
$$673$$ −21.9007 + 34.0782i −0.844210 + 1.31362i 0.103547 + 0.994625i $$0.466981\pi$$
−0.947757 + 0.318992i $$0.896656\pi$$
$$674$$ 1.87275 4.10074i 0.0721355 0.157955i
$$675$$ 8.19694 + 4.57646i 0.315500 + 0.176148i
$$676$$ 1.51243 10.5192i 0.0581704 0.404584i
$$677$$ 22.5137 10.2817i 0.865272 0.395157i 0.0672152 0.997738i $$-0.478589\pi$$
0.798057 + 0.602582i $$0.205861\pi$$
$$678$$ −3.32437 + 11.3218i −0.127672 + 0.434810i
$$679$$ −8.97627 2.63567i −0.344478 0.101148i
$$680$$ −4.42338 7.53574i −0.169629 0.288982i
$$681$$ 1.32709 9.23013i 0.0508543 0.353699i
$$682$$ −30.5246 26.4497i −1.16885 1.01281i
$$683$$ −6.95452 3.17602i −0.266107 0.121527i 0.277893 0.960612i $$-0.410364\pi$$
−0.544001 + 0.839085i $$0.683091\pi$$
$$684$$ 15.4712 + 9.94276i 0.591558 + 0.380171i
$$685$$ −38.3079 + 9.58587i −1.46367 + 0.366257i
$$686$$ −9.22450 + 5.92823i −0.352193 + 0.226341i
$$687$$ −33.1703 + 28.7422i −1.26552 + 1.09658i
$$688$$ 0.372667 + 1.26919i 0.0142078 + 0.0483873i
$$689$$ 9.79218 0.373052
$$690$$ −5.72700 + 27.2116i −0.218023 + 1.03593i
$$691$$ 12.5218 0.476351 0.238176 0.971222i $$-0.423451\pi$$
0.238176 + 0.971222i $$0.423451\pi$$
$$692$$ −1.47201 5.01320i −0.0559574 0.190573i
$$693$$ −11.2483 + 9.74672i −0.427288 + 0.370247i
$$694$$ 2.04343 1.31323i 0.0775674 0.0498496i
$$695$$ −0.200976 0.803156i −0.00762344 0.0304654i
$$696$$ −8.37636 5.38316i −0.317505 0.204048i
$$697$$ −13.4118 6.12496i −0.508008 0.232000i
$$698$$ 21.4294 + 18.5687i 0.811116 + 0.702836i
$$699$$ 8.53799 59.3830i 0.322937 2.24607i
$$700$$ −3.31748 + 2.43509i −0.125389 + 0.0920379i
$$701$$ 8.90573 + 2.61496i 0.336365 + 0.0987656i 0.445553 0.895255i $$-0.353007\pi$$
−0.109188 + 0.994021i $$0.534825\pi$$
$$702$$ −0.814807 + 2.77498i −0.0307529 + 0.104735i
$$703$$ 21.5561 9.84432i 0.813002 0.371286i
$$704$$ −0.691057 + 4.80640i −0.0260452 + 0.181148i
$$705$$ 20.5178 29.2566i 0.772743 1.10187i
$$706$$ −3.26482 + 7.14897i −0.122873 + 0.269055i
$$707$$ −3.90290 + 6.07303i −0.146784 + 0.228400i
$$708$$ −3.34925 + 0.481550i −0.125873 + 0.0180978i
$$709$$ −13.9940 + 8.99337i −0.525554 + 0.337753i −0.776366 0.630283i $$-0.782939\pi$$
0.250811 + 0.968036i $$0.419303\pi$$
$$710$$ −15.3614 + 16.3445i −0.576502 + 0.613398i
$$711$$ −25.4225 + 7.46471i −0.953417 + 0.279949i
$$712$$ 5.47800i 0.205297i
$$713$$ 22.3734 33.0258i 0.837890 1.23683i
$$714$$ 8.34015 0.312122
$$715$$ 6.32763 + 15.4818i 0.236640 + 0.578985i
$$716$$ 2.25075 + 2.59751i 0.0841146 + 0.0970734i
$$717$$ −18.3465 28.5477i −0.685163 1.06613i
$$718$$ −4.01253 + 0.576914i −0.149746 + 0.0215302i
$$719$$ 31.4661 + 20.2221i 1.17349 + 0.754156i 0.974178 0.225781i $$-0.0724932\pi$$
0.199311 + 0.979936i $$0.436130\pi$$
$$720$$ −2.66688 + 7.88870i −0.0993887 + 0.293994i
$$721$$ −1.36157 + 1.57134i −0.0507077 + 0.0585198i
$$722$$ 5.33221 + 0.766656i 0.198444 + 0.0285320i
$$723$$ 1.43800 0.656712i 0.0534797 0.0244234i
$$724$$ 3.42673 + 1.00618i 0.127354 + 0.0373944i
$$725$$ −19.1365 1.54968i −0.710712 0.0575538i
$$726$$ 13.5503 + 29.6709i 0.502897 + 1.10119i
$$727$$ 7.50409 + 1.07893i 0.278311 + 0.0400151i 0.280057 0.959983i $$-0.409647\pi$$
−0.00174573 + 0.999998i $$0.500556\pi$$
$$728$$ −0.958124 0.830219i −0.0355104 0.0307700i
$$729$$ 15.8194 34.6396i 0.585903 1.28295i
$$730$$ 12.3369 + 6.24814i 0.456610 + 0.231254i
$$731$$ −0.735638 5.11648i −0.0272086 0.189240i
$$732$$ 18.5201 + 28.8178i 0.684522 + 1.06514i
$$733$$ 27.8874 24.1646i 1.03005 0.892540i 0.0357674 0.999360i $$-0.488612\pi$$
0.994278 + 0.106820i $$0.0340670\pi$$
$$734$$ −0.00275890 0.000810086i −0.000101833 2.99008e-5i
$$735$$ 3.74737 + 36.4683i 0.138224 + 1.34515i
$$736$$ −4.79442 0.116205i −0.176725 0.00428339i
$$737$$ 79.2147i 2.91791i
$$738$$ 3.95865 + 13.4819i 0.145720 + 0.496276i
$$739$$ −22.4956 25.9613i −0.827514 0.955002i 0.172033 0.985091i $$-0.444966\pi$$
−0.999547 + 0.0300890i $$0.990421\pi$$
$$740$$ 6.69353 + 8.38657i 0.246059 + 0.308296i
$$741$$ 2.80713 + 19.5240i 0.103122 + 0.717233i
$$742$$ −2.82878 + 4.40167i −0.103848 + 0.161590i
$$743$$ 14.9390 + 6.82240i 0.548057 + 0.250289i 0.670145 0.742230i $$-0.266232\pi$$
−0.122088 + 0.992519i $$0.538959\pi$$
$$744$$ 14.1245 16.3006i 0.517830 0.597608i
$$745$$ −0.0868516 + 2.14851i −0.00318200 + 0.0787154i
$$746$$ 2.33431 + 5.11143i 0.0854652 + 0.187143i
$$747$$ −12.5087 + 42.6007i −0.457670 + 1.55868i
$$748$$ 5.34602 18.2069i 0.195470 0.665709i
$$749$$ −4.81226 10.5374i −0.175836 0.385028i
$$750$$ 4.74457 + 28.6007i 0.173247 + 1.04435i
$$751$$ 8.77410 10.1258i 0.320171 0.369497i −0.572734 0.819741i $$-0.694117\pi$$
0.892906 + 0.450244i $$0.148663\pi$$
$$752$$ 5.60592 + 2.56014i 0.204427 + 0.0933587i
$$753$$ −15.5804 + 24.2436i −0.567782 + 0.883486i
$$754$$ −0.841741 5.85444i −0.0306544 0.213206i
$$755$$ −35.7154 + 28.5054i −1.29982 + 1.03742i
$$756$$ −1.01199 1.16790i −0.0368058 0.0424762i
$$757$$ 6.88700 + 23.4550i 0.250312 + 0.852485i 0.984775 + 0.173836i $$0.0556162\pi$$
−0.734462 + 0.678649i $$0.762566\pi$$
$$758$$ 17.5366i 0.636958i
$$759$$ −51.5770 + 31.4072i −1.87213 + 1.14001i
$$760$$ 1.12874 + 10.9846i 0.0409438 + 0.398453i
$$761$$ −17.2773 + 5.07309i −0.626303 + 0.183899i −0.579457 0.815003i $$-0.696735\pi$$
−0.0468464 + 0.998902i $$0.514917\pi$$
$$762$$ 35.7289 30.9593i 1.29432 1.12154i
$$763$$ 0.000334080 0 0.000519838i 1.20945e−5 0 1.88194e-5i
$$764$$ −0.737752 5.13118i −0.0266909 0.185640i
$$765$$ 14.7027 29.0304i 0.531576 1.04959i
$$766$$ −2.74884 + 6.01912i −0.0993196 + 0.217480i
$$767$$ −1.51904 1.31626i −0.0548493 0.0475272i
$$768$$ −2.56669 0.369034i −0.0926174 0.0133164i
$$769$$ −8.01981