# Properties

 Label 230.2.j.a.9.1 Level $230$ Weight $2$ Character 230.9 Analytic conductor $1.837$ Analytic rank $0$ Dimension $120$ CM no Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [230,2,Mod(9,230)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(230, base_ring=CyclotomicField(22))

chi = DirichletCharacter(H, H._module([11, 10]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("230.9");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$230 = 2 \cdot 5 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 230.j (of order $$22$$, degree $$10$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.83655924649$$ Analytic rank: $$0$$ Dimension: $$120$$ Relative dimension: $$12$$ over $$\Q(\zeta_{22})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

## Embedding invariants

 Embedding label 9.1 Character $$\chi$$ $$=$$ 230.9 Dual form 230.2.j.a.179.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(-0.281733 - 0.959493i) q^{2} +(-1.95972 + 1.69811i) q^{3} +(-0.841254 + 0.540641i) q^{4} +(-0.0903172 - 2.23424i) q^{5} +(2.18144 + 1.40193i) q^{6} +(0.748675 + 0.341908i) q^{7} +(0.755750 + 0.654861i) q^{8} +(0.529991 - 3.68617i) q^{9} +O(q^{10})$$ $$q+(-0.281733 - 0.959493i) q^{2} +(-1.95972 + 1.69811i) q^{3} +(-0.841254 + 0.540641i) q^{4} +(-0.0903172 - 2.23424i) q^{5} +(2.18144 + 1.40193i) q^{6} +(0.748675 + 0.341908i) q^{7} +(0.755750 + 0.654861i) q^{8} +(0.529991 - 3.68617i) q^{9} +(-2.11830 + 0.716118i) q^{10} +(4.65913 + 1.36805i) q^{11} +(0.730556 - 2.48804i) q^{12} +(1.40114 - 0.639880i) q^{13} +(0.117133 - 0.814675i) q^{14} +(3.97098 + 4.22513i) q^{15} +(0.415415 - 0.909632i) q^{16} +(2.11270 - 3.28743i) q^{17} +(-3.68617 + 0.529991i) q^{18} +(4.15438 - 2.66986i) q^{19} +(1.28390 + 1.83074i) q^{20} +(-2.04779 + 0.601286i) q^{21} -4.85583i q^{22} +(4.76216 - 0.567295i) q^{23} -2.59308 q^{24} +(-4.98369 + 0.403581i) q^{25} +(-1.00871 - 1.16411i) q^{26} +(1.01510 + 1.57953i) q^{27} +(-0.814675 + 0.117133i) q^{28} +(3.23027 + 2.07597i) q^{29} +(2.93522 - 5.00049i) q^{30} +(-5.44700 + 6.28618i) q^{31} +(-0.989821 - 0.142315i) q^{32} +(-11.4537 + 5.23073i) q^{33} +(-3.74949 - 1.10095i) q^{34} +(0.696288 - 1.70360i) q^{35} +(1.54704 + 3.38754i) q^{36} +(-4.74986 - 0.682927i) q^{37} +(-3.73214 - 3.23391i) q^{38} +(-1.65926 + 3.63328i) q^{39} +(1.39486 - 1.74767i) q^{40} +(0.536960 + 3.73464i) q^{41} +(1.15386 + 1.79544i) q^{42} +(0.999683 - 0.866230i) q^{43} +(-4.65913 + 1.36805i) q^{44} +(-8.28367 - 0.851205i) q^{45} +(-1.88597 - 4.40943i) q^{46} -6.16285i q^{47} +(0.730556 + 2.48804i) q^{48} +(-4.14041 - 4.77829i) q^{49} +(1.79130 + 4.66811i) q^{50} +(1.44210 + 10.0301i) q^{51} +(-0.832770 + 1.29582i) q^{52} +(5.78267 + 2.64086i) q^{53} +(1.22956 - 1.41899i) q^{54} +(2.63575 - 10.5332i) q^{55} +(0.341908 + 0.748675i) q^{56} +(-3.60772 + 12.2868i) q^{57} +(1.08181 - 3.68429i) q^{58} +(0.542072 + 1.18697i) q^{59} +(-5.62488 - 1.40753i) q^{60} +(8.65101 - 9.98380i) q^{61} +(7.56614 + 3.45534i) q^{62} +(1.65712 - 2.57853i) q^{63} +(0.142315 + 0.989821i) q^{64} +(-1.55619 - 3.07270i) q^{65} +(8.24572 + 9.51607i) q^{66} +(4.59599 + 15.6525i) q^{67} +3.90778i q^{68} +(-8.36918 + 9.19840i) q^{69} +(-1.83076 - 0.188123i) q^{70} +(-9.62477 + 2.82609i) q^{71} +(2.81447 - 2.43875i) q^{72} +(-3.34358 - 5.20271i) q^{73} +(0.682927 + 4.74986i) q^{74} +(9.08131 - 9.25374i) q^{75} +(-2.05145 + 4.49206i) q^{76} +(3.02043 + 2.61722i) q^{77} +(3.95357 + 0.568438i) q^{78} +(-2.95556 - 6.47177i) q^{79} +(-2.06986 - 0.845983i) q^{80} +(6.04814 + 1.77590i) q^{81} +(3.43208 - 1.56738i) q^{82} +(11.8009 + 1.69671i) q^{83} +(1.39763 - 1.61295i) q^{84} +(-7.53574 - 4.42338i) q^{85} +(-1.11278 - 0.715143i) q^{86} +(-9.85565 + 1.41703i) q^{87} +(2.62526 + 4.08498i) q^{88} +(3.58733 + 4.14000i) q^{89} +(1.51705 + 8.18794i) q^{90} +1.26778 q^{91} +(-3.69948 + 3.05186i) q^{92} -21.5688i q^{93} +(-5.91321 + 1.73627i) q^{94} +(-6.34033 - 9.04077i) q^{95} +(2.18144 - 1.40193i) q^{96} +(-11.2508 + 1.61762i) q^{97} +(-3.41825 + 5.31890i) q^{98} +(7.51215 - 16.4493i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$120 q + 12 q^{4} - 4 q^{6} + 8 q^{9}+O(q^{10})$$ 120 * q + 12 * q^4 - 4 * q^6 + 8 * q^9 $$120 q + 12 q^{4} - 4 q^{6} + 8 q^{9} + 8 q^{11} - 6 q^{15} - 12 q^{16} - 16 q^{19} - 22 q^{20} + 4 q^{24} - 52 q^{25} - 4 q^{26} - 8 q^{29} - 44 q^{30} + 12 q^{31} + 16 q^{35} - 8 q^{36} - 36 q^{39} - 28 q^{41} - 8 q^{44} + 16 q^{45} - 4 q^{46} - 58 q^{49} + 12 q^{50} - 24 q^{51} - 6 q^{54} - 36 q^{55} + 22 q^{56} - 102 q^{59} - 38 q^{60} + 72 q^{61} + 12 q^{64} - 138 q^{65} + 80 q^{66} - 212 q^{69} - 108 q^{70} + 176 q^{71} - 88 q^{74} - 100 q^{75} + 16 q^{76} - 104 q^{79} - 22 q^{80} - 28 q^{81} - 22 q^{84} + 2 q^{85} + 62 q^{86} + 48 q^{89} + 24 q^{90} - 56 q^{91} + 24 q^{94} + 18 q^{95} - 4 q^{96} + 188 q^{99}+O(q^{100})$$ 120 * q + 12 * q^4 - 4 * q^6 + 8 * q^9 + 8 * q^11 - 6 * q^15 - 12 * q^16 - 16 * q^19 - 22 * q^20 + 4 * q^24 - 52 * q^25 - 4 * q^26 - 8 * q^29 - 44 * q^30 + 12 * q^31 + 16 * q^35 - 8 * q^36 - 36 * q^39 - 28 * q^41 - 8 * q^44 + 16 * q^45 - 4 * q^46 - 58 * q^49 + 12 * q^50 - 24 * q^51 - 6 * q^54 - 36 * q^55 + 22 * q^56 - 102 * q^59 - 38 * q^60 + 72 * q^61 + 12 * q^64 - 138 * q^65 + 80 * q^66 - 212 * q^69 - 108 * q^70 + 176 * q^71 - 88 * q^74 - 100 * q^75 + 16 * q^76 - 104 * q^79 - 22 * q^80 - 28 * q^81 - 22 * q^84 + 2 * q^85 + 62 * q^86 + 48 * q^89 + 24 * q^90 - 56 * q^91 + 24 * q^94 + 18 * q^95 - 4 * q^96 + 188 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/230\mathbb{Z}\right)^\times$$.

 $$n$$ $$47$$ $$51$$ $$\chi(n)$$ $$-1$$ $$e\left(\frac{5}{11}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.281733 0.959493i −0.199215 0.678464i
$$3$$ −1.95972 + 1.69811i −1.13145 + 0.980403i −0.999940 0.0109124i $$-0.996526\pi$$
−0.131505 + 0.991316i $$0.541981\pi$$
$$4$$ −0.841254 + 0.540641i −0.420627 + 0.270320i
$$5$$ −0.0903172 2.23424i −0.0403911 0.999184i
$$6$$ 2.18144 + 1.40193i 0.890569 + 0.572334i
$$7$$ 0.748675 + 0.341908i 0.282972 + 0.129229i 0.551845 0.833946i $$-0.313924\pi$$
−0.268873 + 0.963176i $$0.586651\pi$$
$$8$$ 0.755750 + 0.654861i 0.267198 + 0.231528i
$$9$$ 0.529991 3.68617i 0.176664 1.22872i
$$10$$ −2.11830 + 0.716118i −0.669864 + 0.226456i
$$11$$ 4.65913 + 1.36805i 1.40478 + 0.412481i 0.894323 0.447421i $$-0.147658\pi$$
0.510458 + 0.859902i $$0.329476\pi$$
$$12$$ 0.730556 2.48804i 0.210893 0.718237i
$$13$$ 1.40114 0.639880i 0.388607 0.177471i −0.211524 0.977373i $$-0.567843\pi$$
0.600131 + 0.799902i $$0.295115\pi$$
$$14$$ 0.117133 0.814675i 0.0313050 0.217731i
$$15$$ 3.97098 + 4.22513i 1.02530 + 1.09092i
$$16$$ 0.415415 0.909632i 0.103854 0.227408i
$$17$$ 2.11270 3.28743i 0.512406 0.797320i −0.484592 0.874740i $$-0.661032\pi$$
0.996999 + 0.0774206i $$0.0246684\pi$$
$$18$$ −3.68617 + 0.529991i −0.868839 + 0.124920i
$$19$$ 4.15438 2.66986i 0.953081 0.612508i 0.0310058 0.999519i $$-0.490129\pi$$
0.922075 + 0.387011i $$0.126493\pi$$
$$20$$ 1.28390 + 1.83074i 0.287089 + 0.409365i
$$21$$ −2.04779 + 0.601286i −0.446865 + 0.131211i
$$22$$ 4.85583i 1.03527i
$$23$$ 4.76216 0.567295i 0.992979 0.118289i
$$24$$ −2.59308 −0.529311
$$25$$ −4.98369 + 0.403581i −0.996737 + 0.0807162i
$$26$$ −1.00871 1.16411i −0.197824 0.228301i
$$27$$ 1.01510 + 1.57953i 0.195357 + 0.303981i
$$28$$ −0.814675 + 0.117133i −0.153959 + 0.0221360i
$$29$$ 3.23027 + 2.07597i 0.599846 + 0.385498i 0.805037 0.593224i $$-0.202145\pi$$
−0.205191 + 0.978722i $$0.565782\pi$$
$$30$$ 2.93522 5.00049i 0.535896 0.912960i
$$31$$ −5.44700 + 6.28618i −0.978311 + 1.12903i 0.0133182 + 0.999911i $$0.495761\pi$$
−0.991629 + 0.129120i $$0.958785\pi$$
$$32$$ −0.989821 0.142315i −0.174977 0.0251579i
$$33$$ −11.4537 + 5.23073i −1.99383 + 0.910552i
$$34$$ −3.74949 1.10095i −0.643032 0.188811i
$$35$$ 0.696288 1.70360i 0.117694 0.287961i
$$36$$ 1.54704 + 3.38754i 0.257840 + 0.564590i
$$37$$ −4.74986 0.682927i −0.780873 0.112273i −0.259661 0.965700i $$-0.583611\pi$$
−0.521212 + 0.853427i $$0.674520\pi$$
$$38$$ −3.73214 3.23391i −0.605432 0.524610i
$$39$$ −1.65926 + 3.63328i −0.265695 + 0.581790i
$$40$$ 1.39486 1.74767i 0.220547 0.276331i
$$41$$ 0.536960 + 3.73464i 0.0838590 + 0.583252i 0.987816 + 0.155628i $$0.0497402\pi$$
−0.903957 + 0.427624i $$0.859351\pi$$
$$42$$ 1.15386 + 1.79544i 0.178044 + 0.277042i
$$43$$ 0.999683 0.866230i 0.152450 0.132099i −0.575296 0.817945i $$-0.695113\pi$$
0.727746 + 0.685846i $$0.240568\pi$$
$$44$$ −4.65913 + 1.36805i −0.702391 + 0.206241i
$$45$$ −8.28367 0.851205i −1.23486 0.126890i
$$46$$ −1.88597 4.40943i −0.278071 0.650136i
$$47$$ 6.16285i 0.898944i −0.893295 0.449472i $$-0.851612\pi$$
0.893295 0.449472i $$-0.148388\pi$$
$$48$$ 0.730556 + 2.48804i 0.105447 + 0.359118i
$$49$$ −4.14041 4.77829i −0.591488 0.682613i
$$50$$ 1.79130 + 4.66811i 0.253328 + 0.660170i
$$51$$ 1.44210 + 10.0301i 0.201935 + 1.40449i
$$52$$ −0.832770 + 1.29582i −0.115484 + 0.179697i
$$53$$ 5.78267 + 2.64086i 0.794311 + 0.362750i 0.770884 0.636976i $$-0.219815\pi$$
0.0234273 + 0.999726i $$0.492542\pi$$
$$54$$ 1.22956 1.41899i 0.167322 0.193100i
$$55$$ 2.63575 10.5332i 0.355404 1.42030i
$$56$$ 0.341908 + 0.748675i 0.0456894 + 0.100046i
$$57$$ −3.60772 + 12.2868i −0.477854 + 1.62742i
$$58$$ 1.08181 3.68429i 0.142048 0.483771i
$$59$$ 0.542072 + 1.18697i 0.0705718 + 0.154531i 0.941630 0.336648i $$-0.109293\pi$$
−0.871059 + 0.491179i $$0.836566\pi$$
$$60$$ −5.62488 1.40753i −0.726169 0.181711i
$$61$$ 8.65101 9.98380i 1.10765 1.27829i 0.150527 0.988606i $$-0.451903\pi$$
0.957121 0.289688i $$-0.0935517\pi$$
$$62$$ 7.56614 + 3.45534i 0.960901 + 0.438829i
$$63$$ 1.65712 2.57853i 0.208778 0.324865i
$$64$$ 0.142315 + 0.989821i 0.0177894 + 0.123728i
$$65$$ −1.55619 3.07270i −0.193022 0.381122i
$$66$$ 8.24572 + 9.51607i 1.01498 + 1.17135i
$$67$$ 4.59599 + 15.6525i 0.561490 + 1.91226i 0.361010 + 0.932562i $$0.382432\pi$$
0.200480 + 0.979698i $$0.435750\pi$$
$$68$$ 3.90778i 0.473888i
$$69$$ −8.36918 + 9.19840i −1.00753 + 1.10736i
$$70$$ −1.83076 0.188123i −0.218818 0.0224851i
$$71$$ −9.62477 + 2.82609i −1.14225 + 0.335395i −0.797511 0.603304i $$-0.793851\pi$$
−0.344739 + 0.938699i $$0.612032\pi$$
$$72$$ 2.81447 2.43875i 0.331688 0.287410i
$$73$$ −3.34358 5.20271i −0.391336 0.608931i 0.588556 0.808456i $$-0.299697\pi$$
−0.979893 + 0.199525i $$0.936060\pi$$
$$74$$ 0.682927 + 4.74986i 0.0793887 + 0.552160i
$$75$$ 9.08131 9.25374i 1.04862 1.06853i
$$76$$ −2.05145 + 4.49206i −0.235318 + 0.515274i
$$77$$ 3.02043 + 2.61722i 0.344210 + 0.298260i
$$78$$ 3.95357 + 0.568438i 0.447654 + 0.0643629i
$$79$$ −2.95556 6.47177i −0.332526 0.728131i 0.667335 0.744757i $$-0.267435\pi$$
−0.999862 + 0.0166262i $$0.994707\pi$$
$$80$$ −2.06986 0.845983i −0.231417 0.0945838i
$$81$$ 6.04814 + 1.77590i 0.672016 + 0.197322i
$$82$$ 3.43208 1.56738i 0.379010 0.173088i
$$83$$ 11.8009 + 1.69671i 1.29531 + 0.186238i 0.755278 0.655405i $$-0.227502\pi$$
0.540035 + 0.841643i $$0.318411\pi$$
$$84$$ 1.39763 1.61295i 0.152494 0.175988i
$$85$$ −7.53574 4.42338i −0.817366 0.479783i
$$86$$ −1.11278 0.715143i −0.119995 0.0771159i
$$87$$ −9.85565 + 1.41703i −1.05664 + 0.151921i
$$88$$ 2.62526 + 4.08498i 0.279854 + 0.435461i
$$89$$ 3.58733 + 4.14000i 0.380256 + 0.438839i 0.913324 0.407234i $$-0.133506\pi$$
−0.533068 + 0.846072i $$0.678961\pi$$
$$90$$ 1.51705 + 8.18794i 0.159912 + 0.863084i
$$91$$ 1.26778 0.132899
$$92$$ −3.69948 + 3.05186i −0.385698 + 0.318178i
$$93$$ 21.5688i 2.23658i
$$94$$ −5.91321 + 1.73627i −0.609901 + 0.179083i
$$95$$ −6.34033 9.04077i −0.650504 0.927563i
$$96$$ 2.18144 1.40193i 0.222642 0.143084i
$$97$$ −11.2508 + 1.61762i −1.14235 + 0.164245i −0.687403 0.726276i $$-0.741250\pi$$
−0.454943 + 0.890520i $$0.650340\pi$$
$$98$$ −3.41825 + 5.31890i −0.345295 + 0.537290i
$$99$$ 7.51215 16.4493i 0.755000 1.65322i
$$100$$ 3.97435 3.03390i 0.397435 0.303390i
$$101$$ 1.24825 8.68177i 0.124206 0.863868i −0.828503 0.559984i $$-0.810807\pi$$
0.952709 0.303884i $$-0.0982837\pi$$
$$102$$ 9.21748 4.20948i 0.912666 0.416801i
$$103$$ −0.711708 + 2.42386i −0.0701267 + 0.238830i −0.987096 0.160127i $$-0.948810\pi$$
0.916970 + 0.398957i $$0.130628\pi$$
$$104$$ 1.47794 + 0.433964i 0.144924 + 0.0425536i
$$105$$ 1.52837 + 4.52096i 0.149154 + 0.441200i
$$106$$ 0.904718 6.29245i 0.0878739 0.611177i
$$107$$ −10.6370 9.21698i −1.02831 0.891039i −0.0342037 0.999415i $$-0.510889\pi$$
−0.994110 + 0.108376i $$0.965435\pi$$
$$108$$ −1.70792 0.779980i −0.164345 0.0750536i
$$109$$ −0.000631598 0 0.000405903i −6.04961e−5 0 3.88785e-5i 0.540611 0.841273i $$-0.318193\pi$$
−0.540671 + 0.841234i $$0.681830\pi$$
$$110$$ −10.8491 + 0.438565i −1.03442 + 0.0418155i
$$111$$ 10.4681 6.72743i 0.993587 0.638540i
$$112$$ 0.622021 0.538985i 0.0587755 0.0509293i
$$113$$ −1.28201 4.36614i −0.120602 0.410732i 0.876957 0.480570i $$-0.159570\pi$$
−0.997558 + 0.0698376i $$0.977752\pi$$
$$114$$ 12.8055 1.19934
$$115$$ −1.69758 10.5886i −0.158300 0.987391i
$$116$$ −3.83983 −0.356519
$$117$$ −1.61611 5.50398i −0.149410 0.508843i
$$118$$ 0.986172 0.854523i 0.0907845 0.0786652i
$$119$$ 2.70573 1.73887i 0.248034 0.159402i
$$120$$ 0.234200 + 5.79358i 0.0213794 + 0.528879i
$$121$$ 10.5822 + 6.80076i 0.962018 + 0.618251i
$$122$$ −12.0167 5.48782i −1.08794 0.496844i
$$123$$ −7.39411 6.40703i −0.666704 0.577702i
$$124$$ 1.18375 8.23314i 0.106304 0.739358i
$$125$$ 1.35181 + 11.0983i 0.120910 + 0.992664i
$$126$$ −2.94095 0.863541i −0.262001 0.0769304i
$$127$$ −5.13644 + 17.4931i −0.455785 + 1.55226i 0.336241 + 0.941776i $$0.390844\pi$$
−0.792027 + 0.610487i $$0.790974\pi$$
$$128$$ 0.909632 0.415415i 0.0804009 0.0367178i
$$129$$ −0.488147 + 3.39514i −0.0429790 + 0.298925i
$$130$$ −2.50980 + 2.35884i −0.220124 + 0.206884i
$$131$$ −8.14822 + 17.8421i −0.711914 + 1.55887i 0.112988 + 0.993596i $$0.463958\pi$$
−0.824901 + 0.565277i $$0.808769\pi$$
$$132$$ 6.80751 10.5927i 0.592518 0.921976i
$$133$$ 4.02313 0.578438i 0.348849 0.0501570i
$$134$$ 13.7236 8.81965i 1.18554 0.761902i
$$135$$ 3.43738 2.41065i 0.295842 0.207475i
$$136$$ 3.74949 1.10095i 0.321516 0.0944056i
$$137$$ 17.6600i 1.50880i 0.656416 + 0.754399i $$0.272072\pi$$
−0.656416 + 0.754399i $$0.727928\pi$$
$$138$$ 11.1837 + 5.43868i 0.952018 + 0.462971i
$$139$$ 0.370257 0.0314048 0.0157024 0.999877i $$-0.495002\pi$$
0.0157024 + 0.999877i $$0.495002\pi$$
$$140$$ 0.335282 + 1.80960i 0.0283365 + 0.152939i
$$141$$ 10.4652 + 12.0775i 0.881327 + 1.01711i
$$142$$ 5.42322 + 8.43870i 0.455107 + 0.708160i
$$143$$ 7.40349 1.06446i 0.619111 0.0890148i
$$144$$ −3.13289 2.01339i −0.261074 0.167782i
$$145$$ 4.34647 7.40471i 0.360955 0.614927i
$$146$$ −4.04997 + 4.67392i −0.335178 + 0.386816i
$$147$$ 16.2281 + 2.33325i 1.33847 + 0.192443i
$$148$$ 4.36506 1.99345i 0.358805 0.163861i
$$149$$ −0.922676 0.270922i −0.0755886 0.0221948i 0.243720 0.969846i $$-0.421632\pi$$
−0.319308 + 0.947651i $$0.603451\pi$$
$$150$$ −11.4374 6.10637i −0.933860 0.498583i
$$151$$ −8.48941 18.5892i −0.690859 1.51277i −0.850714 0.525629i $$-0.823830\pi$$
0.159855 0.987140i $$-0.448897\pi$$
$$152$$ 4.88806 + 0.702797i 0.396474 + 0.0570043i
$$153$$ −10.9983 9.53010i −0.889162 0.770463i
$$154$$ 1.66025 3.63544i 0.133787 0.292952i
$$155$$ 14.5368 + 11.6022i 1.16762 + 0.931910i
$$156$$ −0.568438 3.95357i −0.0455114 0.316539i
$$157$$ −10.4562 16.2702i −0.834498 1.29850i −0.952206 0.305457i $$-0.901191\pi$$
0.117708 0.993048i $$-0.462445\pi$$
$$158$$ −5.37694 + 4.65915i −0.427766 + 0.370662i
$$159$$ −15.8169 + 4.64426i −1.25436 + 0.368314i
$$160$$ −0.228568 + 2.22436i −0.0180699 + 0.175851i
$$161$$ 3.75927 + 1.20350i 0.296272 + 0.0948493i
$$162$$ 6.30348i 0.495248i
$$163$$ 5.64839 + 19.2366i 0.442416 + 1.50673i 0.815403 + 0.578894i $$0.196515\pi$$
−0.372987 + 0.927837i $$0.621666\pi$$
$$164$$ −2.47082 2.85147i −0.192938 0.222663i
$$165$$ 12.7212 + 25.1179i 0.990342 + 1.95543i
$$166$$ −1.69671 11.8009i −0.131690 0.915924i
$$167$$ 6.42298 9.99436i 0.497025 0.773387i −0.498599 0.866833i $$-0.666152\pi$$
0.995624 + 0.0934462i $$0.0297883\pi$$
$$168$$ −1.94138 0.886596i −0.149780 0.0684024i
$$169$$ −6.95944 + 8.03162i −0.535341 + 0.617817i
$$170$$ −2.12114 + 8.47670i −0.162684 + 0.650133i
$$171$$ −7.63977 16.7288i −0.584228 1.27928i
$$172$$ −0.372667 + 1.26919i −0.0284156 + 0.0967747i
$$173$$ 1.47201 5.01320i 0.111915 0.381147i −0.884419 0.466693i $$-0.845445\pi$$
0.996334 + 0.0855462i $$0.0272635\pi$$
$$174$$ 4.13629 + 9.05720i 0.313571 + 0.686625i
$$175$$ −3.86915 1.40181i −0.292480 0.105967i
$$176$$ 3.17989 3.66979i 0.239693 0.276621i
$$177$$ −3.07792 1.40564i −0.231350 0.105654i
$$178$$ 2.96163 4.60839i 0.221984 0.345413i
$$179$$ −0.489136 3.40201i −0.0365597 0.254278i 0.963342 0.268275i $$-0.0864536\pi$$
−0.999902 + 0.0139968i $$0.995545\pi$$
$$180$$ 7.42886 3.76241i 0.553715 0.280434i
$$181$$ −2.33877 2.69908i −0.173839 0.200621i 0.662143 0.749377i $$-0.269647\pi$$
−0.835983 + 0.548756i $$0.815102\pi$$
$$182$$ −0.357175 1.21643i −0.0264756 0.0901675i
$$183$$ 34.2558i 2.53226i
$$184$$ 3.97050 + 2.68982i 0.292709 + 0.198296i
$$185$$ −1.09683 + 10.6740i −0.0806406 + 0.784770i
$$186$$ −20.6951 + 6.07662i −1.51744 + 0.445559i
$$187$$ 14.3407 12.4263i 1.04870 0.908702i
$$188$$ 3.33189 + 5.18452i 0.243003 + 0.378120i
$$189$$ 0.219927 + 1.52963i 0.0159974 + 0.111264i
$$190$$ −6.88828 + 8.63058i −0.499728 + 0.626128i
$$191$$ −2.15349 + 4.71548i −0.155821 + 0.341200i −0.971401 0.237444i $$-0.923691\pi$$
0.815580 + 0.578644i $$0.196418\pi$$
$$192$$ −1.95972 1.69811i −0.141431 0.122550i
$$193$$ 16.4760 + 2.36889i 1.18597 + 0.170516i 0.706933 0.707281i $$-0.250078\pi$$
0.479033 + 0.877797i $$0.340987\pi$$
$$194$$ 4.72182 + 10.3393i 0.339007 + 0.742321i
$$195$$ 8.26748 + 3.37905i 0.592047 + 0.241979i
$$196$$ 6.06648 + 1.78128i 0.433320 + 0.127234i
$$197$$ 0.639181 0.291904i 0.0455398 0.0207973i −0.392515 0.919746i $$-0.628395\pi$$
0.438055 + 0.898948i $$0.355668\pi$$
$$198$$ −17.8994 2.57355i −1.27206 0.182894i
$$199$$ −16.5808 + 19.1353i −1.17538 + 1.35646i −0.254284 + 0.967130i $$0.581840\pi$$
−0.921097 + 0.389333i $$0.872706\pi$$
$$200$$ −4.03071 2.95861i −0.285014 0.209206i
$$201$$ −35.5865 22.8701i −2.51008 1.61313i
$$202$$ −8.68177 + 1.24825i −0.610847 + 0.0878266i
$$203$$ 1.70863 + 2.65868i 0.119922 + 0.186603i
$$204$$ −6.63583 7.65816i −0.464601 0.536178i
$$205$$ 8.29559 1.53700i 0.579389 0.107349i
$$206$$ 2.52618 0.176008
$$207$$ 0.432758 17.8548i 0.0300788 1.24099i
$$208$$ 1.54034i 0.106803i
$$209$$ 23.0083 6.75585i 1.59152 0.467312i
$$210$$ 3.90723 2.74016i 0.269625 0.189089i
$$211$$ −3.12062 + 2.00550i −0.214832 + 0.138064i −0.643632 0.765335i $$-0.722573\pi$$
0.428799 + 0.903400i $$0.358937\pi$$
$$212$$ −6.29245 + 0.904718i −0.432167 + 0.0621363i
$$213$$ 14.0629 21.8822i 0.963571 1.49935i
$$214$$ −5.84685 + 12.8028i −0.399682 + 0.875182i
$$215$$ −2.02566 2.15530i −0.138149 0.146990i
$$216$$ −0.267209 + 1.85848i −0.0181813 + 0.126454i
$$217$$ −6.22733 + 2.84393i −0.422739 + 0.193058i
$$218$$ −0.000211520 0 0.000720370i −1.43259e−5 0 4.87896e-5i
$$219$$ 15.3873 + 4.51811i 1.03977 + 0.305305i
$$220$$ 3.47735 + 10.2861i 0.234443 + 0.693487i
$$221$$ 0.856636 5.95804i 0.0576236 0.400781i
$$222$$ −9.40413 8.14872i −0.631164 0.546906i
$$223$$ −14.6384 6.68515i −0.980262 0.447670i −0.140177 0.990126i $$-0.544767\pi$$
−0.840084 + 0.542456i $$0.817495\pi$$
$$224$$ −0.692396 0.444976i −0.0462626 0.0297312i
$$225$$ −1.15364 + 18.5846i −0.0769095 + 1.23897i
$$226$$ −3.82810 + 2.46017i −0.254641 + 0.163648i
$$227$$ −2.71777 + 2.35496i −0.180385 + 0.156304i −0.740373 0.672196i $$-0.765351\pi$$
0.559988 + 0.828501i $$0.310806\pi$$
$$228$$ −3.60772 12.2868i −0.238927 0.813711i
$$229$$ −16.9260 −1.11850 −0.559251 0.828998i $$-0.688911\pi$$
−0.559251 + 0.828998i $$0.688911\pi$$
$$230$$ −9.68141 + 4.61197i −0.638374 + 0.304104i
$$231$$ −10.3635 −0.681869
$$232$$ 1.08181 + 3.68429i 0.0710240 + 0.241885i
$$233$$ −17.4851 + 15.1509i −1.14548 + 0.992568i −0.145490 + 0.989360i $$0.546476\pi$$
−0.999995 + 0.00320806i $$0.998979\pi$$
$$234$$ −4.82572 + 3.10130i −0.315467 + 0.202738i
$$235$$ −13.7693 + 0.556611i −0.898210 + 0.0363093i
$$236$$ −1.09775 0.705478i −0.0714572 0.0459227i
$$237$$ 16.7818 + 7.66401i 1.09010 + 0.497831i
$$238$$ −2.43072 2.10623i −0.157560 0.136527i
$$239$$ 1.86242 12.9534i 0.120470 0.837888i −0.836555 0.547883i $$-0.815434\pi$$
0.957025 0.290005i $$-0.0936570\pi$$
$$240$$ 5.49291 1.85695i 0.354566 0.119866i
$$241$$ 0.584949 + 0.171757i 0.0376799 + 0.0110638i 0.300518 0.953776i $$-0.402840\pi$$
−0.262838 + 0.964840i $$0.584659\pi$$
$$242$$ 3.54394 12.0695i 0.227813 0.775859i
$$243$$ −19.9921 + 9.13008i −1.28249 + 0.585695i
$$244$$ −1.88004 + 13.0760i −0.120357 + 0.837105i
$$245$$ −10.3019 + 9.68225i −0.658165 + 0.618576i
$$246$$ −4.06434 + 8.89966i −0.259133 + 0.567422i
$$247$$ 4.11249 6.39916i 0.261671 0.407169i
$$248$$ −8.23314 + 1.18375i −0.522805 + 0.0751680i
$$249$$ −26.0076 + 16.7141i −1.64816 + 1.05921i
$$250$$ 10.2679 4.42381i 0.649399 0.279786i
$$251$$ −10.6634 + 3.13106i −0.673068 + 0.197630i −0.600369 0.799723i $$-0.704979\pi$$
−0.0726991 + 0.997354i $$0.523161\pi$$
$$252$$ 3.06511i 0.193084i
$$253$$ 22.9636 + 3.87175i 1.44371 + 0.243415i
$$254$$ 18.2316 1.14395
$$255$$ 22.2793 4.12790i 1.39519 0.258499i
$$256$$ −0.654861 0.755750i −0.0409288 0.0472343i
$$257$$ −4.48404 6.97731i −0.279707 0.435233i 0.672766 0.739855i $$-0.265106\pi$$
−0.952473 + 0.304623i $$0.901470\pi$$
$$258$$ 3.39514 0.488147i 0.211372 0.0303907i
$$259$$ −3.32260 2.13531i −0.206456 0.132682i
$$260$$ 2.97038 + 1.74358i 0.184215 + 0.108132i
$$261$$ 9.36439 10.8071i 0.579641 0.668942i
$$262$$ 19.4150 + 2.79146i 1.19946 + 0.172457i
$$263$$ −3.66223 + 1.67248i −0.225823 + 0.103130i −0.525114 0.851032i $$-0.675977\pi$$
0.299291 + 0.954162i $$0.403250\pi$$
$$264$$ −12.0815 3.54745i −0.743566 0.218331i
$$265$$ 5.37804 13.1584i 0.330371 0.808315i
$$266$$ −1.68845 3.69720i −0.103526 0.226690i
$$267$$ −14.0603 2.02157i −0.860478 0.123718i
$$268$$ −12.3288 10.6830i −0.753101 0.652565i
$$269$$ 6.96519 15.2516i 0.424675 0.929909i −0.569486 0.822001i $$-0.692858\pi$$
0.994161 0.107908i $$-0.0344151\pi$$
$$270$$ −3.28142 2.61898i −0.199701 0.159386i
$$271$$ 1.43396 + 9.97339i 0.0871067 + 0.605840i 0.985883 + 0.167433i $$0.0535479\pi$$
−0.898777 + 0.438407i $$0.855543\pi$$
$$272$$ −2.11270 3.28743i −0.128102 0.199330i
$$273$$ −2.48449 + 2.15283i −0.150368 + 0.130295i
$$274$$ 16.9447 4.97541i 1.02367 0.300575i
$$275$$ −23.7718 4.93757i −1.43349 0.297747i
$$276$$ 2.06757 12.2629i 0.124453 0.738140i
$$277$$ 20.5207i 1.23297i 0.787367 + 0.616485i $$0.211444\pi$$
−0.787367 + 0.616485i $$0.788556\pi$$
$$278$$ −0.104313 0.355259i −0.00625630 0.0213070i
$$279$$ 20.2851 + 23.4102i 1.21444 + 1.40153i
$$280$$ 1.64184 0.831524i 0.0981188 0.0496931i
$$281$$ −3.52636 24.5264i −0.210365 1.46312i −0.771940 0.635695i $$-0.780713\pi$$
0.561575 0.827426i $$-0.310196\pi$$
$$282$$ 8.63986 13.4439i 0.514496 0.800571i
$$283$$ 8.67802 + 3.96312i 0.515855 + 0.235583i 0.656293 0.754506i $$-0.272124\pi$$
−0.140438 + 0.990090i $$0.544851\pi$$
$$284$$ 6.56897 7.58100i 0.389797 0.449850i
$$285$$ 27.7775 + 6.95082i 1.64540 + 0.411731i
$$286$$ −3.10715 6.80371i −0.183730 0.402312i
$$287$$ −0.874895 + 2.97962i −0.0516434 + 0.175881i
$$288$$ −1.04919 + 3.57323i −0.0618243 + 0.210554i
$$289$$ 0.718363 + 1.57300i 0.0422566 + 0.0925291i
$$290$$ −8.32930 2.08426i −0.489114 0.122392i
$$291$$ 19.3015 22.2752i 1.13148 1.30579i
$$292$$ 5.62560 + 2.56912i 0.329213 + 0.150347i
$$293$$ 9.35142 14.5511i 0.546316 0.850084i −0.452822 0.891601i $$-0.649583\pi$$
0.999138 + 0.0415169i $$0.0132190\pi$$
$$294$$ −2.33325 16.2281i −0.136078 0.946442i
$$295$$ 2.60303 1.31832i 0.151554 0.0767558i
$$296$$ −3.14248 3.62662i −0.182653 0.210793i
$$297$$ 2.56863 + 8.74796i 0.149047 + 0.507608i
$$298$$ 0.961629i 0.0557057i
$$299$$ 6.30946 3.84207i 0.364886 0.222193i
$$300$$ −2.63673 + 12.6945i −0.152232 + 0.732916i
$$301$$ 1.04461 0.306725i 0.0602102 0.0176793i
$$302$$ −15.4445 + 13.3827i −0.888730 + 0.770089i
$$303$$ 12.2964 + 19.1335i 0.706407 + 1.09919i
$$304$$ −0.702797 4.88806i −0.0403082 0.280349i
$$305$$ −23.0876 18.4268i −1.32199 1.05511i
$$306$$ −6.04548 + 13.2378i −0.345597 + 0.756752i
$$307$$ 7.44626 + 6.45222i 0.424980 + 0.368248i 0.840933 0.541139i $$-0.182007\pi$$
−0.415953 + 0.909386i $$0.636552\pi$$
$$308$$ −3.95592 0.568776i −0.225410 0.0324090i
$$309$$ −2.72122 5.95864i −0.154805 0.338975i
$$310$$ 7.03672 17.2167i 0.399659 0.977842i
$$311$$ 8.06552 + 2.36825i 0.457354 + 0.134291i 0.502291 0.864699i $$-0.332491\pi$$
−0.0449372 + 0.998990i $$0.514309\pi$$
$$312$$ −3.63328 + 1.65926i −0.205694 + 0.0939372i
$$313$$ −18.7663 2.69819i −1.06074 0.152511i −0.410207 0.911992i $$-0.634544\pi$$
−0.650529 + 0.759481i $$0.725453\pi$$
$$314$$ −12.6653 + 14.6165i −0.714744 + 0.824859i
$$315$$ −5.91074 3.46953i −0.333033 0.195486i
$$316$$ 5.98528 + 3.84650i 0.336698 + 0.216383i
$$317$$ 18.9449 2.72386i 1.06405 0.152987i 0.412016 0.911177i $$-0.364825\pi$$
0.652035 + 0.758189i $$0.273916\pi$$
$$318$$ 8.91226 + 13.8678i 0.499775 + 0.777665i
$$319$$ 12.2102 + 14.0914i 0.683642 + 0.788965i
$$320$$ 2.19865 0.407364i 0.122908 0.0227723i
$$321$$ 36.4969 2.03706
$$322$$ 0.0956431 3.94606i 0.00532998 0.219905i
$$323$$ 19.2979i 1.07376i
$$324$$ −6.04814 + 1.77590i −0.336008 + 0.0986609i
$$325$$ −6.72461 + 3.75444i −0.373014 + 0.208259i
$$326$$ 16.8661 10.8392i 0.934126 0.600327i
$$327$$ 0.00192702 0.000277064i 0.000106565 1.53217e-5i
$$328$$ −2.03986 + 3.17408i −0.112632 + 0.175259i
$$329$$ 2.10713 4.61397i 0.116170 0.254376i
$$330$$ 20.5165 19.2824i 1.12940 1.06146i
$$331$$ −4.43315 + 30.8332i −0.243668 + 1.69475i 0.389736 + 0.920927i $$0.372566\pi$$
−0.633404 + 0.773821i $$0.718343\pi$$
$$332$$ −10.8448 + 4.95266i −0.595187 + 0.271813i
$$333$$ −5.03477 + 17.1469i −0.275904 + 0.939642i
$$334$$ −11.3991 3.34707i −0.623730 0.183144i
$$335$$ 34.5564 11.6823i 1.88802 0.638270i
$$336$$ −0.303734 + 2.11252i −0.0165701 + 0.115247i
$$337$$ 3.40702 + 2.95220i 0.185592 + 0.160816i 0.742702 0.669623i $$-0.233544\pi$$
−0.557109 + 0.830439i $$0.688090\pi$$
$$338$$ 9.66698 + 4.41476i 0.525814 + 0.240131i
$$339$$ 9.92657 + 6.37942i 0.539137 + 0.346483i
$$340$$ 8.73093 0.352939i 0.473501 0.0191408i
$$341$$ −33.9781 + 21.8364i −1.84002 + 1.18251i
$$342$$ −13.8988 + 12.0433i −0.751559 + 0.651230i
$$343$$ −3.08925 10.5210i −0.166804 0.568081i
$$344$$ 1.32277 0.0713190
$$345$$ 21.3074 + 17.8680i 1.14715 + 0.961981i
$$346$$ −5.22484 −0.280889
$$347$$ 0.684336 + 2.33063i 0.0367371 + 0.125115i 0.975820 0.218576i $$-0.0701410\pi$$
−0.939083 + 0.343691i $$0.888323\pi$$
$$348$$ 7.52500 6.52045i 0.403382 0.349533i
$$349$$ 23.8539 15.3300i 1.27687 0.820595i 0.286373 0.958118i $$-0.407550\pi$$
0.990499 + 0.137523i $$0.0439141\pi$$
$$350$$ −0.254965 + 4.10736i −0.0136284 + 0.219547i
$$351$$ 2.43301 + 1.56360i 0.129865 + 0.0834590i
$$352$$ −4.41702 2.01718i −0.235428 0.107516i
$$353$$ −5.93958 5.14667i −0.316132 0.273930i 0.482312 0.876000i $$-0.339797\pi$$
−0.798443 + 0.602070i $$0.794343\pi$$
$$354$$ −0.481550 + 3.34925i −0.0255941 + 0.178011i
$$355$$ 7.18345 + 21.2488i 0.381258 + 1.12777i
$$356$$ −5.25610 1.54333i −0.278573 0.0817964i
$$357$$ −2.34969 + 8.00231i −0.124359 + 0.423527i
$$358$$ −3.12640 + 1.42778i −0.165235 + 0.0754605i
$$359$$ −0.576914 + 4.01253i −0.0304484 + 0.211773i −0.999366 0.0356117i $$-0.988662\pi$$
0.968917 + 0.247385i $$0.0795711\pi$$
$$360$$ −5.70296 6.06795i −0.300572 0.319809i
$$361$$ 2.23786 4.90023i 0.117782 0.257907i
$$362$$ −1.93084 + 3.00445i −0.101483 + 0.157911i
$$363$$ −32.2866 + 4.64211i −1.69461 + 0.243648i
$$364$$ −1.06652 + 0.685413i −0.0559011 + 0.0359254i
$$365$$ −11.3221 + 7.94027i −0.592628 + 0.415613i
$$366$$ 32.8682 9.65098i 1.71805 0.504465i
$$367$$ 0.00287537i 0.000150093i −1.00000 7.50466e-5i $$-0.999976\pi$$
1.00000 7.50466e-5i $$-2.38881e-5\pi$$
$$368$$ 1.46224 4.56748i 0.0762247 0.238096i
$$369$$ 14.0511 0.731471
$$370$$ 10.5507 1.95482i 0.548503 0.101626i
$$371$$ 3.42641 + 3.95429i 0.177890 + 0.205296i
$$372$$ 11.6609 + 18.1448i 0.604592 + 0.940764i
$$373$$ −5.56203 + 0.799699i −0.287991 + 0.0414069i −0.284796 0.958588i $$-0.591926\pi$$
−0.00319464 + 0.999995i $$0.501017\pi$$
$$374$$ −15.9632 10.2589i −0.825438 0.530477i
$$375$$ −21.4953 19.4541i −1.11001 1.00460i
$$376$$ 4.03581 4.65757i 0.208131 0.240196i
$$377$$ 5.85444 + 0.841741i 0.301519 + 0.0433519i
$$378$$ 1.40571 0.641964i 0.0723017 0.0330191i
$$379$$ −16.8263 4.94063i −0.864307 0.253783i −0.180615 0.983554i $$-0.557809\pi$$
−0.683692 + 0.729771i $$0.739627\pi$$
$$380$$ 10.2216 + 4.17774i 0.524359 + 0.214313i
$$381$$ −19.6392 43.0038i −1.00615 2.20315i
$$382$$ 5.13118 + 0.737752i 0.262534 + 0.0377467i
$$383$$ −5.00087 4.33327i −0.255532 0.221420i 0.517668 0.855581i $$-0.326800\pi$$
−0.773201 + 0.634161i $$0.781346\pi$$
$$384$$ −1.07721 + 2.35875i −0.0549709 + 0.120370i
$$385$$ 5.57470 6.98475i 0.284113 0.355976i
$$386$$ −2.36889 16.4760i −0.120573 0.838605i
$$387$$ −2.66325 4.14410i −0.135381 0.210656i
$$388$$ 8.59023 7.44348i 0.436103 0.377885i
$$389$$ 28.1129 8.25468i 1.42538 0.418529i 0.524058 0.851682i $$-0.324417\pi$$
0.901320 + 0.433154i $$0.142599\pi$$
$$390$$ 0.912953 8.88458i 0.0462292 0.449888i
$$391$$ 8.19610 16.8538i 0.414494 0.852334i
$$392$$ 6.32259i 0.319339i
$$393$$ −14.3296 48.8021i −0.722833 2.46174i
$$394$$ −0.460158 0.531051i −0.0231824 0.0267539i
$$395$$ −14.1926 + 7.18795i −0.714106 + 0.361665i
$$396$$ 2.57355 + 17.8994i 0.129326 + 0.899480i
$$397$$ −9.57991 + 14.9066i −0.480802 + 0.748143i −0.993912 0.110181i $$-0.964857\pi$$
0.513110 + 0.858323i $$0.328493\pi$$
$$398$$ 23.0315 + 10.5181i 1.15446 + 0.527226i
$$399$$ −6.90196 + 7.96528i −0.345530 + 0.398763i
$$400$$ −1.70319 + 4.70097i −0.0851594 + 0.235049i
$$401$$ 4.73969 + 10.3785i 0.236689 + 0.518276i 0.990284 0.139063i $$-0.0444091\pi$$
−0.753595 + 0.657339i $$0.771682\pi$$
$$402$$ −11.9178 + 40.5883i −0.594406 + 2.02436i
$$403$$ −3.60963 + 12.2933i −0.179808 + 0.612371i
$$404$$ 3.64362 + 7.97842i 0.181277 + 0.396941i
$$405$$ 3.42153 13.6734i 0.170017 0.679438i
$$406$$ 2.06961 2.38846i 0.102713 0.118537i
$$407$$ −21.1960 9.67987i −1.05065 0.479814i
$$408$$ −5.47842 + 8.52458i −0.271222 + 0.422030i
$$409$$ 0.436149 + 3.03349i 0.0215662 + 0.149996i 0.997759 0.0669076i $$-0.0213133\pi$$
−0.976193 + 0.216904i $$0.930404\pi$$
$$410$$ −3.81188 7.52653i −0.188255 0.371709i
$$411$$ −29.9886 34.6087i −1.47923 1.70712i
$$412$$ −0.711708 2.42386i −0.0350633 0.119415i
$$413$$ 1.07399i 0.0528478i
$$414$$ −17.2535 + 4.61505i −0.847962 + 0.226817i
$$415$$ 2.72504 26.5192i 0.133767 1.30178i
$$416$$ −1.47794 + 0.433964i −0.0724622 + 0.0212768i
$$417$$ −0.725600 + 0.628736i −0.0355328 + 0.0307893i
$$418$$ −12.9644 20.1730i −0.634109 0.986692i
$$419$$ −4.74194 32.9809i −0.231659 1.61122i −0.690927 0.722925i $$-0.742797\pi$$
0.459268 0.888298i $$-0.348112\pi$$
$$420$$ −3.72996 2.97697i −0.182003 0.145261i
$$421$$ −13.3875 + 29.3145i −0.652466 + 1.42870i 0.236914 + 0.971531i $$0.423864\pi$$
−0.889379 + 0.457170i $$0.848863\pi$$
$$422$$ 2.80344 + 2.42920i 0.136470 + 0.118252i
$$423$$ −22.7173 3.26626i −1.10455 0.158811i
$$424$$ 2.64086 + 5.78267i 0.128251 + 0.280831i
$$425$$ −9.20231 + 17.2362i −0.446378 + 0.836077i
$$426$$ −24.9578 7.32828i −1.20921 0.355056i
$$427$$ 9.89033 4.51676i 0.478627 0.218582i
$$428$$ 13.9315 + 2.00304i 0.673402 + 0.0968206i
$$429$$ −12.7012 + 14.6580i −0.613220 + 0.707694i
$$430$$ −1.49730 + 2.55082i −0.0722062 + 0.123012i
$$431$$ −7.59443 4.88064i −0.365811 0.235092i 0.344802 0.938675i $$-0.387946\pi$$
−0.710613 + 0.703583i $$0.751582\pi$$
$$432$$ 1.85848 0.267209i 0.0894162 0.0128561i
$$433$$ 9.33815 + 14.5304i 0.448763 + 0.698289i 0.989761 0.142735i $$-0.0455897\pi$$
−0.540998 + 0.841024i $$0.681953\pi$$
$$434$$ 4.48317 + 5.17385i 0.215199 + 0.248353i
$$435$$ 4.05612 + 21.8919i 0.194476 + 1.04964i
$$436$$ 0.000750782 0 3.59559e−5 0
$$437$$ 18.2692 15.0711i 0.873936 0.720947i
$$438$$ 16.0369i 0.766271i
$$439$$ 12.5452 3.68360i 0.598749 0.175809i 0.0317066 0.999497i $$-0.489906\pi$$
0.567042 + 0.823689i $$0.308088\pi$$
$$440$$ 8.88974 6.23441i 0.423802 0.297214i
$$441$$ −19.8080 + 12.7298i −0.943237 + 0.606182i
$$442$$ −5.95804 + 0.856636i −0.283395 + 0.0407460i
$$443$$ 12.2792 19.1068i 0.583401 0.907790i −0.416598 0.909091i $$-0.636778\pi$$
0.999999 + 0.00130107i $$0.000414142\pi$$
$$444$$ −5.16919 + 11.3190i −0.245319 + 0.537174i
$$445$$ 8.92576 8.38888i 0.423122 0.397671i
$$446$$ −2.29023 + 15.9289i −0.108445 + 0.754255i
$$447$$ 2.26824 1.03587i 0.107284 0.0489951i
$$448$$ −0.231881 + 0.789713i −0.0109553 + 0.0373104i
$$449$$ −2.22247 0.652576i −0.104885 0.0307970i 0.228869 0.973457i $$-0.426497\pi$$
−0.333754 + 0.942660i $$0.608315\pi$$
$$450$$ 18.1568 4.12898i 0.855921 0.194642i
$$451$$ −2.60738 + 18.1348i −0.122777 + 0.853932i
$$452$$ 3.43901 + 2.97992i 0.161758 + 0.140164i
$$453$$ 48.2034 + 22.0137i 2.26479 + 1.03430i
$$454$$ 3.02525 + 1.94421i 0.141982 + 0.0912463i
$$455$$ −0.114502 2.83253i −0.00536795 0.132791i
$$456$$ −10.7727 + 6.92317i −0.504476 + 0.324207i
$$457$$ 17.5450 15.2028i 0.820721 0.711158i −0.139554 0.990214i $$-0.544567\pi$$
0.960275 + 0.279056i $$0.0900215\pi$$
$$458$$ 4.76861 + 16.2404i 0.222822 + 0.758864i
$$459$$ 7.33722 0.342472
$$460$$ 7.15272 + 7.98991i 0.333497 + 0.372531i
$$461$$ 8.06438 0.375595 0.187798 0.982208i $$-0.439865\pi$$
0.187798 + 0.982208i $$0.439865\pi$$
$$462$$ 2.91974 + 9.94372i 0.135839 + 0.462624i
$$463$$ 12.7129 11.0158i 0.590817 0.511946i −0.307352 0.951596i $$-0.599443\pi$$
0.898169 + 0.439650i $$0.144898\pi$$
$$464$$ 3.23027 2.07597i 0.149962 0.0963744i
$$465$$ −48.1898 + 1.94803i −2.23475 + 0.0903377i
$$466$$ 19.4633 + 12.5083i 0.901619 + 0.579435i
$$467$$ −17.1332 7.82445i −0.792828 0.362072i −0.0225214 0.999746i $$-0.507169\pi$$
−0.770306 + 0.637674i $$0.779897\pi$$
$$468$$ 4.33524 + 3.75651i 0.200396 + 0.173645i
$$469$$ −1.91082 + 13.2901i −0.0882335 + 0.613678i
$$470$$ 4.41332 + 13.0547i 0.203571 + 0.602170i
$$471$$ 48.1199 + 14.1293i 2.21725 + 0.651043i
$$472$$ −0.367631 + 1.25204i −0.0169216 + 0.0576296i
$$473$$ 5.84270 2.66827i 0.268647 0.122687i
$$474$$ 2.62557 18.2613i 0.120597 0.838767i
$$475$$ −19.6266 + 14.9824i −0.900532 + 0.687438i
$$476$$ −1.33610 + 2.92565i −0.0612401 + 0.134097i
$$477$$ 12.7994 19.9163i 0.586045 0.911904i
$$478$$ −12.9534 + 1.86242i −0.592476 + 0.0851853i
$$479$$ −5.18475 + 3.33204i −0.236897 + 0.152245i −0.653704 0.756751i $$-0.726786\pi$$
0.416806 + 0.908995i $$0.363149\pi$$
$$480$$ −3.32927 4.74725i −0.151959 0.216681i
$$481$$ −7.09222 + 2.08246i −0.323378 + 0.0949522i
$$482$$ 0.609644i 0.0277685i
$$483$$ −9.41080 + 4.02512i −0.428206 + 0.183149i
$$484$$ −12.5791 −0.571776
$$485$$ 4.63030 + 24.9909i 0.210251 + 1.13478i
$$486$$ 14.3927 + 16.6100i 0.652865 + 0.753446i
$$487$$ −14.0453 21.8549i −0.636452 0.990339i −0.998310 0.0581061i $$-0.981494\pi$$
0.361858 0.932233i $$-0.382143\pi$$
$$488$$ 13.0760 1.88004i 0.591922 0.0851056i
$$489$$ −43.7352 28.1069i −1.97777 1.27104i
$$490$$ 12.1924 + 7.15681i 0.550798 + 0.323312i
$$491$$ −16.4557 + 18.9909i −0.742634 + 0.857046i −0.993833 0.110890i $$-0.964630\pi$$
0.251198 + 0.967936i $$0.419175\pi$$
$$492$$ 9.68422 + 1.39238i 0.436598 + 0.0627734i
$$493$$ 13.6492 6.23339i 0.614730 0.280738i
$$494$$ −7.29857 2.14305i −0.328378 0.0964205i
$$495$$ −37.4302 15.2983i −1.68236 0.687608i
$$496$$ 3.45534 + 7.56614i 0.155149 + 0.339730i
$$497$$ −8.17208 1.17497i −0.366568 0.0527045i
$$498$$ 23.3642 + 20.2452i 1.04697 + 0.907209i
$$499$$ 5.75654 12.6051i 0.257698 0.564281i −0.735921 0.677068i $$-0.763250\pi$$
0.993619 + 0.112787i $$0.0359778\pi$$
$$500$$ −7.13742 8.60565i −0.319195 0.384857i
$$501$$ 4.38424 + 30.4931i 0.195873 + 1.36233i
$$502$$ 6.00845 + 9.34933i 0.268170 + 0.417281i
$$503$$ −25.1422 + 21.7858i −1.12104 + 0.971383i −0.999774 0.0212380i $$-0.993239\pi$$
−0.121261 + 0.992621i $$0.538694\pi$$
$$504$$ 2.94095 0.863541i 0.131000 0.0384652i
$$505$$ −19.5099 2.00478i −0.868180 0.0892116i
$$506$$ −2.75469 23.1242i −0.122461 1.02800i
$$507$$ 27.5576i 1.22388i
$$508$$ −5.13644 17.4931i −0.227893 0.776131i
$$509$$ 5.23195 + 6.03799i 0.231902 + 0.267629i 0.859759 0.510699i $$-0.170613\pi$$
−0.627858 + 0.778328i $$0.716068\pi$$
$$510$$ −10.2375 20.2139i −0.453324 0.895086i
$$511$$ −0.724403 5.03834i −0.0320457 0.222883i
$$512$$ −0.540641 + 0.841254i −0.0238932 + 0.0371785i
$$513$$ 8.43425 + 3.85179i 0.372381 + 0.170061i
$$514$$ −5.43138 + 6.26814i −0.239568 + 0.276476i
$$515$$ 5.47976 + 1.37121i 0.241467 + 0.0604229i
$$516$$ −1.42489 3.12008i −0.0627275 0.137354i
$$517$$ 8.43105 28.7135i 0.370797 1.26282i
$$518$$ −1.11273 + 3.78960i −0.0488904 + 0.166505i
$$519$$ 5.62823 + 12.3241i 0.247052 + 0.540968i
$$520$$ 0.836097 3.34128i 0.0366653 0.146525i
$$521$$ −1.78669 + 2.06195i −0.0782763 + 0.0903356i −0.793537 0.608522i $$-0.791763\pi$$
0.715261 + 0.698858i $$0.246308\pi$$
$$522$$ −13.0076 5.94036i −0.569326 0.260003i
$$523$$ −17.6517 + 27.4665i −0.771853 + 1.20103i 0.203218 + 0.979133i $$0.434860\pi$$
−0.975071 + 0.221893i $$0.928776\pi$$
$$524$$ −2.79146 19.4150i −0.121945 0.848149i
$$525$$ 9.96288 3.82307i 0.434816 0.166852i
$$526$$ 2.63650 + 3.04269i 0.114957 + 0.132668i
$$527$$ 9.15747 + 31.1875i 0.398906 + 1.35855i
$$528$$ 12.5916i 0.547978i
$$529$$ 22.3564 5.40310i 0.972015 0.234917i
$$530$$ −14.1406 1.45304i −0.614227 0.0631162i
$$531$$ 4.66268 1.36909i 0.202343 0.0594133i
$$532$$ −3.07174 + 2.66168i −0.133177 + 0.115398i
$$533$$ 3.14208 + 4.88916i 0.136098 + 0.211773i
$$534$$ 2.02157 + 14.0603i 0.0874819 + 0.608450i
$$535$$ −19.6323 + 24.5980i −0.848777 + 1.06346i
$$536$$ −6.77680 + 14.8391i −0.292713 + 0.640952i
$$537$$ 6.73555 + 5.83639i 0.290661 + 0.251859i
$$538$$ −16.5962 2.38617i −0.715511 0.102875i
$$539$$ −12.7538 27.9270i −0.549346 1.20290i
$$540$$ −1.58841 + 3.88635i −0.0683543 + 0.167242i
$$541$$ 37.5294 + 11.0196i 1.61352 + 0.473771i 0.959266 0.282506i $$-0.0911656\pi$$
0.654251 + 0.756277i $$0.272984\pi$$
$$542$$ 9.16540 4.18570i 0.393688 0.179791i
$$543$$ 9.16667 + 1.31797i 0.393379 + 0.0565594i
$$544$$ −2.55905 + 2.95330i −0.109718 + 0.126622i
$$545$$ −0.000849843 0.00144780i −3.64033e−5 6.20171e-5i
$$546$$ 2.76559 + 1.77733i 0.118356 + 0.0760629i
$$547$$ −42.8941 + 6.16724i −1.83402 + 0.263692i −0.970583 0.240767i $$-0.922601\pi$$
−0.863436 + 0.504459i $$0.831692\pi$$
$$548$$ −9.54773 14.8566i −0.407859 0.634641i
$$549$$ −32.2170 37.1804i −1.37499 1.58682i
$$550$$ 1.95972 + 24.1999i 0.0835628 + 1.03189i
$$551$$ 18.9623 0.807822
$$552$$ −12.3487 + 1.47104i −0.525595 + 0.0626117i
$$553$$ 5.85578i 0.249013i
$$554$$ 19.6895 5.78135i 0.836525 0.245626i
$$555$$ −15.9762 22.7807i −0.678151 0.966985i
$$556$$ −0.311480 + 0.200176i −0.0132097 + 0.00848935i
$$557$$ 18.0128 2.58985i 0.763228 0.109736i 0.250301 0.968168i $$-0.419470\pi$$
0.512927 + 0.858432i $$0.328561\pi$$
$$558$$ 16.7470 26.0588i 0.708956 1.10316i
$$559$$ 0.846414 1.85339i 0.0357995 0.0783900i
$$560$$ −1.26040 1.34107i −0.0532617 0.0566704i
$$561$$ −7.00261 + 48.7042i −0.295650 + 2.05629i
$$562$$ −22.5394 + 10.2934i −0.950767 + 0.434201i
$$563$$ −1.76606 + 6.01463i −0.0744304 + 0.253487i −0.988300 0.152520i $$-0.951261\pi$$
0.913870 + 0.406007i $$0.133079\pi$$
$$564$$ −15.3334 4.50230i −0.645654 0.189581i
$$565$$ −9.63923 + 3.25867i −0.405526 + 0.137093i
$$566$$ 1.35770 9.44304i 0.0570686 0.396921i
$$567$$ 3.92090 + 3.39748i 0.164662 + 0.142681i
$$568$$ −9.12461 4.16707i −0.382860 0.174846i
$$569$$ 34.4512 + 22.1404i 1.44427 + 0.928175i 0.999470 + 0.0325443i $$0.0103610\pi$$
0.444798 + 0.895631i $$0.353275\pi$$
$$570$$ −1.15655 28.6106i −0.0484427 1.19836i
$$571$$ 14.7398 9.47273i 0.616843 0.396421i −0.194574 0.980888i $$-0.562333\pi$$
0.811418 + 0.584467i $$0.198696\pi$$
$$572$$ −5.65272 + 4.89811i −0.236352 + 0.204800i
$$573$$ −3.78716 12.8979i −0.158211 0.538817i
$$574$$ 3.10541 0.129617
$$575$$ −23.5042 + 4.74914i −0.980191 + 0.198053i
$$576$$ 3.72408 0.155170
$$577$$ 4.73519 + 16.1266i 0.197129 + 0.671358i 0.997423 + 0.0717504i $$0.0228585\pi$$
−0.800294 + 0.599608i $$0.795323\pi$$
$$578$$ 1.30689 1.13243i 0.0543595 0.0471028i
$$579$$ −36.3109 + 23.3356i −1.50903 + 0.969795i
$$580$$ 0.346802 + 8.57911i 0.0144002 + 0.356228i
$$581$$ 8.25488 + 5.30509i 0.342470 + 0.220092i
$$582$$ −26.8107 12.2441i −1.11134 0.507533i
$$583$$ 23.3294 + 20.2151i 0.966206 + 0.837223i
$$584$$ 0.880143 6.12153i 0.0364206 0.253311i
$$585$$ −12.1513 + 4.10790i −0.502393 + 0.169841i
$$586$$ −16.5963 4.87311i −0.685586 0.201306i
$$587$$ 12.0781 41.1342i 0.498516 1.69779i −0.197962 0.980210i $$-0.563432\pi$$
0.696477 0.717579i $$-0.254750\pi$$
$$588$$ −14.9134 + 6.81072i −0.615018 + 0.280869i
$$589$$ −5.84573 + 40.6579i −0.240869 + 1.67528i
$$590$$ −1.99828 2.12617i −0.0822679 0.0875331i
$$591$$ −0.756932 + 1.65745i −0.0311360 + 0.0681783i
$$592$$ −2.59438 + 4.03693i −0.106628 + 0.165917i
$$593$$ −15.4713 + 2.22443i −0.635329 + 0.0913466i −0.452451 0.891789i $$-0.649450\pi$$
−0.182878 + 0.983136i $$0.558541\pi$$
$$594$$ 7.66994 4.92917i 0.314701 0.202246i
$$595$$ −4.12942 5.88821i −0.169290 0.241393i
$$596$$ 0.922676 0.270922i 0.0377943 0.0110974i
$$597$$ 65.6557i 2.68711i
$$598$$ −5.46402 4.97145i −0.223441 0.203298i
$$599$$ −23.4056 −0.956327 −0.478163 0.878271i $$-0.658697\pi$$
−0.478163 + 0.878271i $$0.658697\pi$$
$$600$$ 12.9231 1.04652i 0.527584 0.0427240i
$$601$$ 6.80010 + 7.84774i 0.277382 + 0.320116i 0.877297 0.479948i $$-0.159344\pi$$
−0.599915 + 0.800064i $$0.704799\pi$$
$$602$$ −0.588600 0.915880i −0.0239896 0.0373285i
$$603$$ 60.1337 8.64592i 2.44883 0.352089i
$$604$$ 17.1918 + 11.0485i 0.699526 + 0.449558i
$$605$$ 14.2388 24.2574i 0.578890 0.986204i
$$606$$ 14.8942 17.1888i 0.605035 0.698247i
$$607$$ 6.99194 + 1.00529i 0.283794 + 0.0408035i 0.282742 0.959196i $$-0.408756\pi$$
0.00105223 + 0.999999i $$0.499665\pi$$
$$608$$ −4.49206 + 2.05145i −0.182177 + 0.0831974i
$$609$$ −7.86317 2.30883i −0.318632 0.0935587i
$$610$$ −11.1758 + 27.3438i −0.452496 + 1.10712i
$$611$$ −3.94348 8.63502i −0.159536 0.349336i
$$612$$ 14.4047 + 2.07109i 0.582277 + 0.0837188i
$$613$$ −0.680540 0.589691i −0.0274867 0.0238174i 0.641009 0.767533i $$-0.278516\pi$$
−0.668496 + 0.743716i $$0.733062\pi$$
$$614$$ 4.09300 8.96243i 0.165180 0.361694i
$$615$$ −13.6470 + 17.0989i −0.550302 + 0.689494i
$$616$$ 0.568776 + 3.95592i 0.0229166 + 0.159389i
$$617$$ 17.4211 + 27.1078i 0.701349 + 1.09132i 0.990958 + 0.134175i $$0.0428384\pi$$
−0.289609 + 0.957145i $$0.593525\pi$$
$$618$$ −4.95061 + 4.28973i −0.199143 + 0.172558i
$$619$$ −24.3150 + 7.13951i −0.977301 + 0.286961i −0.731110 0.682260i $$-0.760997\pi$$
−0.246191 + 0.969221i $$0.579179\pi$$
$$620$$ −18.5018 1.90118i −0.743048 0.0763534i
$$621$$ 5.73015 + 6.94612i 0.229943 + 0.278738i
$$622$$ 8.40603i 0.337051i
$$623$$ 1.27024 + 4.32605i 0.0508912 + 0.173319i
$$624$$ 2.61566 + 3.01864i 0.104710 + 0.120842i
$$625$$ 24.6742 4.02264i 0.986970 0.160906i
$$626$$ 2.69819 + 18.7663i 0.107841 + 0.750054i
$$627$$ −33.6177 + 52.3102i −1.34256 + 2.08907i
$$628$$ 17.5927 + 8.03431i 0.702025 + 0.320604i
$$629$$ −12.2801 + 14.1720i −0.489641 + 0.565076i
$$630$$ −1.66374 + 6.64879i −0.0662851 + 0.264894i
$$631$$ 2.43194 + 5.32520i 0.0968139 + 0.211993i 0.951842 0.306589i $$-0.0991876\pi$$
−0.855028 + 0.518581i $$0.826460\pi$$
$$632$$ 2.00445 6.82652i 0.0797326 0.271544i
$$633$$ 2.70999 9.22937i 0.107712 0.366835i
$$634$$ −7.95092 17.4101i −0.315771 0.691443i
$$635$$ 39.5478 + 9.89613i 1.56941 + 0.392716i
$$636$$ 10.7951 12.4583i 0.428055 0.494002i
$$637$$ −8.85884 4.04570i −0.351000 0.160296i
$$638$$ 10.0805 15.6856i 0.399093 0.621000i
$$639$$ 5.31640 + 36.9764i 0.210313 + 1.46276i
$$640$$ −1.01029 1.99482i −0.0399354 0.0788522i
$$641$$ 8.76323 + 10.1133i 0.346127 + 0.399452i 0.901944 0.431853i $$-0.142140\pi$$
−0.555817 + 0.831304i $$0.687595\pi$$
$$642$$ −10.2824 35.0185i −0.405813 1.38207i
$$643$$ 16.5420i 0.652352i 0.945309 + 0.326176i $$0.105760\pi$$
−0.945309 + 0.326176i $$0.894240\pi$$
$$644$$ −3.81316 + 1.01996i −0.150260 + 0.0401922i
$$645$$ 7.62965 + 0.784000i 0.300417 + 0.0308700i
$$646$$ −18.5162 + 5.43684i −0.728509 + 0.213910i
$$647$$ 26.1354 22.6464i 1.02749 0.890323i 0.0334586 0.999440i $$-0.489348\pi$$
0.994029 + 0.109117i $$0.0348024\pi$$
$$648$$ 3.40792 + 5.30282i 0.133876 + 0.208315i
$$649$$ 0.901755 + 6.27184i 0.0353970 + 0.246191i
$$650$$ 5.49690 + 5.39447i 0.215606 + 0.211588i
$$651$$ 7.37454 16.1480i 0.289031 0.632889i
$$652$$ −15.1518 13.1291i −0.593392 0.514177i
$$653$$ −45.9652 6.60880i −1.79876 0.258622i −0.839946 0.542669i $$-0.817414\pi$$
−0.958810 + 0.284047i $$0.908323\pi$$
$$654$$ −0.000808746 0.00177091i −3.16245e−5 6.92480e-5i
$$655$$ 40.5996 + 16.5937i 1.58636 + 0.648368i
$$656$$ 3.62020 + 1.06299i 0.141345 + 0.0415027i
$$657$$ −20.9502 + 9.56762i −0.817344 + 0.373268i
$$658$$ −5.02072 0.721870i −0.195728 0.0281414i
$$659$$ 24.3323 28.0810i 0.947852 1.09388i −0.0476238 0.998865i $$-0.515165\pi$$
0.995476 0.0950144i $$-0.0302897\pi$$
$$660$$ −24.2815 14.2529i −0.945156 0.554795i
$$661$$ −22.3758 14.3800i −0.870317 0.559319i 0.0275324 0.999621i $$-0.491235\pi$$
−0.897850 + 0.440302i $$0.854871\pi$$
$$662$$ 30.8332 4.43315i 1.19837 0.172299i
$$663$$ 8.43862 + 13.1308i 0.327729 + 0.509956i
$$664$$ 7.80738 + 9.01020i 0.302985 + 0.349664i
$$665$$ −1.65573 8.93640i −0.0642064 0.346539i
$$666$$ 17.8708 0.692478
$$667$$ 16.5608 + 8.05358i 0.641235 + 0.311836i
$$668$$ 11.8803i 0.459663i
$$669$$ 40.0393 11.7566i 1.54801 0.454537i
$$670$$ −20.9447 29.8654i −0.809165 1.15380i
$$671$$ 53.9645 34.6809i 2.08328 1.33884i
$$672$$ 2.11252 0.303734i 0.0814922 0.0117168i
$$673$$ 21.9007 34.0782i 0.844210 1.31362i −0.103547 0.994625i $$-0.533019\pi$$
0.947757 0.318992i $$-0.103344\pi$$
$$674$$ 1.87275 4.10074i 0.0721355 0.157955i
$$675$$ −5.69642 7.46221i −0.219255 0.287221i
$$676$$ 1.51243 10.5192i 0.0581704 0.404584i
$$677$$ −22.5137 + 10.2817i −0.865272 + 0.395157i −0.798057 0.602582i $$-0.794139\pi$$
−0.0672152 + 0.997738i $$0.521411\pi$$
$$678$$ 3.32437 11.3218i 0.127672 0.434810i
$$679$$ −8.97627 2.63567i −0.344478 0.101148i
$$680$$ −2.79843 8.27783i −0.107315 0.317440i
$$681$$ 1.32709 9.23013i 0.0508543 0.353699i
$$682$$ 30.5246 + 26.4497i 1.16885 + 1.01281i
$$683$$ 6.95452 + 3.17602i 0.266107 + 0.121527i 0.544001 0.839085i $$-0.316909\pi$$
−0.277893 + 0.960612i $$0.589636\pi$$
$$684$$ 15.4712 + 9.94276i 0.591558 + 0.380171i
$$685$$ 39.4568 1.59500i 1.50757 0.0609420i
$$686$$ −9.22450 + 5.92823i −0.352193 + 0.226341i
$$687$$ 33.1703 28.7422i 1.26552 1.09658i
$$688$$ −0.372667 1.26919i −0.0142078 0.0483873i
$$689$$ 9.79218 0.373052
$$690$$ 11.1413 25.4783i 0.424140 0.969941i
$$691$$ 12.5218 0.476351 0.238176 0.971222i $$-0.423451\pi$$
0.238176 + 0.971222i $$0.423451\pi$$
$$692$$ 1.47201 + 5.01320i 0.0559574 + 0.190573i
$$693$$ 11.2483 9.74672i 0.427288 0.370247i
$$694$$ 2.04343 1.31323i 0.0775674 0.0498496i
$$695$$ −0.0334406 0.827244i −0.00126847 0.0313792i
$$696$$ −8.37636 5.38316i −0.317505 0.204048i
$$697$$ 13.4118 + 6.12496i 0.508008 + 0.232000i
$$698$$ −21.4294 18.5687i −0.811116 0.702836i
$$699$$ 8.53799 59.3830i 0.322937 2.24607i
$$700$$ 4.01281 0.912539i 0.151670 0.0344907i
$$701$$ 8.90573 + 2.61496i 0.336365 + 0.0987656i 0.445553 0.895255i $$-0.353007\pi$$
−0.109188 + 0.994021i $$0.534825\pi$$
$$702$$ 0.814807 2.77498i 0.0307529 0.104735i
$$703$$ −21.5561 + 9.84432i −0.813002 + 0.371286i
$$704$$ −0.691057 + 4.80640i −0.0260452 + 0.181148i
$$705$$ 26.0388 24.4726i 0.980678 0.921690i
$$706$$ −3.26482 + 7.14897i −0.122873 + 0.269055i
$$707$$ 3.90290 6.07303i 0.146784 0.228400i
$$708$$ 3.34925 0.481550i 0.125873 0.0180978i
$$709$$ −13.9940 + 8.99337i −0.525554 + 0.337753i −0.776366 0.630283i $$-0.782939\pi$$
0.250811 + 0.968036i $$0.419303\pi$$
$$710$$ 18.3643 12.8790i 0.689200 0.483339i
$$711$$ −25.4225 + 7.46471i −0.953417 + 0.279949i
$$712$$ 5.47800i 0.205297i
$$713$$ −22.3734 + 33.0258i −0.837890 + 1.23683i
$$714$$ 8.34015 0.312122
$$715$$ −3.04693 16.4451i −0.113949 0.615011i
$$716$$ 2.25075 + 2.59751i 0.0841146 + 0.0970734i
$$717$$ 18.3465 + 28.5477i 0.685163 + 1.06613i
$$718$$ 4.01253 0.576914i 0.149746 0.0215302i
$$719$$ 31.4661 + 20.2221i 1.17349 + 0.754156i 0.974178 0.225781i $$-0.0724932\pi$$
0.199311 + 0.979936i $$0.436130\pi$$
$$720$$ −4.21545 + 7.18149i −0.157100 + 0.267638i
$$721$$ −1.36157 + 1.57134i −0.0507077 + 0.0585198i
$$722$$ −5.33221 0.766656i −0.198444 0.0285320i
$$723$$ −1.43800 + 0.656712i −0.0534797 + 0.0244234i
$$724$$ 3.42673 + 1.00618i 0.127354 + 0.0373944i
$$725$$ −16.9365 9.04230i −0.629005 0.335823i
$$726$$ 13.5503 + 29.6709i 0.502897 + 1.10119i
$$727$$ −7.50409 1.07893i −0.278311 0.0400151i 0.00174573 0.999998i $$-0.499444\pi$$
−0.280057 + 0.959983i $$0.590353\pi$$
$$728$$ 0.958124 + 0.830219i 0.0355104 + 0.0307700i
$$729$$ 15.8194 34.6396i 0.585903 1.28295i
$$730$$ 10.8084 + 8.62649i 0.400039 + 0.319281i
$$731$$ −0.735638 5.11648i −0.0272086 0.189240i
$$732$$ −18.5201 28.8178i −0.684522 1.06514i
$$733$$ −27.8874 + 24.1646i −1.03005 + 0.892540i −0.994278 0.106820i $$-0.965933\pi$$
−0.0357674 + 0.999360i $$0.511388\pi$$
$$734$$ −0.00275890 0.000810086i −0.000101833 2.99008e-5i
$$735$$ 3.74737 36.4683i 0.138224 1.34515i
$$736$$ −4.79442 0.116205i −0.176725 0.00428339i
$$737$$ 79.2147i 2.91791i
$$738$$ −3.95865 13.4819i −0.145720 0.496276i
$$739$$ −22.4956 25.9613i −0.827514 0.955002i 0.172033 0.985091i $$-0.444966\pi$$
−0.999547 + 0.0300890i $$0.990421\pi$$
$$740$$ −4.84810 9.57255i −0.178220 0.351894i
$$741$$ 2.80713 + 19.5240i 0.103122 + 0.717233i
$$742$$ 2.82878 4.40167i 0.103848 0.161590i
$$743$$ −14.9390 6.82240i −0.548057 0.250289i 0.122088 0.992519i $$-0.461041\pi$$
−0.670145 + 0.742230i $$0.733768\pi$$
$$744$$ 14.1245 16.3006i 0.517830 0.597608i
$$745$$ −0.521973 + 2.08595i −0.0191236 + 0.0764234i
$$746$$ 2.33431 + 5.11143i 0.0854652 + 0.187143i
$$747$$ 12.5087 42.6007i 0.457670 1.55868i
$$748$$ −5.34602 + 18.2069i −0.195470 + 0.665709i
$$749$$ −4.81226 10.5374i −0.175836 0.385028i
$$750$$ −12.6101 + 26.1054i −0.460457 + 0.953236i
$$751$$ 8.77410 10.1258i 0.320171 0.369497i −0.572734 0.819741i $$-0.694117\pi$$
0.892906 + 0.450244i $$0.148663\pi$$
$$752$$ −5.60592 2.56014i −0.204427 0.0933587i
$$753$$ 15.5804 24.2436i 0.567782 0.883486i
$$754$$ −0.841741 5.85444i −0.0306544 0.213206i
$$755$$ −40.7661 + 20.6463i −1.48363 + 0.751397i
$$756$$ −1.01199 1.16790i −0.0368058 0.0424762i
$$757$$ −6.88700 23.4550i −0.250312 0.852485i −0.984775 0.173836i $$-0.944384\pi$$
0.734462 0.678649i $$-0.237434\pi$$
$$758$$ 17.5366i 0.636958i
$$759$$ −51.5770 + 31.4072i −1.87213 + 1.14001i
$$760$$ 1.12874 10.9846i 0.0409438 0.398453i
$$761$$ −17.2773 + 5.07309i −0.626303 + 0.183899i −0.579457 0.815003i $$-0.696735\pi$$
−0.0468464 + 0.998902i $$0.514917\pi$$
$$762$$ −35.7289 + 30.9593i −1.29432 + 1.12154i
$$763$$ −0.000334080 0 0.000519838i −1.20945e−5 0 1.88194e-5i
$$764$$ −0.737752 5.13118i −0.0266909 0.185640i
$$765$$ −20.2992 + 25.4337i −0.733920 + 0.919556i
$$766$$ −2.74884 + 6.01912i −0.0993196 + 0.217480i
$$767$$ 1.51904 + 1.31626i 0.0548493 + 0.0475272i
$$768$$ 2.56669 + 0.369034i 0.0926174 + 0.0133164i
$$769$$