# Properties

 Label 230.2.j.a.9.10 Level $230$ Weight $2$ Character 230.9 Analytic conductor $1.837$ Analytic rank $0$ Dimension $120$ CM no Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [230,2,Mod(9,230)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(230, base_ring=CyclotomicField(22))

chi = DirichletCharacter(H, H._module([11, 10]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("230.9");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$230 = 2 \cdot 5 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 230.j (of order $$22$$, degree $$10$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.83655924649$$ Analytic rank: $$0$$ Dimension: $$120$$ Relative dimension: $$12$$ over $$\Q(\zeta_{22})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

## Embedding invariants

 Embedding label 9.10 Character $$\chi$$ $$=$$ 230.9 Dual form 230.2.j.a.179.10

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(0.281733 + 0.959493i) q^{2} +(0.0697998 - 0.0604819i) q^{3} +(-0.841254 + 0.540641i) q^{4} +(1.48028 + 1.67594i) q^{5} +(0.0776969 + 0.0499327i) q^{6} +(-1.04108 - 0.475445i) q^{7} +(-0.755750 - 0.654861i) q^{8} +(-0.425731 + 2.96102i) q^{9} +O(q^{10})$$ $$q+(0.281733 + 0.959493i) q^{2} +(0.0697998 - 0.0604819i) q^{3} +(-0.841254 + 0.540641i) q^{4} +(1.48028 + 1.67594i) q^{5} +(0.0776969 + 0.0499327i) q^{6} +(-1.04108 - 0.475445i) q^{7} +(-0.755750 - 0.654861i) q^{8} +(-0.425731 + 2.96102i) q^{9} +(-1.19101 + 1.89248i) q^{10} +(3.69609 + 1.08527i) q^{11} +(-0.0260204 + 0.0886173i) q^{12} +(-1.25102 + 0.571322i) q^{13} +(0.162880 - 1.13286i) q^{14} +(0.204687 + 0.0274504i) q^{15} +(0.415415 - 0.909632i) q^{16} +(0.463067 - 0.720547i) q^{17} +(-2.96102 + 0.425731i) q^{18} +(-0.778520 + 0.500325i) q^{19} +(-2.15137 - 0.609593i) q^{20} +(-0.101423 + 0.0297805i) q^{21} +3.85213i q^{22} +(-0.229075 - 4.79036i) q^{23} -0.0923584 q^{24} +(-0.617556 + 4.96172i) q^{25} +(-0.900632 - 1.03939i) q^{26} +(0.299170 + 0.465518i) q^{27} +(1.13286 - 0.162880i) q^{28} +(0.00469088 + 0.00301465i) q^{29} +(0.0313286 + 0.204130i) q^{30} +(4.36818 - 5.04115i) q^{31} +(0.989821 + 0.142315i) q^{32} +(0.323626 - 0.147795i) q^{33} +(0.821820 + 0.241308i) q^{34} +(-0.744268 - 2.44858i) q^{35} +(-1.24270 - 2.72114i) q^{36} +(-1.06862 - 0.153645i) q^{37} +(-0.699392 - 0.606027i) q^{38} +(-0.0527664 + 0.115542i) q^{39} +(-0.0212112 - 2.23597i) q^{40} +(-0.702947 - 4.88910i) q^{41} +(-0.0571483 - 0.0889245i) q^{42} +(5.24726 - 4.54678i) q^{43} +(-3.69609 + 1.08527i) q^{44} +(-5.59270 + 3.66963i) q^{45} +(4.53178 - 1.56940i) q^{46} -7.27641i q^{47} +(-0.0260204 - 0.0886173i) q^{48} +(-3.72623 - 4.30030i) q^{49} +(-4.93472 + 0.805336i) q^{50} +(-0.0112580 - 0.0783012i) q^{51} +(0.743545 - 1.15698i) q^{52} +(-0.417802 - 0.190804i) q^{53} +(-0.362376 + 0.418204i) q^{54} +(3.65240 + 7.80094i) q^{55} +(0.475445 + 1.04108i) q^{56} +(-0.0240800 + 0.0820090i) q^{57} +(-0.00157096 + 0.00535019i) q^{58} +(0.895090 + 1.95997i) q^{59} +(-0.187035 + 0.0875695i) q^{60} +(6.33405 - 7.30988i) q^{61} +(6.06760 + 2.77098i) q^{62} +(1.85102 - 2.88025i) q^{63} +(0.142315 + 0.989821i) q^{64} +(-2.80936 - 1.25092i) q^{65} +(0.232984 + 0.268878i) q^{66} +(2.18008 + 7.42468i) q^{67} +0.856515i q^{68} +(-0.305719 - 0.320511i) q^{69} +(2.13971 - 1.40396i) q^{70} +(3.45459 - 1.01436i) q^{71} +(2.26080 - 1.95900i) q^{72} +(7.64561 + 11.8968i) q^{73} +(-0.153645 - 1.06862i) q^{74} +(0.256989 + 0.383678i) q^{75} +(0.384437 - 0.841800i) q^{76} +(-3.33194 - 2.88714i) q^{77} +(-0.125728 - 0.0180770i) q^{78} +(-0.879284 - 1.92536i) q^{79} +(2.13942 - 0.650297i) q^{80} +(-8.56185 - 2.51398i) q^{81} +(4.49301 - 2.05189i) q^{82} +(-10.1835 - 1.46416i) q^{83} +(0.0692219 - 0.0798863i) q^{84} +(1.89306 - 0.290536i) q^{85} +(5.84093 + 3.75374i) q^{86} +(0.000509755 - 7.32916e-5i) q^{87} +(-2.08262 - 3.24062i) q^{88} +(-4.67545 - 5.39575i) q^{89} +(-5.09663 - 4.33230i) q^{90} +1.57404 q^{91} +(2.78257 + 3.90606i) q^{92} -0.616067i q^{93} +(6.98167 - 2.05000i) q^{94} +(-1.99094 - 0.564135i) q^{95} +(0.0776969 - 0.0499327i) q^{96} +(-19.0564 + 2.73989i) q^{97} +(3.07630 - 4.78682i) q^{98} +(-4.78705 + 10.4822i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$120 q + 12 q^{4} - 4 q^{6} + 8 q^{9}+O(q^{10})$$ 120 * q + 12 * q^4 - 4 * q^6 + 8 * q^9 $$120 q + 12 q^{4} - 4 q^{6} + 8 q^{9} + 8 q^{11} - 6 q^{15} - 12 q^{16} - 16 q^{19} - 22 q^{20} + 4 q^{24} - 52 q^{25} - 4 q^{26} - 8 q^{29} - 44 q^{30} + 12 q^{31} + 16 q^{35} - 8 q^{36} - 36 q^{39} - 28 q^{41} - 8 q^{44} + 16 q^{45} - 4 q^{46} - 58 q^{49} + 12 q^{50} - 24 q^{51} - 6 q^{54} - 36 q^{55} + 22 q^{56} - 102 q^{59} - 38 q^{60} + 72 q^{61} + 12 q^{64} - 138 q^{65} + 80 q^{66} - 212 q^{69} - 108 q^{70} + 176 q^{71} - 88 q^{74} - 100 q^{75} + 16 q^{76} - 104 q^{79} - 22 q^{80} - 28 q^{81} - 22 q^{84} + 2 q^{85} + 62 q^{86} + 48 q^{89} + 24 q^{90} - 56 q^{91} + 24 q^{94} + 18 q^{95} - 4 q^{96} + 188 q^{99}+O(q^{100})$$ 120 * q + 12 * q^4 - 4 * q^6 + 8 * q^9 + 8 * q^11 - 6 * q^15 - 12 * q^16 - 16 * q^19 - 22 * q^20 + 4 * q^24 - 52 * q^25 - 4 * q^26 - 8 * q^29 - 44 * q^30 + 12 * q^31 + 16 * q^35 - 8 * q^36 - 36 * q^39 - 28 * q^41 - 8 * q^44 + 16 * q^45 - 4 * q^46 - 58 * q^49 + 12 * q^50 - 24 * q^51 - 6 * q^54 - 36 * q^55 + 22 * q^56 - 102 * q^59 - 38 * q^60 + 72 * q^61 + 12 * q^64 - 138 * q^65 + 80 * q^66 - 212 * q^69 - 108 * q^70 + 176 * q^71 - 88 * q^74 - 100 * q^75 + 16 * q^76 - 104 * q^79 - 22 * q^80 - 28 * q^81 - 22 * q^84 + 2 * q^85 + 62 * q^86 + 48 * q^89 + 24 * q^90 - 56 * q^91 + 24 * q^94 + 18 * q^95 - 4 * q^96 + 188 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/230\mathbb{Z}\right)^\times$$.

 $$n$$ $$47$$ $$51$$ $$\chi(n)$$ $$-1$$ $$e\left(\frac{5}{11}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.281733 + 0.959493i 0.199215 + 0.678464i
$$3$$ 0.0697998 0.0604819i 0.0402990 0.0349192i −0.634478 0.772941i $$-0.718785\pi$$
0.674777 + 0.738021i $$0.264240\pi$$
$$4$$ −0.841254 + 0.540641i −0.420627 + 0.270320i
$$5$$ 1.48028 + 1.67594i 0.662000 + 0.749504i
$$6$$ 0.0776969 + 0.0499327i 0.0317196 + 0.0203850i
$$7$$ −1.04108 0.475445i −0.393491 0.179701i 0.208836 0.977951i $$-0.433032\pi$$
−0.602327 + 0.798249i $$0.705760\pi$$
$$8$$ −0.755750 0.654861i −0.267198 0.231528i
$$9$$ −0.425731 + 2.96102i −0.141910 + 0.987007i
$$10$$ −1.19101 + 1.89248i −0.376631 + 0.598456i
$$11$$ 3.69609 + 1.08527i 1.11441 + 0.327222i 0.786564 0.617508i $$-0.211858\pi$$
0.327850 + 0.944730i $$0.393676\pi$$
$$12$$ −0.0260204 + 0.0886173i −0.00751144 + 0.0255816i
$$13$$ −1.25102 + 0.571322i −0.346971 + 0.158456i −0.581275 0.813707i $$-0.697446\pi$$
0.234305 + 0.972163i $$0.424719\pi$$
$$14$$ 0.162880 1.13286i 0.0435315 0.302769i
$$15$$ 0.204687 + 0.0274504i 0.0528500 + 0.00708766i
$$16$$ 0.415415 0.909632i 0.103854 0.227408i
$$17$$ 0.463067 0.720547i 0.112310 0.174758i −0.780548 0.625096i $$-0.785060\pi$$
0.892858 + 0.450337i $$0.148696\pi$$
$$18$$ −2.96102 + 0.425731i −0.697919 + 0.100346i
$$19$$ −0.778520 + 0.500325i −0.178605 + 0.114782i −0.626888 0.779109i $$-0.715672\pi$$
0.448284 + 0.893891i $$0.352035\pi$$
$$20$$ −2.15137 0.609593i −0.481061 0.136309i
$$21$$ −0.101423 + 0.0297805i −0.0221323 + 0.00649863i
$$22$$ 3.85213i 0.821277i
$$23$$ −0.229075 4.79036i −0.0477655 0.998859i
$$24$$ −0.0923584 −0.0188526
$$25$$ −0.617556 + 4.96172i −0.123511 + 0.992343i
$$26$$ −0.900632 1.03939i −0.176629 0.203840i
$$27$$ 0.299170 + 0.465518i 0.0575754 + 0.0895890i
$$28$$ 1.13286 0.162880i 0.214090 0.0307815i
$$29$$ 0.00469088 + 0.00301465i 0.000871075 + 0.000559806i 0.541076 0.840974i $$-0.318017\pi$$
−0.540205 + 0.841533i $$0.681653\pi$$
$$30$$ 0.0313286 + 0.204130i 0.00571979 + 0.0372688i
$$31$$ 4.36818 5.04115i 0.784548 0.905416i −0.212881 0.977078i $$-0.568285\pi$$
0.997429 + 0.0716617i $$0.0228302\pi$$
$$32$$ 0.989821 + 0.142315i 0.174977 + 0.0251579i
$$33$$ 0.323626 0.147795i 0.0563361 0.0257278i
$$34$$ 0.821820 + 0.241308i 0.140941 + 0.0413840i
$$35$$ −0.744268 2.44858i −0.125804 0.413885i
$$36$$ −1.24270 2.72114i −0.207117 0.453523i
$$37$$ −1.06862 0.153645i −0.175680 0.0252590i 0.0539132 0.998546i $$-0.482831\pi$$
−0.229593 + 0.973287i $$0.573740\pi$$
$$38$$ −0.699392 0.606027i −0.113456 0.0983105i
$$39$$ −0.0527664 + 0.115542i −0.00844938 + 0.0185016i
$$40$$ −0.0212112 2.23597i −0.00335379 0.353537i
$$41$$ −0.702947 4.88910i −0.109782 0.763549i −0.968124 0.250472i $$-0.919414\pi$$
0.858342 0.513078i $$-0.171495\pi$$
$$42$$ −0.0571483 0.0889245i −0.00881817 0.0137213i
$$43$$ 5.24726 4.54678i 0.800200 0.693377i −0.155462 0.987842i $$-0.549687\pi$$
0.955662 + 0.294465i $$0.0951413\pi$$
$$44$$ −3.69609 + 1.08527i −0.557207 + 0.163611i
$$45$$ −5.59270 + 3.66963i −0.833710 + 0.547037i
$$46$$ 4.53178 1.56940i 0.668174 0.231395i
$$47$$ 7.27641i 1.06137i −0.847568 0.530687i $$-0.821934\pi$$
0.847568 0.530687i $$-0.178066\pi$$
$$48$$ −0.0260204 0.0886173i −0.00375572 0.0127908i
$$49$$ −3.72623 4.30030i −0.532318 0.614328i
$$50$$ −4.93472 + 0.805336i −0.697874 + 0.113892i
$$51$$ −0.0112580 0.0783012i −0.00157644 0.0109644i
$$52$$ 0.743545 1.15698i 0.103111 0.160444i
$$53$$ −0.417802 0.190804i −0.0573896 0.0262089i 0.386513 0.922284i $$-0.373679\pi$$
−0.443903 + 0.896075i $$0.646407\pi$$
$$54$$ −0.362376 + 0.418204i −0.0493131 + 0.0569103i
$$55$$ 3.65240 + 7.80094i 0.492489 + 1.05188i
$$56$$ 0.475445 + 1.04108i 0.0635340 + 0.139120i
$$57$$ −0.0240800 + 0.0820090i −0.00318947 + 0.0108624i
$$58$$ −0.00157096 + 0.00535019i −0.000206277 + 0.000702515i
$$59$$ 0.895090 + 1.95997i 0.116531 + 0.255167i 0.958906 0.283725i $$-0.0915704\pi$$
−0.842375 + 0.538892i $$0.818843\pi$$
$$60$$ −0.187035 + 0.0875695i −0.0241461 + 0.0113052i
$$61$$ 6.33405 7.30988i 0.810992 0.935934i −0.187939 0.982181i $$-0.560181\pi$$
0.998930 + 0.0462467i $$0.0147260\pi$$
$$62$$ 6.06760 + 2.77098i 0.770586 + 0.351915i
$$63$$ 1.85102 2.88025i 0.233207 0.362877i
$$64$$ 0.142315 + 0.989821i 0.0177894 + 0.123728i
$$65$$ −2.80936 1.25092i −0.348458 0.155158i
$$66$$ 0.232984 + 0.268878i 0.0286784 + 0.0330966i
$$67$$ 2.18008 + 7.42468i 0.266339 + 0.907069i 0.978707 + 0.205262i $$0.0658047\pi$$
−0.712368 + 0.701806i $$0.752377\pi$$
$$68$$ 0.856515i 0.103868i
$$69$$ −0.305719 0.320511i −0.0368043 0.0385850i
$$70$$ 2.13971 1.40396i 0.255744 0.167806i
$$71$$ 3.45459 1.01436i 0.409984 0.120382i −0.0702355 0.997530i $$-0.522375\pi$$
0.480220 + 0.877148i $$0.340557\pi$$
$$72$$ 2.26080 1.95900i 0.266438 0.230870i
$$73$$ 7.64561 + 11.8968i 0.894851 + 1.39242i 0.919657 + 0.392723i $$0.128467\pi$$
−0.0248059 + 0.999692i $$0.507897\pi$$
$$74$$ −0.153645 1.06862i −0.0178608 0.124225i
$$75$$ 0.256989 + 0.383678i 0.0296745 + 0.0443033i
$$76$$ 0.384437 0.841800i 0.0440979 0.0965610i
$$77$$ −3.33194 2.88714i −0.379710 0.329020i
$$78$$ −0.125728 0.0180770i −0.0142359 0.00204681i
$$79$$ −0.879284 1.92536i −0.0989272 0.216620i 0.853697 0.520770i $$-0.174355\pi$$
−0.952624 + 0.304150i $$0.901628\pi$$
$$80$$ 2.13942 0.650297i 0.239194 0.0727054i
$$81$$ −8.56185 2.51398i −0.951316 0.279332i
$$82$$ 4.49301 2.05189i 0.496170 0.226593i
$$83$$ −10.1835 1.46416i −1.11778 0.160713i −0.441433 0.897294i $$-0.645530\pi$$
−0.676349 + 0.736581i $$0.736439\pi$$
$$84$$ 0.0692219 0.0798863i 0.00755273 0.00871631i
$$85$$ 1.89306 0.290536i 0.205331 0.0315130i
$$86$$ 5.84093 + 3.75374i 0.629843 + 0.404776i
$$87$$ 0.000509755 0 7.32916e-5i 5.46514e−5 0 7.85769e-6i
$$88$$ −2.08262 3.24062i −0.222008 0.345451i
$$89$$ −4.67545 5.39575i −0.495597 0.571949i 0.451756 0.892142i $$-0.350798\pi$$
−0.947352 + 0.320193i $$0.896252\pi$$
$$90$$ −5.09663 4.33230i −0.537232 0.456664i
$$91$$ 1.57404 0.165005
$$92$$ 2.78257 + 3.90606i 0.290103 + 0.407235i
$$93$$ 0.616067i 0.0638832i
$$94$$ 6.98167 2.05000i 0.720104 0.211442i
$$95$$ −1.99094 0.564135i −0.204266 0.0578790i
$$96$$ 0.0776969 0.0499327i 0.00792990 0.00509624i
$$97$$ −19.0564 + 2.73989i −1.93488 + 0.278194i −0.997533 0.0702015i $$-0.977636\pi$$
−0.937348 + 0.348395i $$0.886727\pi$$
$$98$$ 3.07630 4.78682i 0.310754 0.483542i
$$99$$ −4.78705 + 10.4822i −0.481117 + 1.05350i
$$100$$ −2.16298 4.50794i −0.216298 0.450794i
$$101$$ −1.46183 + 10.1673i −0.145458 + 1.01168i 0.778077 + 0.628169i $$0.216195\pi$$
−0.923535 + 0.383514i $$0.874714\pi$$
$$102$$ 0.0719577 0.0328620i 0.00712488 0.00325382i
$$103$$ −4.19683 + 14.2931i −0.413526 + 1.40834i 0.444983 + 0.895539i $$0.353210\pi$$
−0.858508 + 0.512800i $$0.828608\pi$$
$$104$$ 1.31959 + 0.387468i 0.129397 + 0.0379943i
$$105$$ −0.200044 0.125896i −0.0195223 0.0122861i
$$106$$ 0.0653665 0.454634i 0.00634896 0.0441580i
$$107$$ −13.5230 11.7177i −1.30732 1.13280i −0.982347 0.187070i $$-0.940101\pi$$
−0.324969 0.945725i $$-0.605354\pi$$
$$108$$ −0.503356 0.229875i −0.0484355 0.0221198i
$$109$$ 11.5072 + 7.39525i 1.10219 + 0.708336i 0.959578 0.281442i $$-0.0908128\pi$$
0.142614 + 0.989778i $$0.454449\pi$$
$$110$$ −6.45595 + 5.70223i −0.615550 + 0.543686i
$$111$$ −0.0838823 + 0.0539079i −0.00796176 + 0.00511671i
$$112$$ −0.864960 + 0.749492i −0.0817310 + 0.0708203i
$$113$$ 4.35279 + 14.8243i 0.409476 + 1.39455i 0.863855 + 0.503740i $$0.168043\pi$$
−0.454379 + 0.890809i $$0.650139\pi$$
$$114$$ −0.0854711 −0.00800511
$$115$$ 7.68926 7.47498i 0.717027 0.697045i
$$116$$ −0.00557606 −0.000517725
$$117$$ −1.15910 3.94753i −0.107159 0.364949i
$$118$$ −1.62840 + 1.41102i −0.149907 + 0.129895i
$$119$$ −0.824670 + 0.529983i −0.0755973 + 0.0485835i
$$120$$ −0.136716 0.154787i −0.0124804 0.0141301i
$$121$$ 3.22951 + 2.07548i 0.293592 + 0.188680i
$$122$$ 8.79828 + 4.01804i 0.796559 + 0.363776i
$$123$$ −0.344768 0.298743i −0.0310867 0.0269367i
$$124$$ −0.949296 + 6.60250i −0.0852493 + 0.592922i
$$125$$ −9.22970 + 6.30973i −0.825529 + 0.564359i
$$126$$ 3.28507 + 0.964583i 0.292657 + 0.0859319i
$$127$$ 0.858846 2.92496i 0.0762103 0.259548i −0.912571 0.408918i $$-0.865906\pi$$
0.988781 + 0.149370i $$0.0477244\pi$$
$$128$$ −0.909632 + 0.415415i −0.0804009 + 0.0367178i
$$129$$ 0.0912602 0.634729i 0.00803502 0.0558848i
$$130$$ 0.408762 3.04799i 0.0358508 0.267326i
$$131$$ 2.74657 6.01415i 0.239969 0.525459i −0.750879 0.660440i $$-0.770370\pi$$
0.990848 + 0.134981i $$0.0430972\pi$$
$$132$$ −0.192348 + 0.299299i −0.0167417 + 0.0260506i
$$133$$ 1.04838 0.150734i 0.0909059 0.0130703i
$$134$$ −6.50972 + 4.18355i −0.562355 + 0.361403i
$$135$$ −0.337326 + 1.19049i −0.0290324 + 0.102461i
$$136$$ −0.821820 + 0.241308i −0.0704705 + 0.0206920i
$$137$$ 12.2743i 1.04866i 0.851515 + 0.524330i $$0.175684\pi$$
−0.851515 + 0.524330i $$0.824316\pi$$
$$138$$ 0.221397 0.383634i 0.0188466 0.0326571i
$$139$$ 16.1706 1.37157 0.685785 0.727804i $$-0.259459\pi$$
0.685785 + 0.727804i $$0.259459\pi$$
$$140$$ 1.94992 + 1.65749i 0.164798 + 0.140084i
$$141$$ −0.440091 0.507892i −0.0370624 0.0427723i
$$142$$ 1.94654 + 3.02888i 0.163350 + 0.254178i
$$143$$ −5.24393 + 0.753963i −0.438519 + 0.0630495i
$$144$$ 2.51658 + 1.61731i 0.209715 + 0.134776i
$$145$$ 0.00189144 + 0.0123242i 0.000157075 + 0.00102347i
$$146$$ −9.26088 + 10.6876i −0.766436 + 0.884514i
$$147$$ −0.520180 0.0747906i −0.0429037 0.00616863i
$$148$$ 0.982048 0.448486i 0.0807239 0.0368654i
$$149$$ −14.1219 4.14655i −1.15691 0.339699i −0.353678 0.935367i $$-0.615069\pi$$
−0.803230 + 0.595668i $$0.796887\pi$$
$$150$$ −0.295734 + 0.354673i −0.0241466 + 0.0289590i
$$151$$ 1.73764 + 3.80489i 0.141407 + 0.309638i 0.967064 0.254535i $$-0.0819224\pi$$
−0.825657 + 0.564173i $$0.809195\pi$$
$$152$$ 0.916009 + 0.131702i 0.0742982 + 0.0106825i
$$153$$ 1.93641 + 1.67791i 0.156550 + 0.135651i
$$154$$ 1.83148 4.01037i 0.147585 0.323165i
$$155$$ 14.9148 0.141487i 1.19798 0.0113645i
$$156$$ −0.0180770 0.125728i −0.00144731 0.0100663i
$$157$$ −1.41025 2.19439i −0.112550 0.175132i 0.780409 0.625270i $$-0.215011\pi$$
−0.892959 + 0.450138i $$0.851375\pi$$
$$158$$ 1.59965 1.38610i 0.127261 0.110273i
$$159$$ −0.0407027 + 0.0119514i −0.00322794 + 0.000947807i
$$160$$ 1.22670 + 1.86955i 0.0969791 + 0.147801i
$$161$$ −2.03906 + 5.09605i −0.160701 + 0.401625i
$$162$$ 8.92330i 0.701081i
$$163$$ 0.865221 + 2.94667i 0.0677693 + 0.230801i 0.986413 0.164287i $$-0.0525323\pi$$
−0.918643 + 0.395088i $$0.870714\pi$$
$$164$$ 3.23460 + 3.73293i 0.252580 + 0.291493i
$$165$$ 0.726752 + 0.323600i 0.0565776 + 0.0251923i
$$166$$ −1.46416 10.1835i −0.113641 0.790391i
$$167$$ 7.41220 11.5336i 0.573573 0.892497i −0.426354 0.904556i $$-0.640202\pi$$
0.999927 + 0.0120592i $$0.00383865\pi$$
$$168$$ 0.0961524 + 0.0439113i 0.00741832 + 0.00338783i
$$169$$ −7.27455 + 8.39527i −0.559581 + 0.645790i
$$170$$ 0.812104 + 1.73453i 0.0622855 + 0.133032i
$$171$$ −1.15003 2.51822i −0.0879451 0.192573i
$$172$$ −1.95610 + 6.66188i −0.149152 + 0.507963i
$$173$$ 4.49878 15.3214i 0.342036 1.16487i −0.591477 0.806322i $$-0.701455\pi$$
0.933513 0.358545i $$-0.116727\pi$$
$$174$$ 0.000213937 0 0.000468457i 1.62185e−5 0 3.55137e-5i
$$175$$ 3.00195 4.87192i 0.226926 0.368283i
$$176$$ 2.52261 2.91125i 0.190149 0.219444i
$$177$$ 0.181020 + 0.0826691i 0.0136063 + 0.00621379i
$$178$$ 3.85996 6.00622i 0.289316 0.450185i
$$179$$ −3.39154 23.5887i −0.253496 1.76310i −0.576876 0.816831i $$-0.695729\pi$$
0.323381 0.946269i $$-0.395181\pi$$
$$180$$ 2.72092 6.11073i 0.202806 0.455467i
$$181$$ −1.14197 1.31790i −0.0848820 0.0979591i 0.711720 0.702464i $$-0.247917\pi$$
−0.796602 + 0.604504i $$0.793371\pi$$
$$182$$ 0.443459 + 1.51028i 0.0328714 + 0.111950i
$$183$$ 0.893324i 0.0660364i
$$184$$ −2.96389 + 3.77032i −0.218501 + 0.277952i
$$185$$ −1.32436 2.01838i −0.0973687 0.148395i
$$186$$ 0.591112 0.173566i 0.0433424 0.0127265i
$$187$$ 2.49353 2.16065i 0.182345 0.158003i
$$188$$ 3.93393 + 6.12131i 0.286911 + 0.446442i
$$189$$ −0.0901318 0.626880i −0.00655612 0.0455988i
$$190$$ −0.0196295 2.06923i −0.00142407 0.150118i
$$191$$ −6.27677 + 13.7442i −0.454171 + 0.994496i 0.534607 + 0.845101i $$0.320460\pi$$
−0.988778 + 0.149395i $$0.952267\pi$$
$$192$$ 0.0697998 + 0.0604819i 0.00503737 + 0.00436491i
$$193$$ 23.5131 + 3.38067i 1.69251 + 0.243346i 0.920073 0.391747i $$-0.128129\pi$$
0.772435 + 0.635093i $$0.219038\pi$$
$$194$$ −7.99770 17.5125i −0.574202 1.25733i
$$195$$ −0.271751 + 0.0826013i −0.0194605 + 0.00591520i
$$196$$ 5.45962 + 1.60309i 0.389973 + 0.114506i
$$197$$ 8.75402 3.99783i 0.623698 0.284834i −0.0783906 0.996923i $$-0.524978\pi$$
0.702089 + 0.712089i $$0.252251\pi$$
$$198$$ −11.4062 1.63997i −0.810607 0.116548i
$$199$$ −3.28145 + 3.78700i −0.232616 + 0.268453i −0.860042 0.510223i $$-0.829563\pi$$
0.627426 + 0.778676i $$0.284108\pi$$
$$200$$ 3.71595 3.34540i 0.262757 0.236556i
$$201$$ 0.601228 + 0.386386i 0.0424073 + 0.0272535i
$$202$$ −10.1673 + 1.46183i −0.715367 + 0.102854i
$$203$$ −0.00345028 0.00536874i −0.000242162 0.000376812i
$$204$$ 0.0518037 + 0.0597846i 0.00362698 + 0.00418576i
$$205$$ 7.15329 8.41532i 0.499607 0.587752i
$$206$$ −14.8965 −1.03789
$$207$$ 14.2819 + 1.36110i 0.992659 + 0.0946033i
$$208$$ 1.37530i 0.0953601i
$$209$$ −3.42047 + 1.00434i −0.236599 + 0.0694717i
$$210$$ 0.0644368 0.227410i 0.00444656 0.0156928i
$$211$$ −18.3831 + 11.8141i −1.26555 + 0.813317i −0.989033 0.147693i $$-0.952815\pi$$
−0.276513 + 0.961010i $$0.589179\pi$$
$$212$$ 0.454634 0.0653665i 0.0312244 0.00448939i
$$213$$ 0.179779 0.279742i 0.0123183 0.0191676i
$$214$$ 7.43321 16.2765i 0.508124 1.11264i
$$215$$ 15.3875 + 2.06361i 1.04942 + 0.140737i
$$216$$ 0.0787517 0.547730i 0.00535838 0.0372683i
$$217$$ −6.94440 + 3.17140i −0.471417 + 0.215289i
$$218$$ −3.85373 + 13.1246i −0.261007 + 0.888909i
$$219$$ 1.25320 + 0.367974i 0.0846836 + 0.0248654i
$$220$$ −7.29010 4.58793i −0.491498 0.309318i
$$221$$ −0.167642 + 1.16598i −0.0112768 + 0.0784322i
$$222$$ −0.0753566 0.0652969i −0.00505761 0.00438244i
$$223$$ −18.5392 8.46657i −1.24148 0.566964i −0.317081 0.948398i $$-0.602703\pi$$
−0.924396 + 0.381435i $$0.875430\pi$$
$$224$$ −0.962819 0.618766i −0.0643311 0.0413431i
$$225$$ −14.4288 3.94095i −0.961922 0.262730i
$$226$$ −12.9974 + 8.35295i −0.864577 + 0.555630i
$$227$$ −2.24627 + 1.94640i −0.149090 + 0.129187i −0.726212 0.687471i $$-0.758721\pi$$
0.577122 + 0.816658i $$0.304176\pi$$
$$228$$ −0.0240800 0.0820090i −0.00159474 0.00543118i
$$229$$ 22.4667 1.48464 0.742320 0.670046i $$-0.233726\pi$$
0.742320 + 0.670046i $$0.233726\pi$$
$$230$$ 9.33850 + 5.27185i 0.615763 + 0.347615i
$$231$$ −0.407189 −0.0267910
$$232$$ −0.00157096 0.00535019i −0.000103138 0.000351257i
$$233$$ 10.5253 9.12026i 0.689538 0.597488i −0.237979 0.971270i $$-0.576485\pi$$
0.927516 + 0.373783i $$0.121939\pi$$
$$234$$ 3.46107 2.22429i 0.226257 0.145407i
$$235$$ 12.1948 10.7711i 0.795504 0.702630i
$$236$$ −1.81264 1.16491i −0.117993 0.0758293i
$$237$$ −0.177824 0.0812093i −0.0115509 0.00527511i
$$238$$ −0.740851 0.641951i −0.0480222 0.0416115i
$$239$$ 1.65603 11.5180i 0.107120 0.745036i −0.863488 0.504370i $$-0.831725\pi$$
0.970608 0.240666i $$-0.0773660\pi$$
$$240$$ 0.110000 0.174787i 0.00710046 0.0112824i
$$241$$ −17.8128 5.23031i −1.14742 0.336914i −0.347890 0.937535i $$-0.613102\pi$$
−0.799534 + 0.600621i $$0.794920\pi$$
$$242$$ −1.08155 + 3.68342i −0.0695247 + 0.236779i
$$243$$ −2.25974 + 1.03199i −0.144962 + 0.0662020i
$$244$$ −1.37652 + 9.57391i −0.0881227 + 0.612907i
$$245$$ 1.69119 12.6106i 0.108046 0.805660i
$$246$$ 0.189509 0.414968i 0.0120827 0.0264574i
$$247$$ 0.688098 1.07070i 0.0437826 0.0681271i
$$248$$ −6.60250 + 0.949296i −0.419259 + 0.0602803i
$$249$$ −0.799361 + 0.513718i −0.0506574 + 0.0325555i
$$250$$ −8.65445 7.07817i −0.547355 0.447663i
$$251$$ −6.14302 + 1.80375i −0.387744 + 0.113852i −0.469793 0.882776i $$-0.655672\pi$$
0.0820495 + 0.996628i $$0.473853\pi$$
$$252$$ 3.42375i 0.215676i
$$253$$ 4.35215 17.9542i 0.273617 1.12877i
$$254$$ 3.04844 0.191276
$$255$$ 0.114563 0.134775i 0.00717423 0.00843996i
$$256$$ −0.654861 0.755750i −0.0409288 0.0472343i
$$257$$ 6.44307 + 10.0256i 0.401908 + 0.625380i 0.981935 0.189216i $$-0.0605947\pi$$
−0.580028 + 0.814597i $$0.696958\pi$$
$$258$$ 0.634729 0.0912602i 0.0395165 0.00568161i
$$259$$ 1.03947 + 0.668027i 0.0645895 + 0.0415092i
$$260$$ 3.03968 0.466512i 0.188513 0.0289319i
$$261$$ −0.0109235 + 0.0126064i −0.000676147 + 0.000780315i
$$262$$ 6.54433 + 0.940933i 0.404310 + 0.0581310i
$$263$$ −8.46647 + 3.86651i −0.522065 + 0.238419i −0.658975 0.752164i $$-0.729010\pi$$
0.136911 + 0.990583i $$0.456283\pi$$
$$264$$ −0.341365 0.100234i −0.0210096 0.00616897i
$$265$$ −0.298687 0.982655i −0.0183482 0.0603640i
$$266$$ 0.439990 + 0.963444i 0.0269775 + 0.0590726i
$$267$$ −0.652691 0.0938428i −0.0399440 0.00574309i
$$268$$ −5.84808 5.06739i −0.357229 0.309540i
$$269$$ 12.2184 26.7546i 0.744970 1.63126i −0.0302316 0.999543i $$-0.509624\pi$$
0.775202 0.631714i $$-0.217648\pi$$
$$270$$ −1.23730 + 0.0117375i −0.0752997 + 0.000714321i
$$271$$ −2.18178 15.1746i −0.132534 0.921793i −0.942236 0.334951i $$-0.891280\pi$$
0.809702 0.586842i $$-0.199629\pi$$
$$272$$ −0.463067 0.720547i −0.0280776 0.0436895i
$$273$$ 0.109868 0.0952011i 0.00664951 0.00576183i
$$274$$ −11.7771 + 3.45806i −0.711479 + 0.208909i
$$275$$ −7.66735 + 17.6688i −0.462359 + 1.06547i
$$276$$ 0.430469 + 0.104347i 0.0259112 + 0.00628094i
$$277$$ 18.2644i 1.09740i −0.836018 0.548702i $$-0.815122\pi$$
0.836018 0.548702i $$-0.184878\pi$$
$$278$$ 4.55578 + 15.5156i 0.273237 + 0.930561i
$$279$$ 13.0673 + 15.0804i 0.782317 + 0.902842i
$$280$$ −1.04100 + 2.33790i −0.0622114 + 0.139716i
$$281$$ 3.16822 + 22.0354i 0.189000 + 1.31452i 0.834604 + 0.550851i $$0.185697\pi$$
−0.645604 + 0.763673i $$0.723394\pi$$
$$282$$ 0.363331 0.565354i 0.0216361 0.0336664i
$$283$$ −17.6388 8.05536i −1.04852 0.478842i −0.184778 0.982780i $$-0.559156\pi$$
−0.863739 + 0.503939i $$0.831884\pi$$
$$284$$ −2.35778 + 2.72102i −0.139909 + 0.161463i
$$285$$ −0.173087 + 0.0810394i −0.0102528 + 0.00480036i
$$286$$ −2.20081 4.81910i −0.130136 0.284959i
$$287$$ −1.59267 + 5.42415i −0.0940126 + 0.320178i
$$288$$ −0.842794 + 2.87029i −0.0496621 + 0.169134i
$$289$$ 6.75730 + 14.7964i 0.397488 + 0.870378i
$$290$$ −0.0112921 + 0.00528694i −0.000663093 + 0.000310460i
$$291$$ −1.16442 + 1.34381i −0.0682593 + 0.0787755i
$$292$$ −12.8638 5.87470i −0.752796 0.343791i
$$293$$ 6.21266 9.66709i 0.362948 0.564757i −0.610972 0.791652i $$-0.709221\pi$$
0.973919 + 0.226895i $$0.0728574\pi$$
$$294$$ −0.0747906 0.520180i −0.00436188 0.0303375i
$$295$$ −1.95982 + 4.40142i −0.114105 + 0.256261i
$$296$$ 0.706995 + 0.815915i 0.0410932 + 0.0474241i
$$297$$ 0.600549 + 2.04528i 0.0348474 + 0.118679i
$$298$$ 14.7180i 0.852594i
$$299$$ 3.02341 + 5.86196i 0.174849 + 0.339006i
$$300$$ −0.423625 0.183832i −0.0244580 0.0106135i
$$301$$ −7.62456 + 2.23877i −0.439472 + 0.129041i
$$302$$ −3.16122 + 2.73921i −0.181908 + 0.157624i
$$303$$ 0.512901 + 0.798089i 0.0294654 + 0.0458490i
$$304$$ 0.131702 + 0.916009i 0.00755364 + 0.0525367i
$$305$$ 21.6271 0.205162i 1.23836 0.0117476i
$$306$$ −1.06439 + 2.33070i −0.0608473 + 0.133237i
$$307$$ 5.79883 + 5.02472i 0.330957 + 0.286776i 0.804448 0.594023i $$-0.202461\pi$$
−0.473491 + 0.880798i $$0.657007\pi$$
$$308$$ 4.36391 + 0.627436i 0.248657 + 0.0357515i
$$309$$ 0.571535 + 1.25149i 0.0325135 + 0.0711946i
$$310$$ 4.33773 + 14.2708i 0.246367 + 0.810525i
$$311$$ 0.619013 + 0.181759i 0.0351010 + 0.0103066i 0.299236 0.954179i $$-0.403268\pi$$
−0.264135 + 0.964486i $$0.585086\pi$$
$$312$$ 0.115542 0.0527664i 0.00654129 0.00298731i
$$313$$ 3.65395 + 0.525358i 0.206533 + 0.0296950i 0.244805 0.969572i $$-0.421276\pi$$
−0.0382716 + 0.999267i $$0.512185\pi$$
$$314$$ 1.70819 1.97136i 0.0963989 0.111250i
$$315$$ 7.56715 1.16136i 0.426360 0.0654352i
$$316$$ 1.78063 + 1.14434i 0.100168 + 0.0643743i
$$317$$ −18.2009 + 2.61689i −1.02226 + 0.146979i −0.633004 0.774148i $$-0.718178\pi$$
−0.389260 + 0.921128i $$0.627269\pi$$
$$318$$ −0.0229346 0.0356869i −0.00128611 0.00200122i
$$319$$ 0.0140662 + 0.0162333i 0.000787558 + 0.000908890i
$$320$$ −1.44822 + 1.70372i −0.0809578 + 0.0952409i
$$321$$ −1.65261 −0.0922398
$$322$$ −5.46410 0.520744i −0.304502 0.0290200i
$$323$$ 0.792644i 0.0441039i
$$324$$ 8.56185 2.51398i 0.475658 0.139666i
$$325$$ −2.06216 6.56003i −0.114388 0.363885i
$$326$$ −2.58355 + 1.66035i −0.143090 + 0.0919581i
$$327$$ 1.25048 0.179792i 0.0691518 0.00994252i
$$328$$ −2.67043 + 4.15527i −0.147450 + 0.229436i
$$329$$ −3.45953 + 7.57532i −0.190730 + 0.417641i
$$330$$ −0.105743 + 0.788482i −0.00582094 + 0.0434045i
$$331$$ −4.58706 + 31.9037i −0.252128 + 1.75359i 0.333262 + 0.942834i $$0.391851\pi$$
−0.585390 + 0.810752i $$0.699058\pi$$
$$332$$ 9.35847 4.27387i 0.513613 0.234559i
$$333$$ 0.909890 3.09880i 0.0498617 0.169813i
$$334$$ 13.1547 + 3.86256i 0.719792 + 0.211350i
$$335$$ −9.21619 + 14.6443i −0.503534 + 0.800102i
$$336$$ −0.0150434 + 0.104629i −0.000820682 + 0.00570797i
$$337$$ 7.50022 + 6.49898i 0.408563 + 0.354022i 0.834765 0.550606i $$-0.185603\pi$$
−0.426202 + 0.904628i $$0.640149\pi$$
$$338$$ −10.1047 4.61465i −0.549622 0.251004i
$$339$$ 1.20042 + 0.771465i 0.0651981 + 0.0419002i
$$340$$ −1.43547 + 1.26788i −0.0778492 + 0.0687605i
$$341$$ 21.6162 13.8919i 1.17058 0.752288i
$$342$$ 2.09221 1.81291i 0.113134 0.0980310i
$$343$$ 4.09186 + 13.9356i 0.220939 + 0.752451i
$$344$$ −6.94312 −0.374348
$$345$$ 0.0846084 0.986813i 0.00455516 0.0531282i
$$346$$ 15.9683 0.858459
$$347$$ 0.511743 + 1.74284i 0.0274718 + 0.0935604i 0.972088 0.234617i $$-0.0753837\pi$$
−0.944616 + 0.328178i $$0.893566\pi$$
$$348$$ −0.000389208 0 0.000337251i −2.08638e−5 0 1.80786e-5i
$$349$$ −7.67643 + 4.93334i −0.410910 + 0.264076i −0.729724 0.683741i $$-0.760352\pi$$
0.318815 + 0.947817i $$0.396715\pi$$
$$350$$ 5.52032 + 1.50777i 0.295074 + 0.0805936i
$$351$$ −0.640229 0.411450i −0.0341729 0.0219616i
$$352$$ 3.50402 + 1.60023i 0.186765 + 0.0852927i
$$353$$ 11.6061 + 10.0567i 0.617730 + 0.535266i 0.906540 0.422121i $$-0.138714\pi$$
−0.288810 + 0.957386i $$0.593260\pi$$
$$354$$ −0.0283212 + 0.196978i −0.00150525 + 0.0104693i
$$355$$ 6.81376 + 4.28815i 0.361637 + 0.227592i
$$356$$ 6.85040 + 2.01146i 0.363071 + 0.106607i
$$357$$ −0.0255074 + 0.0868703i −0.00135000 + 0.00459766i
$$358$$ 21.6777 9.89986i 1.14570 0.523224i
$$359$$ −0.348942 + 2.42695i −0.0184165 + 0.128089i −0.996956 0.0779719i $$-0.975156\pi$$
0.978539 + 0.206061i $$0.0660646\pi$$
$$360$$ 6.62978 + 0.889113i 0.349420 + 0.0468604i
$$361$$ −7.53712 + 16.5040i −0.396690 + 0.868631i
$$362$$ 0.942790 1.46701i 0.0495519 0.0771043i
$$363$$ 0.350948 0.0504587i 0.0184200 0.00264840i
$$364$$ −1.32417 + 0.850992i −0.0694053 + 0.0446041i
$$365$$ −8.62071 + 30.4242i −0.451229 + 1.59247i
$$366$$ 0.857138 0.251678i 0.0448033 0.0131554i
$$367$$ 22.7391i 1.18697i 0.804845 + 0.593485i $$0.202248\pi$$
−0.804845 + 0.593485i $$0.797752\pi$$
$$368$$ −4.45262 1.78161i −0.232109 0.0928729i
$$369$$ 14.7760 0.769208
$$370$$ 1.56351 1.83936i 0.0812830 0.0956236i
$$371$$ 0.344248 + 0.397284i 0.0178725 + 0.0206259i
$$372$$ 0.333071 + 0.518268i 0.0172689 + 0.0268710i
$$373$$ −34.5081 + 4.96151i −1.78676 + 0.256897i −0.954654 0.297717i $$-0.903775\pi$$
−0.832107 + 0.554615i $$0.812866\pi$$
$$374$$ 2.77564 + 1.78380i 0.143525 + 0.0922379i
$$375$$ −0.262607 + 0.998648i −0.0135610 + 0.0515700i
$$376$$ −4.76504 + 5.49915i −0.245738 + 0.283597i
$$377$$ −0.00759072 0.00109138i −0.000390942 5.62090e-5i
$$378$$ 0.576094 0.263093i 0.0296311 0.0135321i
$$379$$ −30.1488 8.85248i −1.54864 0.454721i −0.607945 0.793979i $$-0.708006\pi$$
−0.940693 + 0.339258i $$0.889824\pi$$
$$380$$ 1.97988 0.601803i 0.101566 0.0308719i
$$381$$ −0.116960 0.256107i −0.00599204 0.0131207i
$$382$$ −14.9558 2.15032i −0.765207 0.110020i
$$383$$ −25.2467 21.8764i −1.29004 1.11783i −0.986280 0.165083i $$-0.947211\pi$$
−0.303765 0.952747i $$-0.598244\pi$$
$$384$$ −0.0383671 + 0.0840122i −0.00195791 + 0.00428723i
$$385$$ −0.0935158 9.85791i −0.00476600 0.502405i
$$386$$ 3.38067 + 23.5131i 0.172072 + 1.19678i
$$387$$ 11.2292 + 17.4730i 0.570812 + 0.888200i
$$388$$ 14.5499 12.6076i 0.738661 0.640053i
$$389$$ −7.19341 + 2.11218i −0.364720 + 0.107092i −0.458957 0.888458i $$-0.651777\pi$$
0.0942372 + 0.995550i $$0.469959\pi$$
$$390$$ −0.155816 0.237472i −0.00789007 0.0120248i
$$391$$ −3.55775 2.05320i −0.179923 0.103835i
$$392$$ 5.69011i 0.287394i
$$393$$ −0.172037 0.585905i −0.00867813 0.0295550i
$$394$$ 6.30218 + 7.27311i 0.317499 + 0.366414i
$$395$$ 1.92521 4.32370i 0.0968679 0.217549i
$$396$$ −1.63997 11.4062i −0.0824116 0.573185i
$$397$$ 14.2718 22.2073i 0.716279 1.11455i −0.272060 0.962280i $$-0.587705\pi$$
0.988339 0.152271i $$-0.0486588\pi$$
$$398$$ −4.55809 2.08161i −0.228476 0.104342i
$$399$$ 0.0640599 0.0739291i 0.00320701 0.00370108i
$$400$$ 4.25679 + 2.62292i 0.212840 + 0.131146i
$$401$$ 3.29610 + 7.21746i 0.164600 + 0.360423i 0.973902 0.226970i $$-0.0728818\pi$$
−0.809302 + 0.587392i $$0.800155\pi$$
$$402$$ −0.201349 + 0.685731i −0.0100424 + 0.0342012i
$$403$$ −2.58456 + 8.80221i −0.128746 + 0.438469i
$$404$$ −4.26707 9.34359i −0.212295 0.464861i
$$405$$ −8.46062 18.0705i −0.420412 0.897933i
$$406$$ 0.00417921 0.00482307i 0.000207411 0.000239365i
$$407$$ −3.78298 1.72763i −0.187515 0.0856354i
$$408$$ −0.0427682 + 0.0665485i −0.00211734 + 0.00329464i
$$409$$ −1.73550 12.0707i −0.0858150 0.596856i −0.986670 0.162736i $$-0.947968\pi$$
0.900855 0.434121i $$-0.142941\pi$$
$$410$$ 10.0898 + 4.49266i 0.498298 + 0.221877i
$$411$$ 0.742371 + 0.856741i 0.0366184 + 0.0422599i
$$412$$ −4.19683 14.2931i −0.206763 0.704169i
$$413$$ 2.46605i 0.121347i
$$414$$ 2.71770 + 14.0868i 0.133568 + 0.692330i
$$415$$ −12.6205 19.2343i −0.619517 0.944174i
$$416$$ −1.31959 + 0.387468i −0.0646984 + 0.0189972i
$$417$$ 1.12870 0.978028i 0.0552729 0.0478942i
$$418$$ −1.92732 2.99896i −0.0942681 0.146684i
$$419$$ −2.14712 14.9335i −0.104894 0.729550i −0.972602 0.232477i $$-0.925317\pi$$
0.867708 0.497074i $$-0.165592\pi$$
$$420$$ 0.236352 0.00224213i 0.0115328 0.000109405i
$$421$$ 8.54469 18.7103i 0.416443 0.911883i −0.578892 0.815404i $$-0.696515\pi$$
0.995335 0.0964786i $$-0.0307579\pi$$
$$422$$ −16.5147 14.3101i −0.803923 0.696603i
$$423$$ 21.5456 + 3.09779i 1.04758 + 0.150620i
$$424$$ 0.190804 + 0.417802i 0.00926626 + 0.0202903i
$$425$$ 3.28918 + 2.74259i 0.159549 + 0.133035i
$$426$$ 0.319060 + 0.0936846i 0.0154585 + 0.00453903i
$$427$$ −10.0697 + 4.59867i −0.487306 + 0.222545i
$$428$$ 17.7113 + 2.54650i 0.856109 + 0.123090i
$$429$$ −0.320424 + 0.369789i −0.0154702 + 0.0178536i
$$430$$ 2.35515 + 15.3456i 0.113576 + 0.740032i
$$431$$ −12.7650 8.20355i −0.614867 0.395151i 0.195812 0.980641i $$-0.437266\pi$$
−0.810679 + 0.585490i $$0.800902\pi$$
$$432$$ 0.547730 0.0787517i 0.0263527 0.00378894i
$$433$$ −1.83241 2.85128i −0.0880599 0.137024i 0.794429 0.607357i $$-0.207770\pi$$
−0.882489 + 0.470333i $$0.844134\pi$$
$$434$$ −4.99940 5.76962i −0.239979 0.276951i
$$435$$ 0.000877411 0 0.000745827i 4.20686e−5 0 3.57596e-5i
$$436$$ −13.6787 −0.655089
$$437$$ 2.57507 + 3.61478i 0.123182 + 0.172918i
$$438$$ 1.30611i 0.0624084i
$$439$$ −15.2146 + 4.46741i −0.726154 + 0.213218i −0.623860 0.781536i $$-0.714436\pi$$
−0.102294 + 0.994754i $$0.532618\pi$$
$$440$$ 2.34823 8.28737i 0.111948 0.395085i
$$441$$ 14.3196 9.20267i 0.681887 0.438222i
$$442$$ −1.16598 + 0.167642i −0.0554599 + 0.00797394i
$$443$$ −16.5079 + 25.6868i −0.784314 + 1.22042i 0.186940 + 0.982371i $$0.440143\pi$$
−0.971254 + 0.238045i $$0.923493\pi$$
$$444$$ 0.0414215 0.0907004i 0.00196578 0.00430445i
$$445$$ 2.12201 15.8230i 0.100593 0.750082i
$$446$$ 2.90052 20.1735i 0.137344 0.955245i
$$447$$ −1.23650 + 0.564688i −0.0584842 + 0.0267088i
$$448$$ 0.322444 1.09815i 0.0152341 0.0518825i
$$449$$ −6.20596 1.82224i −0.292878 0.0859966i 0.131993 0.991251i $$-0.457862\pi$$
−0.424871 + 0.905254i $$0.639680\pi$$
$$450$$ −0.283756 14.9547i −0.0133764 0.704969i
$$451$$ 2.70784 18.8335i 0.127507 0.886833i
$$452$$ −11.6764 10.1177i −0.549212 0.475895i
$$453$$ 0.351414 + 0.160485i 0.0165109 + 0.00754026i
$$454$$ −2.50041 1.60691i −0.117350 0.0754162i
$$455$$ 2.33002 + 2.63800i 0.109233 + 0.123671i
$$456$$ 0.0719029 0.0462092i 0.00336716 0.00216394i
$$457$$ −15.0484 + 13.0395i −0.703935 + 0.609963i −0.931475 0.363806i $$-0.881477\pi$$
0.227540 + 0.973769i $$0.426932\pi$$
$$458$$ 6.32959 + 21.5566i 0.295762 + 1.00727i
$$459$$ 0.473964 0.0221227
$$460$$ −2.42734 + 10.4455i −0.113175 + 0.487023i
$$461$$ −13.0285 −0.606796 −0.303398 0.952864i $$-0.598121\pi$$
−0.303398 + 0.952864i $$0.598121\pi$$
$$462$$ −0.114718 0.390695i −0.00533718 0.0181768i
$$463$$ −14.3298 + 12.4168i −0.665962 + 0.577059i −0.920853 0.389911i $$-0.872506\pi$$
0.254891 + 0.966970i $$0.417960\pi$$
$$464$$ 0.00469088 0.00301465i 0.000217769 0.000139952i
$$465$$ 1.03249 0.911950i 0.0478807 0.0422907i
$$466$$ 11.7162 + 7.52951i 0.542740 + 0.348798i
$$467$$ 29.8041 + 13.6111i 1.37917 + 0.629846i 0.960497 0.278291i $$-0.0897681\pi$$
0.418673 + 0.908137i $$0.362495\pi$$
$$468$$ 3.10929 + 2.69421i 0.143727 + 0.124540i
$$469$$ 1.26039 8.76618i 0.0581993 0.404785i
$$470$$ 13.7705 + 8.66629i 0.635185 + 0.399746i
$$471$$ −0.231156 0.0678737i −0.0106511 0.00312745i
$$472$$ 0.607046 2.06741i 0.0279415 0.0951602i
$$473$$ 24.3289 11.1106i 1.11864 0.510867i
$$474$$ 0.0278211 0.193500i 0.00127786 0.00888774i
$$475$$ −2.00169 4.17177i −0.0918437 0.191414i
$$476$$ 0.407226 0.891700i 0.0186652 0.0408710i
$$477$$ 0.742846 1.15589i 0.0340126 0.0529246i
$$478$$ 11.5180 1.65603i 0.526820 0.0757453i
$$479$$ 17.9599 11.5421i 0.820608 0.527373i −0.0616728 0.998096i $$-0.519644\pi$$
0.882281 + 0.470724i $$0.156007\pi$$
$$480$$ 0.198697 + 0.0563010i 0.00906925 + 0.00256978i
$$481$$ 1.42465 0.418314i 0.0649583 0.0190735i
$$482$$ 18.5648i 0.845604i
$$483$$ 0.165893 + 0.479030i 0.00754837 + 0.0217966i
$$484$$ −3.83893 −0.174497
$$485$$ −32.8006 27.8815i −1.48940 1.26604i
$$486$$ −1.62682 1.87746i −0.0737943 0.0851631i
$$487$$ 11.3067 + 17.5936i 0.512357 + 0.797243i 0.996995 0.0774722i $$-0.0246849\pi$$
−0.484638 + 0.874715i $$0.661049\pi$$
$$488$$ −9.57391 + 1.37652i −0.433390 + 0.0623121i
$$489$$ 0.238613 + 0.153347i 0.0107904 + 0.00693459i
$$490$$ 12.5762 1.93012i 0.568136 0.0871940i
$$491$$ 27.0112 31.1726i 1.21900 1.40680i 0.333118 0.942885i $$-0.391899\pi$$
0.885881 0.463913i $$-0.153555\pi$$
$$492$$ 0.451550 + 0.0649230i 0.0203574 + 0.00292696i
$$493$$ 0.00434439 0.00198402i 0.000195661 8.93556e-5i
$$494$$ 1.22119 + 0.358574i 0.0549439 + 0.0161330i
$$495$$ −24.6537 + 7.49372i −1.10810 + 0.336818i
$$496$$ −2.77098 6.06760i −0.124421 0.272443i
$$497$$ −4.07877 0.586439i −0.182958 0.0263054i
$$498$$ −0.718115 0.622250i −0.0321795 0.0278837i
$$499$$ −14.7053 + 32.2001i −0.658300 + 1.44148i 0.225798 + 0.974174i $$0.427501\pi$$
−0.884098 + 0.467301i $$0.845226\pi$$
$$500$$ 4.35322 10.2980i 0.194682 0.460542i
$$501$$ −0.180204 1.25335i −0.00805093 0.0559954i
$$502$$ −3.46138 5.38601i −0.154489 0.240389i
$$503$$ 3.70454 3.21001i 0.165177 0.143127i −0.568350 0.822787i $$-0.692418\pi$$
0.733527 + 0.679660i $$0.237873\pi$$
$$504$$ −3.28507 + 0.964583i −0.146329 + 0.0429659i
$$505$$ −19.2037 + 12.6005i −0.854553 + 0.560713i
$$506$$ 18.4531 0.882429i 0.820340 0.0392288i
$$507$$ 1.02597i 0.0455648i
$$508$$ 0.858846 + 2.92496i 0.0381051 + 0.129774i
$$509$$ −6.24616 7.20845i −0.276856 0.319509i 0.600244 0.799817i $$-0.295070\pi$$
−0.877100 + 0.480308i $$0.840525\pi$$
$$510$$ 0.161592 + 0.0719520i 0.00715542 + 0.00318609i
$$511$$ −2.30341 16.0206i −0.101897 0.708708i
$$512$$ 0.540641 0.841254i 0.0238932 0.0371785i
$$513$$ −0.465821 0.212733i −0.0205665 0.00939240i
$$514$$ −7.80428 + 9.00662i −0.344232 + 0.397265i
$$515$$ −30.1668 + 14.1241i −1.32931 + 0.622382i
$$516$$ 0.266387 + 0.583307i 0.0117270 + 0.0256787i
$$517$$ 7.89688 26.8943i 0.347304 1.18281i
$$518$$ −0.348114 + 1.18557i −0.0152953 + 0.0520909i
$$519$$ −0.612655 1.34153i −0.0268926 0.0588865i
$$520$$ 1.30399 + 2.78512i 0.0571839 + 0.122136i
$$521$$ 15.2873 17.6425i 0.669748 0.772930i −0.314589 0.949228i $$-0.601867\pi$$
0.984337 + 0.176298i $$0.0564121\pi$$
$$522$$ −0.0151732 0.00692938i −0.000664114 0.000303291i
$$523$$ −2.28976 + 3.56293i −0.100124 + 0.155796i −0.887701 0.460420i $$-0.847699\pi$$
0.787577 + 0.616216i $$0.211335\pi$$
$$524$$ 0.940933 + 6.54433i 0.0411049 + 0.285891i
$$525$$ −0.0851278 0.521623i −0.00371528 0.0227655i
$$526$$ −6.09516 7.03419i −0.265762 0.306705i
$$527$$ −1.60962 5.48186i −0.0701162 0.238794i
$$528$$ 0.355777i 0.0154832i
$$529$$ −22.8950 + 2.19471i −0.995437 + 0.0954220i
$$530$$ 0.858700 0.563434i 0.0372996 0.0244740i
$$531$$ −6.18459 + 1.81596i −0.268388 + 0.0788059i
$$532$$ −0.800458 + 0.693601i −0.0347043 + 0.0300714i
$$533$$ 3.67265 + 5.71475i 0.159080 + 0.247533i
$$534$$ −0.0938428 0.652691i −0.00406098 0.0282447i
$$535$$ −0.379542 40.0092i −0.0164090 1.72975i
$$536$$ 3.21453 7.03885i 0.138847 0.304032i
$$537$$ −1.66342 1.44136i −0.0717817 0.0621992i
$$538$$ 29.1132 + 4.18584i 1.25516 + 0.180465i
$$539$$ −9.10550 19.9383i −0.392202 0.858802i
$$540$$ −0.359850 1.18387i −0.0154855 0.0509459i
$$541$$ 19.2376 + 5.64867i 0.827089 + 0.242855i 0.667766 0.744371i $$-0.267251\pi$$
0.159323 + 0.987227i $$0.449069\pi$$
$$542$$ 13.9453 6.36859i 0.599000 0.273554i
$$543$$ −0.159419 0.0229210i −0.00684131 0.000983632i
$$544$$ 0.560898 0.647311i 0.0240483 0.0277532i
$$545$$ 4.63990 + 30.2325i 0.198751 + 1.29502i
$$546$$ 0.122298 + 0.0785963i 0.00523388 + 0.00336361i
$$547$$ 5.59151 0.803938i 0.239076 0.0343739i −0.0217354 0.999764i $$-0.506919\pi$$
0.260811 + 0.965390i $$0.416010\pi$$
$$548$$ −6.63597 10.3258i −0.283474 0.441095i
$$549$$ 18.9481 + 21.8673i 0.808686 + 0.933273i
$$550$$ −19.1132 2.37891i −0.814989 0.101437i
$$551$$ −0.00516025 −0.000219834
$$552$$ 0.0211571 + 0.442430i 0.000900504 + 0.0188311i
$$553$$ 2.42251i 0.103015i
$$554$$ 17.5246 5.14569i 0.744549 0.218619i
$$555$$ −0.214516 0.0607832i −0.00910568 0.00258010i
$$556$$ −13.6036 + 8.74248i −0.576919 + 0.370764i
$$557$$ 34.5963 4.97419i 1.46589 0.210763i 0.637299 0.770617i $$-0.280052\pi$$
0.828592 + 0.559853i $$0.189143\pi$$
$$558$$ −10.7881 + 16.7866i −0.456696 + 0.710634i
$$559$$ −3.96676 + 8.68599i −0.167776 + 0.367378i
$$560$$ −2.53648 0.340165i −0.107186 0.0143746i
$$561$$ 0.0433674 0.301627i 0.00183097 0.0127347i
$$562$$ −20.2503 + 9.24798i −0.854205 + 0.390103i
$$563$$ 4.00533 13.6409i 0.168804 0.574895i −0.831022 0.556240i $$-0.812243\pi$$
0.999826 0.0186549i $$-0.00593840\pi$$
$$564$$ 0.644816 + 0.189335i 0.0271516 + 0.00797244i
$$565$$ −18.4012 + 29.2390i −0.774146 + 1.23010i
$$566$$ 2.75964 19.1938i 0.115997 0.806774i
$$567$$ 7.71830 + 6.68794i 0.324138 + 0.280867i
$$568$$ −3.27507 1.49567i −0.137419 0.0627571i
$$569$$ 11.0496 + 7.10113i 0.463222 + 0.297695i 0.751358 0.659895i $$-0.229399\pi$$
−0.288136 + 0.957590i $$0.593035\pi$$
$$570$$ −0.126521 0.143245i −0.00529938 0.00599986i
$$571$$ 6.97446 4.48221i 0.291872 0.187575i −0.386508 0.922286i $$-0.626319\pi$$
0.678380 + 0.734711i $$0.262682\pi$$
$$572$$ 4.00385 3.46936i 0.167409 0.145061i
$$573$$ 0.393158 + 1.33897i 0.0164244 + 0.0559365i
$$574$$ −5.65314 −0.235958
$$575$$ 23.9099 + 1.82171i 0.997110 + 0.0759705i
$$576$$ −2.99147 −0.124645
$$577$$ −5.22928 17.8093i −0.217698 0.741410i −0.993837 0.110849i $$-0.964643\pi$$
0.776140 0.630561i $$-0.217175\pi$$
$$578$$ −12.2933 + 10.6522i −0.511334 + 0.443074i
$$579$$ 1.84568 1.18615i 0.0767038 0.0492945i
$$580$$ −0.00825412 0.00934515i −0.000342734 0.000388036i
$$581$$ 9.90568 + 6.36599i 0.410957 + 0.264106i
$$582$$ −1.61743 0.738655i −0.0670446 0.0306183i
$$583$$ −1.33716 1.15866i −0.0553796 0.0479867i
$$584$$ 2.01258 13.9978i 0.0832812 0.579234i
$$585$$ 4.90003 7.78601i 0.202591 0.321912i
$$586$$ 11.0258 + 3.23747i 0.455472 + 0.133739i
$$587$$ 4.20940 14.3359i 0.173741 0.591706i −0.825872 0.563858i $$-0.809316\pi$$
0.999612 0.0278477i $$-0.00886534\pi$$
$$588$$ 0.478038 0.218313i 0.0197140 0.00900307i
$$589$$ −0.878505 + 6.11014i −0.0361982 + 0.251764i
$$590$$ −4.77528 0.640408i −0.196595 0.0263652i
$$591$$ 0.369233 0.808508i 0.0151882 0.0332576i
$$592$$ −0.583682 + 0.908226i −0.0239892 + 0.0373279i
$$593$$ 44.3260 6.37311i 1.82025 0.261712i 0.854177 0.519983i $$-0.174062\pi$$
0.966073 + 0.258270i $$0.0831525\pi$$
$$594$$ −1.79324 + 1.15244i −0.0735775 + 0.0472854i
$$595$$ −2.10896 0.597576i −0.0864589 0.0244982i
$$596$$ 14.1219 4.14655i 0.578454 0.169849i
$$597$$ 0.462800i 0.0189411i
$$598$$ −4.77271 + 4.55245i −0.195171 + 0.186163i
$$599$$ −24.3359 −0.994336 −0.497168 0.867654i $$-0.665627\pi$$
−0.497168 + 0.867654i $$0.665627\pi$$
$$600$$ 0.0570365 0.458256i 0.00232851 0.0187082i
$$601$$ −17.3309 20.0009i −0.706940 0.815853i 0.282732 0.959199i $$-0.408759\pi$$
−0.989673 + 0.143346i $$0.954214\pi$$
$$602$$ −4.29617 6.68497i −0.175099 0.272459i
$$603$$ −22.9127 + 3.29436i −0.933079 + 0.134157i
$$604$$ −3.51887 2.26144i −0.143181 0.0920168i
$$605$$ 1.30219 + 8.48476i 0.0529415 + 0.344954i
$$606$$ −0.621260 + 0.716972i −0.0252370 + 0.0291250i
$$607$$ −5.88323 0.845881i −0.238793 0.0343333i 0.0218792 0.999761i $$-0.493035\pi$$
−0.260672 + 0.965427i $$0.583944\pi$$
$$608$$ −0.841800 + 0.384437i −0.0341395 + 0.0155910i
$$609$$ −0.000565541 0 0.000166058i −2.29169e−5 0 6.72900e-6i
$$610$$ 6.28990 + 20.6932i 0.254671 + 0.837844i
$$611$$ 4.15717 + 9.10294i 0.168181 + 0.368266i
$$612$$ −2.53616 0.364645i −0.102518 0.0147399i
$$613$$ 14.5319 + 12.5920i 0.586940 + 0.508586i 0.896941 0.442150i $$-0.145784\pi$$
−0.310002 + 0.950736i $$0.600330\pi$$
$$614$$ −3.18746 + 6.97957i −0.128635 + 0.281672i
$$615$$ −0.00967641 1.02003i −0.000390190 0.0411317i
$$616$$ 0.627436 + 4.36391i 0.0252801 + 0.175827i
$$617$$ 7.50772 + 11.6822i 0.302250 + 0.470310i 0.958844 0.283935i $$-0.0916399\pi$$
−0.656594 + 0.754244i $$0.728004\pi$$
$$618$$ −1.03977 + 0.900968i −0.0418258 + 0.0362422i
$$619$$ 38.2748 11.2385i 1.53840 0.451714i 0.600788 0.799408i $$-0.294854\pi$$
0.937608 + 0.347695i $$0.113035\pi$$
$$620$$ −12.4706 + 8.18256i −0.500832 + 0.328620i
$$621$$ 2.16147 1.53977i 0.0867367 0.0617889i
$$622$$ 0.645146i 0.0258680i
$$623$$ 2.30213 + 7.84032i 0.0922328 + 0.314116i
$$624$$ 0.0831810 + 0.0959960i 0.00332990 + 0.00384291i
$$625$$ −24.2372 6.12828i −0.969490 0.245131i
$$626$$ 0.525358 + 3.65395i 0.0209975 + 0.146041i
$$627$$ −0.178004 + 0.276980i −0.00710879 + 0.0110615i
$$628$$ 2.37276 + 1.08360i 0.0946834 + 0.0432404i
$$629$$ −0.605552 + 0.698844i −0.0241449 + 0.0278647i
$$630$$ 3.24623 + 6.93343i 0.129333 + 0.276234i
$$631$$ 15.3213 + 33.5491i 0.609933 + 1.33557i 0.922620 + 0.385711i $$0.126044\pi$$
−0.312687 + 0.949856i $$0.601229\pi$$
$$632$$ −0.596326 + 2.03090i −0.0237206 + 0.0807849i
$$633$$ −0.568599 + 1.93647i −0.0225998 + 0.0769678i
$$634$$ −7.63868 16.7264i −0.303371 0.664289i
$$635$$ 6.17339 2.89038i 0.244984 0.114701i
$$636$$ 0.0277799 0.0320597i 0.00110154 0.00127125i
$$637$$ 7.11844 + 3.25088i 0.282043 + 0.128805i
$$638$$ −0.0116128 + 0.0180699i −0.000459756 + 0.000715394i
$$639$$ 1.53281 + 10.6610i 0.0606372 + 0.421741i
$$640$$ −2.04272 0.909560i −0.0807456 0.0359535i
$$641$$ 10.1816 + 11.7502i 0.402148 + 0.464103i 0.920316 0.391175i $$-0.127931\pi$$
−0.518168 + 0.855279i $$0.673386\pi$$
$$642$$ −0.465595 1.58567i −0.0183756 0.0625814i
$$643$$ 28.4579i 1.12227i −0.827724 0.561136i $$-0.810365\pi$$
0.827724 0.561136i $$-0.189635\pi$$
$$644$$ −1.03976 5.38947i −0.0409724 0.212375i
$$645$$ 1.19886 0.786628i 0.0472050 0.0309735i
$$646$$ −0.760536 + 0.223314i −0.0299229 + 0.00878616i
$$647$$ −24.7703 + 21.4636i −0.973820 + 0.843820i −0.987744 0.156083i $$-0.950113\pi$$
0.0139238 + 0.999903i $$0.495568\pi$$
$$648$$ 4.82430 + 7.50676i 0.189516 + 0.294893i
$$649$$ 1.18123 + 8.21566i 0.0463675 + 0.322493i
$$650$$ 5.71332 3.82680i 0.224095 0.150100i
$$651$$ −0.292906 + 0.641374i −0.0114799 + 0.0251374i
$$652$$ −2.32096 2.01112i −0.0908959 0.0787617i
$$653$$ 14.3223 + 2.05924i 0.560475 + 0.0805841i 0.416729 0.909031i $$-0.363176\pi$$
0.143745 + 0.989615i $$0.454085\pi$$
$$654$$ 0.524811 + 1.14917i 0.0205217 + 0.0449363i
$$655$$ 14.1450 4.29952i 0.552693 0.167996i
$$656$$ −4.73930 1.39158i −0.185038 0.0543322i
$$657$$ −38.4816 + 17.5740i −1.50131 + 0.685626i
$$658$$ −8.24313 1.18518i −0.321351 0.0462032i
$$659$$ −11.7391 + 13.5477i −0.457292 + 0.527743i −0.936833 0.349776i $$-0.886258\pi$$
0.479541 + 0.877519i $$0.340803\pi$$
$$660$$ −0.786334 + 0.120682i −0.0306080 + 0.00469754i
$$661$$ 1.44448 + 0.928308i 0.0561836 + 0.0361070i 0.568431 0.822731i $$-0.307551\pi$$
−0.512248 + 0.858838i $$0.671187\pi$$
$$662$$ −31.9037 + 4.58706i −1.23997 + 0.178281i
$$663$$ 0.0588192 + 0.0915245i 0.00228435 + 0.00355452i
$$664$$ 6.73734 + 7.77530i 0.261459 + 0.301740i
$$665$$ 1.80451 + 1.53389i 0.0699759 + 0.0594817i
$$666$$ 3.22962 0.125145
$$667$$ 0.0133667 0.0231616i 0.000517560 0.000896820i
$$668$$ 13.7100i 0.530457i
$$669$$ −1.80611 + 0.530321i −0.0698282 + 0.0205034i
$$670$$ −16.6476 4.71710i −0.643152 0.182238i
$$671$$ 31.3444 20.1438i 1.21004 0.777644i
$$672$$ −0.104629 + 0.0150434i −0.00403614 + 0.000580310i
$$673$$ −20.2803 + 31.5567i −0.781747 + 1.21642i 0.190321 + 0.981722i $$0.439047\pi$$
−0.972068 + 0.234700i $$0.924589\pi$$
$$674$$ −4.12267 + 9.02738i −0.158799 + 0.347722i
$$675$$ −2.49452 + 1.19692i −0.0960143 + 0.0460693i
$$676$$ 1.58091 10.9955i 0.0608042 0.422903i
$$677$$ −4.43279 + 2.02439i −0.170366 + 0.0778035i −0.498772 0.866733i $$-0.666216\pi$$
0.328407 + 0.944536i $$0.393488\pi$$
$$678$$ −0.402017 + 1.36914i −0.0154394 + 0.0525817i
$$679$$ 21.1418 + 6.20781i 0.811350 + 0.238234i
$$680$$ −1.62094 1.02012i −0.0621602 0.0391198i
$$681$$ −0.0390670 + 0.271717i −0.00149705 + 0.0104122i
$$682$$ 19.4192 + 16.8268i 0.743598 + 0.644331i
$$683$$ −27.0727 12.3637i −1.03591 0.473084i −0.176461 0.984308i $$-0.556465\pi$$
−0.859448 + 0.511224i $$0.829192\pi$$
$$684$$ 2.32892 + 1.49671i 0.0890485 + 0.0572280i
$$685$$ −20.5709 + 18.1693i −0.785975 + 0.694214i
$$686$$ −12.2183 + 7.85221i −0.466496 + 0.299799i
$$687$$ 1.56817 1.35883i 0.0598294 0.0518425i
$$688$$ −1.95610 6.66188i −0.0745758 0.253982i
$$689$$ 0.631689 0.0240655
$$690$$ 0.970677 0.196836i 0.0369531 0.00749343i
$$691$$ 4.16285 0.158362 0.0791812 0.996860i $$-0.474769\pi$$
0.0791812 + 0.996860i $$0.474769\pi$$
$$692$$ 4.49878 + 15.3214i 0.171018 + 0.582433i
$$693$$ 9.96740 8.63680i 0.378630 0.328085i
$$694$$ −1.52807 + 0.982028i −0.0580046 + 0.0372773i
$$695$$ 23.9369 + 27.1009i 0.907980 + 1.02800i
$$696$$ −0.000433243 0 0.000278428i −1.64220e−5 0 1.05538e-5i
$$697$$ −3.84834 1.75748i −0.145766 0.0665691i
$$698$$ −6.89621 5.97560i −0.261025 0.226180i
$$699$$ 0.183056 1.27318i 0.00692383 0.0481563i
$$700$$ 0.108562 + 5.72150i 0.00410327 + 0.216252i
$$701$$ 10.5790 + 3.10627i 0.399563 + 0.117322i 0.475339 0.879802i $$-0.342325\pi$$
−0.0757762 + 0.997125i $$0.524143\pi$$
$$702$$ 0.214410 0.730214i 0.00809239 0.0275602i
$$703$$ 0.908816 0.415042i 0.0342766 0.0156536i
$$704$$ −0.548216 + 3.81292i −0.0206617 + 0.143705i
$$705$$ 0.199740 1.48939i 0.00752266 0.0560936i
$$706$$ −6.37955 + 13.9693i −0.240098 + 0.525740i
$$707$$ 6.35587 9.88992i 0.239037 0.371949i
$$708$$ −0.196978 + 0.0283212i −0.00740289 + 0.00106437i
$$709$$ −5.17991 + 3.32892i −0.194535 + 0.125020i −0.634283 0.773101i $$-0.718704\pi$$
0.439747 + 0.898122i $$0.355068\pi$$
$$710$$ −2.19480 + 7.74586i −0.0823693 + 0.290697i
$$711$$ 6.07538 1.78389i 0.227845 0.0669012i
$$712$$ 7.13961i 0.267568i
$$713$$ −25.1495 19.7703i −0.941857 0.740405i
$$714$$ −0.0905377 −0.00338829
$$715$$ −9.02607 7.67244i −0.337556 0.286933i
$$716$$ 15.6061 + 18.0105i 0.583229 + 0.673082i
$$717$$ −0.581038 0.904113i −0.0216993 0.0337647i
$$718$$ −2.42695 + 0.348942i −0.0905729 + 0.0130224i
$$719$$ −18.6063 11.9575i −0.693897 0.445940i 0.145572 0.989348i $$-0.453498\pi$$
−0.839469 + 0.543407i $$0.817134\pi$$
$$720$$ 1.01473 + 6.61172i 0.0378166 + 0.246404i
$$721$$ 11.1648 12.8849i 0.415799 0.479857i
$$722$$ −17.9589 2.58210i −0.668361 0.0960958i
$$723$$ −1.55967 + 0.712278i −0.0580048 + 0.0264899i
$$724$$ 1.67320 + 0.491296i 0.0621840 + 0.0182589i
$$725$$ −0.0178547 + 0.0214131i −0.000663107 + 0.000795263i
$$726$$ 0.147288 + 0.322517i 0.00546638 + 0.0119697i
$$727$$ 14.0078 + 2.01402i 0.519520 + 0.0746957i 0.397087 0.917781i $$-0.370021\pi$$
0.122433 + 0.992477i $$0.460930\pi$$
$$728$$ −1.18958 1.03078i −0.0440888 0.0382032i
$$729$$ 11.0253 24.1421i 0.408345 0.894150i
$$730$$ −31.6205 + 0.299964i −1.17033 + 0.0111022i
$$731$$ −0.846331 5.88636i −0.0313027 0.217715i
$$732$$ 0.482967 + 0.751512i 0.0178510 + 0.0277767i
$$733$$ 7.77249 6.73490i 0.287084 0.248759i −0.499399 0.866372i $$-0.666446\pi$$
0.786482 + 0.617613i $$0.211900\pi$$
$$734$$ −21.8180 + 6.40634i −0.805316 + 0.236462i
$$735$$ −0.644666 0.982502i −0.0237789 0.0362401i
$$736$$ 0.454995 4.77420i 0.0167713 0.175979i
$$737$$ 29.8083i 1.09800i
$$738$$ 4.16288 + 14.1775i 0.153238 + 0.521880i
$$739$$ 29.5389 + 34.0897i 1.08660 + 1.25401i 0.965230 + 0.261402i $$0.0841849\pi$$
0.121375 + 0.992607i $$0.461270\pi$$
$$740$$ 2.20534 + 0.981971i 0.0810699 + 0.0360980i
$$741$$ −0.0167289 0.116352i −0.000614553 0.00427431i
$$742$$ −0.284205 + 0.442232i −0.0104335 + 0.0162348i
$$743$$ −35.1049 16.0319i −1.28788 0.588153i −0.350529 0.936552i $$-0.613998\pi$$
−0.937346 + 0.348399i $$0.886726\pi$$
$$744$$ −0.403438 + 0.465592i −0.0147908 + 0.0170694i
$$745$$ −13.9549 29.8055i −0.511268 1.09199i
$$746$$ −14.4826 31.7125i −0.530245 1.16108i
$$747$$ 8.67084 29.5302i 0.317249 1.08045i
$$748$$ −0.929551 + 3.16576i −0.0339878 + 0.115752i
$$749$$ 8.50735 + 18.6285i 0.310852 + 0.680671i
$$750$$ −1.03218 + 0.0293820i −0.0376899 + 0.00107288i
$$751$$ −17.2821 + 19.9446i −0.630632 + 0.727788i −0.977689 0.210056i $$-0.932635\pi$$
0.347057 + 0.937844i $$0.387181\pi$$
$$752$$ −6.61886 3.02273i −0.241365 0.110228i
$$753$$ −0.319687 + 0.497443i −0.0116501 + 0.0181278i
$$754$$ −0.00109138 0.00759072i −3.97458e−5 0.000276438i
$$755$$ −3.80459 + 8.54448i −0.138463 + 0.310965i
$$756$$ 0.414741 + 0.478636i 0.0150840 + 0.0174078i
$$757$$ −8.31937 28.3332i −0.302373 1.02979i −0.960823 0.277162i $$-0.910606\pi$$
0.658451 0.752624i $$-0.271212\pi$$
$$758$$ 31.4216i 1.14128i
$$759$$ −0.782126 1.51643i −0.0283894 0.0550429i
$$760$$ 1.13522 + 1.73013i 0.0411789 + 0.0627585i
$$761$$ −35.4871 + 10.4200i −1.28641 + 0.377723i −0.852260 0.523119i $$-0.824768\pi$$
−0.434147 + 0.900842i $$0.642950\pi$$
$$762$$ 0.212781 0.184376i 0.00770824 0.00667923i
$$763$$ −8.46390 13.1701i −0.306414 0.476789i
$$764$$ −2.15032 14.9558i −0.0777960 0.541083i
$$765$$ 0.0543482 + 5.72908i 0.00196496 + 0.207135i
$$766$$ 13.8774 30.3873i 0.501411 1.09794i
$$767$$ −2.23955 1.94058i −0.0808655 0.0700703i