# Properties

 Label 230.2.j.a.29.8 Level $230$ Weight $2$ Character 230.29 Analytic conductor $1.837$ Analytic rank $0$ Dimension $120$ CM no Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [230,2,Mod(9,230)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(230, base_ring=CyclotomicField(22))

chi = DirichletCharacter(H, H._module([11, 10]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("230.9");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$230 = 2 \cdot 5 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 230.j (of order $$22$$, degree $$10$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.83655924649$$ Analytic rank: $$0$$ Dimension: $$120$$ Relative dimension: $$12$$ over $$\Q(\zeta_{22})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

## Embedding invariants

 Embedding label 29.8 Character $$\chi$$ $$=$$ 230.29 Dual form 230.2.j.a.119.8

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(0.909632 + 0.415415i) q^{2} +(-0.537451 + 1.83039i) q^{3} +(0.654861 + 0.755750i) q^{4} +(1.72616 + 1.42140i) q^{5} +(-1.24925 + 1.44172i) q^{6} +(-2.93634 - 0.422181i) q^{7} +(0.281733 + 0.959493i) q^{8} +(-0.537711 - 0.345566i) q^{9} +O(q^{10})$$ $$q+(0.909632 + 0.415415i) q^{2} +(-0.537451 + 1.83039i) q^{3} +(0.654861 + 0.755750i) q^{4} +(1.72616 + 1.42140i) q^{5} +(-1.24925 + 1.44172i) q^{6} +(-2.93634 - 0.422181i) q^{7} +(0.281733 + 0.959493i) q^{8} +(-0.537711 - 0.345566i) q^{9} +(0.979700 + 2.01002i) q^{10} +(-1.22793 - 2.68879i) q^{11} +(-1.73527 + 0.792472i) q^{12} +(1.87656 - 0.269809i) q^{13} +(-2.49560 - 1.60383i) q^{14} +(-3.52944 + 2.39561i) q^{15} +(-0.142315 + 0.989821i) q^{16} +(0.719853 + 0.623756i) q^{17} +(-0.345566 - 0.537711i) q^{18} +(0.167681 + 0.193515i) q^{19} +(0.0561727 + 2.23536i) q^{20} +(2.35089 - 5.14774i) q^{21} -2.95591i q^{22} +(4.04295 - 2.57964i) q^{23} -1.90766 q^{24} +(0.959253 + 4.90712i) q^{25} +(1.81906 + 0.534125i) q^{26} +(-3.40363 + 2.94926i) q^{27} +(-1.60383 - 2.49560i) q^{28} +(-0.0268070 + 0.0309369i) q^{29} +(-4.20566 + 0.712944i) q^{30} +(5.13506 - 1.50779i) q^{31} +(-0.540641 + 0.841254i) q^{32} +(5.58149 - 0.802497i) q^{33} +(0.395684 + 0.866426i) q^{34} +(-4.46849 - 4.90245i) q^{35} +(-0.0909646 - 0.632673i) q^{36} +(-2.00856 + 3.12538i) q^{37} +(0.0721395 + 0.245685i) q^{38} +(-0.514704 + 3.57985i) q^{39} +(-0.877507 + 2.05669i) q^{40} +(7.88484 - 5.06728i) q^{41} +(4.27689 - 3.70595i) q^{42} +(3.10755 - 10.5833i) q^{43} +(1.22793 - 2.68879i) q^{44} +(-0.436988 - 1.36080i) q^{45} +(4.74922 - 0.667022i) q^{46} -8.07309i q^{47} +(-1.73527 - 0.792472i) q^{48} +(1.72738 + 0.507204i) q^{49} +(-1.16592 + 4.86216i) q^{50} +(-1.52860 + 0.982373i) q^{51} +(1.43279 + 1.24152i) q^{52} +(-12.5053 - 1.79799i) q^{53} +(-4.32122 + 1.26883i) q^{54} +(1.70224 - 6.38666i) q^{55} +(-0.422181 - 2.93634i) q^{56} +(-0.444328 + 0.202918i) q^{57} +(-0.0372362 + 0.0170052i) q^{58} +(0.794391 + 5.52511i) q^{59} +(-4.12177 - 1.09858i) q^{60} +(8.08881 - 2.37509i) q^{61} +(5.29738 + 0.761648i) q^{62} +(1.43301 + 1.24171i) q^{63} +(-0.841254 + 0.540641i) q^{64} +(3.62275 + 2.20161i) q^{65} +(5.41047 + 1.58866i) q^{66} +(-5.22758 - 2.38735i) q^{67} +0.952502i q^{68} +(2.54886 + 8.78660i) q^{69} +(-2.02813 - 6.31571i) q^{70} +(-5.95566 + 13.0411i) q^{71} +(0.180077 - 0.613288i) q^{72} +(-0.785633 + 0.680754i) q^{73} +(-3.12538 + 2.00856i) q^{74} +(-9.49749 - 0.881530i) q^{75} +(-0.0364407 + 0.253450i) q^{76} +(2.47046 + 8.41360i) q^{77} +(-1.95531 + 3.04253i) q^{78} +(-0.123952 - 0.862106i) q^{79} +(-1.65259 + 1.50630i) q^{80} +(-4.36559 - 9.55931i) q^{81} +(9.27732 - 1.33388i) q^{82} +(-6.11445 + 9.51428i) q^{83} +(5.42991 - 1.59436i) q^{84} +(0.355975 + 2.09990i) q^{85} +(7.22320 - 8.33602i) q^{86} +(-0.0422192 - 0.0656944i) q^{87} +(2.23393 - 1.93571i) q^{88} +(-15.5804 - 4.57482i) q^{89} +(0.167800 - 1.41936i) q^{90} -5.62412 q^{91} +(4.59713 + 1.36615i) q^{92} +10.2095i q^{93} +(3.35368 - 7.34354i) q^{94} +(0.0143834 + 0.572379i) q^{95} +(-1.24925 - 1.44172i) q^{96} +(-1.81420 - 2.82294i) q^{97} +(1.36058 + 1.17895i) q^{98} +(-0.268883 + 1.87012i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$120 q + 12 q^{4} - 4 q^{6} + 8 q^{9}+O(q^{10})$$ 120 * q + 12 * q^4 - 4 * q^6 + 8 * q^9 $$120 q + 12 q^{4} - 4 q^{6} + 8 q^{9} + 8 q^{11} - 6 q^{15} - 12 q^{16} - 16 q^{19} - 22 q^{20} + 4 q^{24} - 52 q^{25} - 4 q^{26} - 8 q^{29} - 44 q^{30} + 12 q^{31} + 16 q^{35} - 8 q^{36} - 36 q^{39} - 28 q^{41} - 8 q^{44} + 16 q^{45} - 4 q^{46} - 58 q^{49} + 12 q^{50} - 24 q^{51} - 6 q^{54} - 36 q^{55} + 22 q^{56} - 102 q^{59} - 38 q^{60} + 72 q^{61} + 12 q^{64} - 138 q^{65} + 80 q^{66} - 212 q^{69} - 108 q^{70} + 176 q^{71} - 88 q^{74} - 100 q^{75} + 16 q^{76} - 104 q^{79} - 22 q^{80} - 28 q^{81} - 22 q^{84} + 2 q^{85} + 62 q^{86} + 48 q^{89} + 24 q^{90} - 56 q^{91} + 24 q^{94} + 18 q^{95} - 4 q^{96} + 188 q^{99}+O(q^{100})$$ 120 * q + 12 * q^4 - 4 * q^6 + 8 * q^9 + 8 * q^11 - 6 * q^15 - 12 * q^16 - 16 * q^19 - 22 * q^20 + 4 * q^24 - 52 * q^25 - 4 * q^26 - 8 * q^29 - 44 * q^30 + 12 * q^31 + 16 * q^35 - 8 * q^36 - 36 * q^39 - 28 * q^41 - 8 * q^44 + 16 * q^45 - 4 * q^46 - 58 * q^49 + 12 * q^50 - 24 * q^51 - 6 * q^54 - 36 * q^55 + 22 * q^56 - 102 * q^59 - 38 * q^60 + 72 * q^61 + 12 * q^64 - 138 * q^65 + 80 * q^66 - 212 * q^69 - 108 * q^70 + 176 * q^71 - 88 * q^74 - 100 * q^75 + 16 * q^76 - 104 * q^79 - 22 * q^80 - 28 * q^81 - 22 * q^84 + 2 * q^85 + 62 * q^86 + 48 * q^89 + 24 * q^90 - 56 * q^91 + 24 * q^94 + 18 * q^95 - 4 * q^96 + 188 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/230\mathbb{Z}\right)^\times$$.

 $$n$$ $$47$$ $$51$$ $$\chi(n)$$ $$-1$$ $$e\left(\frac{9}{11}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.909632 + 0.415415i 0.643207 + 0.293743i
$$3$$ −0.537451 + 1.83039i −0.310297 + 1.05678i 0.645746 + 0.763552i $$0.276546\pi$$
−0.956044 + 0.293224i $$0.905272\pi$$
$$4$$ 0.654861 + 0.755750i 0.327430 + 0.377875i
$$5$$ 1.72616 + 1.42140i 0.771962 + 0.635669i
$$6$$ −1.24925 + 1.44172i −0.510006 + 0.588578i
$$7$$ −2.93634 0.422181i −1.10983 0.159570i −0.437068 0.899428i $$-0.643983\pi$$
−0.672762 + 0.739859i $$0.734892\pi$$
$$8$$ 0.281733 + 0.959493i 0.0996075 + 0.339232i
$$9$$ −0.537711 0.345566i −0.179237 0.115189i
$$10$$ 0.979700 + 2.01002i 0.309808 + 0.635625i
$$11$$ −1.22793 2.68879i −0.370235 0.810701i −0.999440 0.0334618i $$-0.989347\pi$$
0.629205 0.777239i $$-0.283380\pi$$
$$12$$ −1.73527 + 0.792472i −0.500930 + 0.228767i
$$13$$ 1.87656 0.269809i 0.520464 0.0748315i 0.122924 0.992416i $$-0.460773\pi$$
0.397540 + 0.917585i $$0.369864\pi$$
$$14$$ −2.49560 1.60383i −0.666978 0.428641i
$$15$$ −3.52944 + 2.39561i −0.911297 + 0.618544i
$$16$$ −0.142315 + 0.989821i −0.0355787 + 0.247455i
$$17$$ 0.719853 + 0.623756i 0.174590 + 0.151283i 0.737772 0.675049i $$-0.235878\pi$$
−0.563182 + 0.826333i $$0.690423\pi$$
$$18$$ −0.345566 0.537711i −0.0814507 0.126740i
$$19$$ 0.167681 + 0.193515i 0.0384688 + 0.0443953i 0.774658 0.632381i $$-0.217922\pi$$
−0.736189 + 0.676776i $$0.763377\pi$$
$$20$$ 0.0561727 + 2.23536i 0.0125606 + 0.499842i
$$21$$ 2.35089 5.14774i 0.513007 1.12333i
$$22$$ 2.95591i 0.630202i
$$23$$ 4.04295 2.57964i 0.843014 0.537892i
$$24$$ −1.90766 −0.389400
$$25$$ 0.959253 + 4.90712i 0.191851 + 0.981424i
$$26$$ 1.81906 + 0.534125i 0.356747 + 0.104751i
$$27$$ −3.40363 + 2.94926i −0.655029 + 0.567586i
$$28$$ −1.60383 2.49560i −0.303095 0.471625i
$$29$$ −0.0268070 + 0.0309369i −0.00497794 + 0.00574485i −0.758233 0.651984i $$-0.773937\pi$$
0.753255 + 0.657728i $$0.228483\pi$$
$$30$$ −4.20566 + 0.712944i −0.767846 + 0.130165i
$$31$$ 5.13506 1.50779i 0.922285 0.270807i 0.214081 0.976816i $$-0.431324\pi$$
0.708203 + 0.706009i $$0.249506\pi$$
$$32$$ −0.540641 + 0.841254i −0.0955727 + 0.148714i
$$33$$ 5.58149 0.802497i 0.971612 0.139697i
$$34$$ 0.395684 + 0.866426i 0.0678592 + 0.148591i
$$35$$ −4.46849 4.90245i −0.755314 0.828666i
$$36$$ −0.0909646 0.632673i −0.0151608 0.105445i
$$37$$ −2.00856 + 3.12538i −0.330205 + 0.513809i −0.966169 0.257909i $$-0.916966\pi$$
0.635964 + 0.771719i $$0.280603\pi$$
$$38$$ 0.0721395 + 0.245685i 0.0117026 + 0.0398553i
$$39$$ −0.514704 + 3.57985i −0.0824186 + 0.573234i
$$40$$ −0.877507 + 2.05669i −0.138746 + 0.325192i
$$41$$ 7.88484 5.06728i 1.23140 0.791376i 0.247295 0.968940i $$-0.420458\pi$$
0.984109 + 0.177564i $$0.0568218\pi$$
$$42$$ 4.27689 3.70595i 0.659939 0.571840i
$$43$$ 3.10755 10.5833i 0.473897 1.61394i −0.282111 0.959382i $$-0.591035\pi$$
0.756008 0.654563i $$-0.227147\pi$$
$$44$$ 1.22793 2.68879i 0.185117 0.405351i
$$45$$ −0.436988 1.36080i −0.0651424 0.202857i
$$46$$ 4.74922 0.667022i 0.700234 0.0983470i
$$47$$ 8.07309i 1.17758i −0.808286 0.588790i $$-0.799604\pi$$
0.808286 0.588790i $$-0.200396\pi$$
$$48$$ −1.73527 0.792472i −0.250465 0.114383i
$$49$$ 1.72738 + 0.507204i 0.246768 + 0.0724577i
$$50$$ −1.16592 + 4.86216i −0.164887 + 0.687614i
$$51$$ −1.52860 + 0.982373i −0.214047 + 0.137560i
$$52$$ 1.43279 + 1.24152i 0.198693 + 0.172168i
$$53$$ −12.5053 1.79799i −1.71773 0.246972i −0.788122 0.615520i $$-0.788946\pi$$
−0.929609 + 0.368547i $$0.879855\pi$$
$$54$$ −4.32122 + 1.26883i −0.588044 + 0.172665i
$$55$$ 1.70224 6.38666i 0.229530 0.861177i
$$56$$ −0.422181 2.93634i −0.0564163 0.392384i
$$57$$ −0.444328 + 0.202918i −0.0588526 + 0.0268771i
$$58$$ −0.0372362 + 0.0170052i −0.00488935 + 0.00223289i
$$59$$ 0.794391 + 5.52511i 0.103421 + 0.719308i 0.973879 + 0.227066i $$0.0729134\pi$$
−0.870458 + 0.492242i $$0.836178\pi$$
$$60$$ −4.12177 1.09858i −0.532119 0.141826i
$$61$$ 8.08881 2.37509i 1.03567 0.304099i 0.280653 0.959809i $$-0.409449\pi$$
0.755012 + 0.655710i $$0.227631\pi$$
$$62$$ 5.29738 + 0.761648i 0.672767 + 0.0967294i
$$63$$ 1.43301 + 1.24171i 0.180542 + 0.156441i
$$64$$ −0.841254 + 0.540641i −0.105157 + 0.0675801i
$$65$$ 3.62275 + 2.20161i 0.449347 + 0.273076i
$$66$$ 5.41047 + 1.58866i 0.665983 + 0.195550i
$$67$$ −5.22758 2.38735i −0.638650 0.291662i 0.0696517 0.997571i $$-0.477811\pi$$
−0.708302 + 0.705910i $$0.750538\pi$$
$$68$$ 0.952502i 0.115508i
$$69$$ 2.54886 + 8.78660i 0.306847 + 1.05778i
$$70$$ −2.02813 6.31571i −0.242408 0.754872i
$$71$$ −5.95566 + 13.0411i −0.706807 + 1.54769i 0.124712 + 0.992193i $$0.460199\pi$$
−0.831518 + 0.555498i $$0.812528\pi$$
$$72$$ 0.180077 0.613288i 0.0212223 0.0722766i
$$73$$ −0.785633 + 0.680754i −0.0919513 + 0.0796763i −0.699624 0.714512i $$-0.746649\pi$$
0.607672 + 0.794188i $$0.292103\pi$$
$$74$$ −3.12538 + 2.00856i −0.363318 + 0.233490i
$$75$$ −9.49749 0.881530i −1.09668 0.101790i
$$76$$ −0.0364407 + 0.253450i −0.00418003 + 0.0290727i
$$77$$ 2.47046 + 8.41360i 0.281535 + 0.958819i
$$78$$ −1.95531 + 3.04253i −0.221396 + 0.344498i
$$79$$ −0.123952 0.862106i −0.0139457 0.0969945i 0.981660 0.190641i $$-0.0610567\pi$$
−0.995605 + 0.0936467i $$0.970148\pi$$
$$80$$ −1.65259 + 1.50630i −0.184765 + 0.168410i
$$81$$ −4.36559 9.55931i −0.485066 1.06215i
$$82$$ 9.27732 1.33388i 1.02451 0.147302i
$$83$$ −6.11445 + 9.51428i −0.671149 + 1.04433i 0.324011 + 0.946053i $$0.394969\pi$$
−0.995159 + 0.0982742i $$0.968668\pi$$
$$84$$ 5.42991 1.59436i 0.592451 0.173959i
$$85$$ 0.355975 + 2.09990i 0.0386109 + 0.227766i
$$86$$ 7.22320 8.33602i 0.778898 0.898896i
$$87$$ −0.0422192 0.0656944i −0.00452637 0.00704318i
$$88$$ 2.23393 1.93571i 0.238138 0.206347i
$$89$$ −15.5804 4.57482i −1.65152 0.484930i −0.682288 0.731083i $$-0.739015\pi$$
−0.969231 + 0.246153i $$0.920833\pi$$
$$90$$ 0.167800 1.41936i 0.0176877 0.149614i
$$91$$ −5.62412 −0.589568
$$92$$ 4.59713 + 1.36615i 0.479284 + 0.142431i
$$93$$ 10.2095i 1.05868i
$$94$$ 3.35368 7.34354i 0.345906 0.757428i
$$95$$ 0.0143834 + 0.572379i 0.00147571 + 0.0587249i
$$96$$ −1.24925 1.44172i −0.127501 0.147144i
$$97$$ −1.81420 2.82294i −0.184204 0.286626i 0.736855 0.676051i $$-0.236310\pi$$
−0.921058 + 0.389425i $$0.872674\pi$$
$$98$$ 1.36058 + 1.17895i 0.137439 + 0.119092i
$$99$$ −0.268883 + 1.87012i −0.0270238 + 0.187955i
$$100$$ −3.08038 + 3.93844i −0.308038 + 0.393844i
$$101$$ −0.243652 0.156585i −0.0242443 0.0155808i 0.528463 0.848957i $$-0.322769\pi$$
−0.552707 + 0.833376i $$0.686405\pi$$
$$102$$ −1.79856 + 0.258594i −0.178084 + 0.0256046i
$$103$$ 8.77628 4.00799i 0.864753 0.394919i 0.0668915 0.997760i $$-0.478692\pi$$
0.797861 + 0.602841i $$0.205965\pi$$
$$104$$ 0.787568 + 1.72453i 0.0772274 + 0.169104i
$$105$$ 11.3750 5.54426i 1.11009 0.541064i
$$106$$ −10.6283 6.83038i −1.03231 0.663425i
$$107$$ 4.41635 + 15.0407i 0.426944 + 1.45404i 0.839627 + 0.543164i $$0.182774\pi$$
−0.412683 + 0.910875i $$0.635408\pi$$
$$108$$ −4.45781 0.640936i −0.428953 0.0616741i
$$109$$ 4.51086 5.20580i 0.432062 0.498626i −0.497412 0.867514i $$-0.665716\pi$$
0.929474 + 0.368889i $$0.120262\pi$$
$$110$$ 4.20153 5.10237i 0.400600 0.486492i
$$111$$ −4.64116 5.35619i −0.440520 0.508387i
$$112$$ 0.835768 2.84636i 0.0789727 0.268956i
$$113$$ −9.78064 4.46667i −0.920085 0.420189i −0.101671 0.994818i $$-0.532419\pi$$
−0.818414 + 0.574629i $$0.805146\pi$$
$$114$$ −0.488470 −0.0457494
$$115$$ 10.6455 + 1.29377i 0.992696 + 0.120645i
$$116$$ −0.0409355 −0.00380076
$$117$$ −1.10228 0.503397i −0.101906 0.0465390i
$$118$$ −1.57261 + 5.35582i −0.144771 + 0.493043i
$$119$$ −1.85039 2.13547i −0.169625 0.195758i
$$120$$ −3.29293 2.71155i −0.300602 0.247529i
$$121$$ 1.48168 1.70995i 0.134698 0.155450i
$$122$$ 8.34448 + 1.19976i 0.755474 + 0.108621i
$$123$$ 5.03738 + 17.1557i 0.454205 + 1.54688i
$$124$$ 4.50226 + 2.89343i 0.404315 + 0.259838i
$$125$$ −5.31915 + 9.83395i −0.475759 + 0.879576i
$$126$$ 0.787686 + 1.72479i 0.0701727 + 0.153657i
$$127$$ −1.59832 + 0.729926i −0.141828 + 0.0647705i −0.485065 0.874478i $$-0.661204\pi$$
0.343237 + 0.939249i $$0.388477\pi$$
$$128$$ −0.989821 + 0.142315i −0.0874887 + 0.0125790i
$$129$$ 17.7015 + 11.3761i 1.55853 + 1.00161i
$$130$$ 2.38079 + 3.50760i 0.208809 + 0.307637i
$$131$$ −0.739637 + 5.14428i −0.0646223 + 0.449458i 0.931661 + 0.363327i $$0.118359\pi$$
−0.996284 + 0.0861308i $$0.972550\pi$$
$$132$$ 4.26158 + 3.69268i 0.370923 + 0.321407i
$$133$$ −0.410671 0.639016i −0.0356097 0.0554097i
$$134$$ −3.76343 4.34323i −0.325111 0.375198i
$$135$$ −10.0673 + 0.252982i −0.866455 + 0.0217733i
$$136$$ −0.395684 + 0.866426i −0.0339296 + 0.0742954i
$$137$$ 3.53527i 0.302038i −0.988531 0.151019i $$-0.951744\pi$$
0.988531 0.151019i $$-0.0482555\pi$$
$$138$$ −1.33156 + 9.05141i −0.113350 + 0.770507i
$$139$$ −18.7922 −1.59393 −0.796967 0.604023i $$-0.793564\pi$$
−0.796967 + 0.604023i $$0.793564\pi$$
$$140$$ 0.778786 6.58749i 0.0658194 0.556744i
$$141$$ 14.7769 + 4.33889i 1.24444 + 0.365400i
$$142$$ −10.8349 + 9.38851i −0.909246 + 0.787866i
$$143$$ −3.02974 4.71437i −0.253360 0.394236i
$$144$$ 0.418573 0.483059i 0.0348811 0.0402549i
$$145$$ −0.0902469 + 0.0152987i −0.00749460 + 0.00127048i
$$146$$ −0.997432 + 0.292872i −0.0825481 + 0.0242383i
$$147$$ −1.85676 + 2.88918i −0.153143 + 0.238295i
$$148$$ −3.67733 + 0.528721i −0.302275 + 0.0434606i
$$149$$ −6.53477 14.3091i −0.535349 1.17225i −0.963295 0.268446i $$-0.913490\pi$$
0.427946 0.903804i $$-0.359237\pi$$
$$150$$ −8.27302 4.74727i −0.675489 0.387613i
$$151$$ 2.82587 + 19.6544i 0.229966 + 1.59945i 0.698239 + 0.715865i $$0.253967\pi$$
−0.468272 + 0.883584i $$0.655123\pi$$
$$152$$ −0.138435 + 0.215409i −0.0112285 + 0.0174719i
$$153$$ −0.171524 0.584157i −0.0138669 0.0472263i
$$154$$ −1.24793 + 8.67955i −0.100561 + 0.699418i
$$155$$ 11.0071 + 4.69628i 0.884112 + 0.377215i
$$156$$ −3.04253 + 1.95531i −0.243597 + 0.156550i
$$157$$ 1.59778 1.38448i 0.127517 0.110494i −0.588768 0.808302i $$-0.700387\pi$$
0.716284 + 0.697808i $$0.245841\pi$$
$$158$$ 0.245381 0.835691i 0.0195215 0.0664840i
$$159$$ 10.0120 21.9232i 0.794002 1.73862i
$$160$$ −2.12899 + 0.683672i −0.168311 + 0.0540490i
$$161$$ −12.9605 + 5.86783i −1.02143 + 0.462450i
$$162$$ 10.5090i 0.825664i
$$163$$ 6.14991 + 2.80857i 0.481698 + 0.219984i 0.641438 0.767175i $$-0.278338\pi$$
−0.159740 + 0.987159i $$0.551066\pi$$
$$164$$ 8.99306 + 2.64060i 0.702240 + 0.206196i
$$165$$ 10.7752 + 6.54828i 0.838848 + 0.509783i
$$166$$ −9.51428 + 6.11445i −0.738451 + 0.474574i
$$167$$ −14.0030 12.1337i −1.08358 0.938931i −0.0852349 0.996361i $$-0.527164\pi$$
−0.998350 + 0.0574296i $$0.981710\pi$$
$$168$$ 5.60154 + 0.805380i 0.432168 + 0.0621364i
$$169$$ −9.02473 + 2.64990i −0.694210 + 0.203838i
$$170$$ −0.548524 + 2.05801i −0.0420699 + 0.157842i
$$171$$ −0.0232921 0.162000i −0.00178119 0.0123885i
$$172$$ 10.0334 4.58209i 0.765037 0.349381i
$$173$$ 16.7785 7.66249i 1.27565 0.582568i 0.341642 0.939830i $$-0.389017\pi$$
0.934004 + 0.357262i $$0.116290\pi$$
$$174$$ −0.0111135 0.0772962i −0.000842513 0.00585981i
$$175$$ −0.744993 14.8139i −0.0563162 1.11983i
$$176$$ 2.83618 0.832776i 0.213785 0.0627729i
$$177$$ −10.5401 1.51543i −0.792239 0.113907i
$$178$$ −12.2720 10.6337i −0.919824 0.797032i
$$179$$ −20.7148 + 13.3126i −1.54830 + 0.995030i −0.562556 + 0.826759i $$0.690182\pi$$
−0.985741 + 0.168271i $$0.946182\pi$$
$$180$$ 0.742261 1.22139i 0.0553249 0.0910371i
$$181$$ 4.53803 + 1.33249i 0.337309 + 0.0990429i 0.446001 0.895033i $$-0.352848\pi$$
−0.108692 + 0.994076i $$0.534666\pi$$
$$182$$ −5.11588 2.33634i −0.379214 0.173181i
$$183$$ 16.0822i 1.18883i
$$184$$ 3.61418 + 3.15241i 0.266441 + 0.232399i
$$185$$ −7.90951 + 2.53994i −0.581519 + 0.186740i
$$186$$ −4.24119 + 9.28691i −0.310979 + 0.680950i
$$187$$ 0.793221 2.70146i 0.0580061 0.197551i
$$188$$ 6.10123 5.28675i 0.444978 0.385576i
$$189$$ 11.2393 7.22308i 0.817541 0.525402i
$$190$$ −0.224691 + 0.526630i −0.0163008 + 0.0382057i
$$191$$ −1.33212 + 9.26507i −0.0963885 + 0.670397i 0.883143 + 0.469105i $$0.155423\pi$$
−0.979531 + 0.201292i $$0.935486\pi$$
$$192$$ −0.537451 1.83039i −0.0387872 0.132097i
$$193$$ 10.9915 17.1030i 0.791182 1.23110i −0.177823 0.984062i $$-0.556905\pi$$
0.969005 0.247041i $$-0.0794582\pi$$
$$194$$ −0.477557 3.32148i −0.0342866 0.238469i
$$195$$ −5.97685 + 5.44778i −0.428011 + 0.390124i
$$196$$ 0.747872 + 1.63761i 0.0534195 + 0.116972i
$$197$$ −5.50214 + 0.791089i −0.392011 + 0.0563627i −0.335502 0.942039i $$-0.608906\pi$$
−0.0565091 + 0.998402i $$0.517997\pi$$
$$198$$ −1.02146 + 1.58943i −0.0725922 + 0.112956i
$$199$$ 26.0943 7.66198i 1.84978 0.543143i 0.849907 0.526932i $$-0.176658\pi$$
0.999869 0.0162109i $$-0.00516030\pi$$
$$200$$ −4.43810 + 2.30289i −0.313821 + 0.162839i
$$201$$ 7.17936 8.28542i 0.506393 0.584408i
$$202$$ −0.156585 0.243652i −0.0110173 0.0171433i
$$203$$ 0.0917754 0.0795238i 0.00644137 0.00558148i
$$204$$ −1.74345 0.511923i −0.122066 0.0358418i
$$205$$ 20.8131 + 2.46057i 1.45365 + 0.171853i
$$206$$ 9.64817 0.672220
$$207$$ −3.06538 0.0100043i −0.213058 0.000695348i
$$208$$ 1.89586i 0.131454i
$$209$$ 0.314420 0.688483i 0.0217489 0.0476233i
$$210$$ 12.6502 0.317889i 0.872949 0.0219365i
$$211$$ −6.20313 7.15880i −0.427041 0.492832i 0.500928 0.865489i $$-0.332992\pi$$
−0.927969 + 0.372657i $$0.878447\pi$$
$$212$$ −6.83038 10.6283i −0.469112 0.729953i
$$213$$ −20.6694 17.9101i −1.41624 1.22718i
$$214$$ −2.23088 + 15.5161i −0.152500 + 1.06066i
$$215$$ 20.4073 13.8515i 1.39176 0.944662i
$$216$$ −3.78871 2.43486i −0.257789 0.165671i
$$217$$ −15.7148 + 2.25945i −1.06679 + 0.153382i
$$218$$ 6.26579 2.86149i 0.424373 0.193805i
$$219$$ −0.823807 1.80389i −0.0556677 0.121895i
$$220$$ 5.94145 2.89590i 0.400572 0.195242i
$$221$$ 1.51914 + 0.976294i 0.102189 + 0.0656726i
$$222$$ −1.99671 6.80017i −0.134010 0.456397i
$$223$$ −2.74318 0.394410i −0.183697 0.0264116i 0.0498523 0.998757i $$-0.484125\pi$$
−0.233549 + 0.972345i $$0.575034\pi$$
$$224$$ 1.94266 2.24195i 0.129800 0.149797i
$$225$$ 1.17993 2.97010i 0.0786622 0.198007i
$$226$$ −7.04126 8.12605i −0.468378 0.540537i
$$227$$ 1.37919 4.69707i 0.0915398 0.311756i −0.900977 0.433868i $$-0.857149\pi$$
0.992516 + 0.122112i $$0.0389667\pi$$
$$228$$ −0.444328 0.202918i −0.0294263 0.0134386i
$$229$$ 18.3691 1.21386 0.606932 0.794754i $$-0.292400\pi$$
0.606932 + 0.794754i $$0.292400\pi$$
$$230$$ 9.14601 + 5.59915i 0.603070 + 0.369197i
$$231$$ −16.7279 −1.10062
$$232$$ −0.0372362 0.0170052i −0.00244468 0.00111645i
$$233$$ −6.00281 + 20.4437i −0.393257 + 1.33931i 0.490531 + 0.871424i $$0.336803\pi$$
−0.883788 + 0.467887i $$0.845015\pi$$
$$234$$ −0.793555 0.915811i −0.0518763 0.0598685i
$$235$$ 11.4751 13.9354i 0.748551 0.909047i
$$236$$ −3.65539 + 4.21854i −0.237945 + 0.274604i
$$237$$ 1.64461 + 0.236459i 0.106829 + 0.0153597i
$$238$$ −0.796071 2.71117i −0.0516016 0.175739i
$$239$$ −0.909109 0.584249i −0.0588054 0.0377919i 0.510908 0.859636i $$-0.329309\pi$$
−0.569713 + 0.821844i $$0.692946\pi$$
$$240$$ −1.86894 3.83445i −0.120639 0.247512i
$$241$$ −6.08250 13.3188i −0.391809 0.857941i −0.998036 0.0626494i $$-0.980045\pi$$
0.606227 0.795292i $$-0.292682\pi$$
$$242$$ 2.05812 0.939914i 0.132301 0.0604200i
$$243$$ 6.47012 0.930263i 0.415058 0.0596764i
$$244$$ 7.09201 + 4.55776i 0.454020 + 0.291781i
$$245$$ 2.26079 + 3.33081i 0.144437 + 0.212797i
$$246$$ −2.54459 + 17.6980i −0.162237 + 1.12838i
$$247$$ 0.366876 + 0.317900i 0.0233438 + 0.0202275i
$$248$$ 2.89343 + 4.50226i 0.183733 + 0.285894i
$$249$$ −14.1286 16.3053i −0.895365 1.03331i
$$250$$ −8.92364 + 6.73562i −0.564381 + 0.425998i
$$251$$ 4.64552 10.1723i 0.293223 0.642068i −0.704487 0.709717i $$-0.748823\pi$$
0.997709 + 0.0676494i $$0.0215499\pi$$
$$252$$ 1.89614i 0.119446i
$$253$$ −11.9006 7.70303i −0.748183 0.484285i
$$254$$ −1.75710 −0.110250
$$255$$ −4.03495 0.477020i −0.252679 0.0298722i
$$256$$ −0.959493 0.281733i −0.0599683 0.0176083i
$$257$$ 22.6797 19.6521i 1.41472 1.22586i 0.476800 0.879012i $$-0.341797\pi$$
0.937920 0.346851i $$-0.112749\pi$$
$$258$$ 11.3761 + 17.7015i 0.708242 + 1.10205i
$$259$$ 7.21728 8.32919i 0.448460 0.517551i
$$260$$ 0.708532 + 4.17964i 0.0439413 + 0.259210i
$$261$$ 0.0251052 0.00737155i 0.00155397 0.000456288i
$$262$$ −2.80981 + 4.37215i −0.173591 + 0.270112i
$$263$$ 16.0629 2.30950i 0.990483 0.142410i 0.372021 0.928224i $$-0.378665\pi$$
0.618462 + 0.785814i $$0.287756\pi$$
$$264$$ 2.34248 + 5.12931i 0.144169 + 0.315687i
$$265$$ −19.0304 20.8786i −1.16903 1.28256i
$$266$$ −0.108102 0.751868i −0.00662818 0.0461000i
$$267$$ 16.7474 26.0595i 1.02492 1.59481i
$$268$$ −1.61909 5.51412i −0.0989019 0.336829i
$$269$$ −2.72536 + 18.9553i −0.166168 + 1.15572i 0.720546 + 0.693407i $$0.243891\pi$$
−0.886714 + 0.462318i $$0.847018\pi$$
$$270$$ −9.26262 3.95198i −0.563705 0.240510i
$$271$$ −1.18119 + 0.759102i −0.0717519 + 0.0461122i −0.576025 0.817432i $$-0.695397\pi$$
0.504273 + 0.863544i $$0.331761\pi$$
$$272$$ −0.719853 + 0.623756i −0.0436475 + 0.0378208i
$$273$$ 3.02269 10.2943i 0.182941 0.623041i
$$274$$ 1.46860 3.21579i 0.0887216 0.194273i
$$275$$ 12.0163 8.60483i 0.724612 0.518891i
$$276$$ −4.97132 + 7.68030i −0.299239 + 0.462300i
$$277$$ 17.5234i 1.05288i 0.850212 + 0.526441i $$0.176474\pi$$
−0.850212 + 0.526441i $$0.823526\pi$$
$$278$$ −17.0940 7.80656i −1.02523 0.468207i
$$279$$ −3.28222 0.963748i −0.196502 0.0576981i
$$280$$ 3.44495 5.66867i 0.205875 0.338768i
$$281$$ −26.9954 + 17.3489i −1.61041 + 1.03495i −0.648639 + 0.761096i $$0.724661\pi$$
−0.961772 + 0.273852i $$0.911702\pi$$
$$282$$ 11.6391 + 10.0853i 0.693098 + 0.600573i
$$283$$ 3.58275 + 0.515121i 0.212972 + 0.0306208i 0.247975 0.968766i $$-0.420235\pi$$
−0.0350028 + 0.999387i $$0.511144\pi$$
$$284$$ −13.7559 + 4.03910i −0.816263 + 0.239676i
$$285$$ −1.05541 0.281298i −0.0625169 0.0166627i
$$286$$ −0.797530 5.54695i −0.0471590 0.327998i
$$287$$ −25.2918 + 11.5504i −1.49293 + 0.681798i
$$288$$ 0.581417 0.265524i 0.0342604 0.0156462i
$$289$$ −2.29024 15.9289i −0.134720 0.936996i
$$290$$ −0.0884468 0.0235738i −0.00519377 0.00138430i
$$291$$ 6.14212 1.80349i 0.360058 0.105722i
$$292$$ −1.02896 0.147942i −0.0602153 0.00865766i
$$293$$ −5.14803 4.46079i −0.300751 0.260602i 0.491391 0.870939i $$-0.336489\pi$$
−0.792142 + 0.610337i $$0.791034\pi$$
$$294$$ −2.88918 + 1.85676i −0.168500 + 0.108288i
$$295$$ −6.48214 + 10.6664i −0.377405 + 0.621020i
$$296$$ −3.56466 1.04668i −0.207192 0.0608369i
$$297$$ 12.1094 + 5.53017i 0.702657 + 0.320893i
$$298$$ 15.7307i 0.911255i
$$299$$ 6.89083 5.93168i 0.398507 0.343038i
$$300$$ −5.55332 7.75501i −0.320621 0.447735i
$$301$$ −13.5929 + 29.7643i −0.783481 + 1.71558i
$$302$$ −5.59421 + 19.0521i −0.321911 + 1.09633i
$$303$$ 0.417563 0.361821i 0.0239884 0.0207860i
$$304$$ −0.215409 + 0.138435i −0.0123545 + 0.00793977i
$$305$$ 17.3385 + 7.39764i 0.992800 + 0.423587i
$$306$$ 0.0866440 0.602622i 0.00495311 0.0344496i
$$307$$ 0.958041 + 3.26279i 0.0546783 + 0.186217i 0.982304 0.187294i $$-0.0599718\pi$$
−0.927626 + 0.373511i $$0.878154\pi$$
$$308$$ −4.74077 + 7.37678i −0.270130 + 0.420331i
$$309$$ 2.61937 + 18.2181i 0.149011 + 1.03639i
$$310$$ 8.06151 + 8.84441i 0.457863 + 0.502329i
$$311$$ 8.33365 + 18.2481i 0.472558 + 1.03476i 0.984443 + 0.175703i $$0.0562200\pi$$
−0.511885 + 0.859054i $$0.671053\pi$$
$$312$$ −3.57985 + 0.514704i −0.202669 + 0.0291394i
$$313$$ −8.02235 + 12.4830i −0.453450 + 0.705582i −0.990430 0.138013i $$-0.955928\pi$$
0.536981 + 0.843595i $$0.319565\pi$$
$$314$$ 2.02852 0.595628i 0.114476 0.0336133i
$$315$$ 0.708638 + 4.18027i 0.0399272 + 0.235531i
$$316$$ 0.570365 0.658236i 0.0320855 0.0370287i
$$317$$ 9.60462 + 14.9451i 0.539449 + 0.839400i 0.998806 0.0488523i $$-0.0155564\pi$$
−0.459357 + 0.888252i $$0.651920\pi$$
$$318$$ 18.2144 15.7829i 1.02141 0.885061i
$$319$$ 0.116100 + 0.0340901i 0.00650036 + 0.00190868i
$$320$$ −2.22060 0.262524i −0.124136 0.0146756i
$$321$$ −29.9039 −1.66907
$$322$$ −14.2269 0.0464316i −0.792834 0.00258753i
$$323$$ 0.243894i 0.0135706i
$$324$$ 4.36559 9.55931i 0.242533 0.531073i
$$325$$ 3.12408 + 8.94970i 0.173293 + 0.496440i
$$326$$ 4.42743 + 5.10953i 0.245213 + 0.282990i
$$327$$ 7.10429 + 11.0545i 0.392868 + 0.611314i
$$328$$ 7.08343 + 6.13783i 0.391117 + 0.338905i
$$329$$ −3.40831 + 23.7053i −0.187906 + 1.30691i
$$330$$ 7.08122 + 10.4327i 0.389808 + 0.574302i
$$331$$ −9.47608 6.08991i −0.520852 0.334731i 0.253657 0.967294i $$-0.418367\pi$$
−0.774509 + 0.632563i $$0.782003\pi$$
$$332$$ −11.1945 + 1.60953i −0.614380 + 0.0883344i
$$333$$ 2.16005 0.986463i 0.118370 0.0540578i
$$334$$ −7.69707 16.8542i −0.421165 0.922222i
$$335$$ −5.63025 11.5514i −0.307613 0.631122i
$$336$$ 4.76077 + 3.05956i 0.259721 + 0.166913i
$$337$$ 7.65302 + 26.0638i 0.416887 + 1.41979i 0.853950 + 0.520355i $$0.174200\pi$$
−0.437063 + 0.899431i $$0.643981\pi$$
$$338$$ −9.30999 1.33857i −0.506397 0.0728088i
$$339$$ 13.4323 15.5018i 0.729545 0.841940i
$$340$$ −1.35388 + 1.64417i −0.0734247 + 0.0891676i
$$341$$ −10.3596 11.9557i −0.561005 0.647435i
$$342$$ 0.0461100 0.157036i 0.00249334 0.00849155i
$$343$$ 14.0311 + 6.40780i 0.757610 + 0.345989i
$$344$$ 11.0301 0.594705
$$345$$ −8.08953 + 18.7900i −0.435525 + 1.01162i
$$346$$ 18.4454 0.991630
$$347$$ 16.1094 + 7.35691i 0.864797 + 0.394940i 0.797878 0.602819i $$-0.205956\pi$$
0.0669191 + 0.997758i $$0.478683\pi$$
$$348$$ 0.0220008 0.0749278i 0.00117937 0.00401655i
$$349$$ 13.4559 + 15.5289i 0.720275 + 0.831242i 0.991340 0.131319i $$-0.0419212\pi$$
−0.271065 + 0.962561i $$0.587376\pi$$
$$350$$ 5.47626 13.7847i 0.292718 0.736824i
$$351$$ −5.59139 + 6.45280i −0.298446 + 0.344425i
$$352$$ 2.92582 + 0.420670i 0.155947 + 0.0224218i
$$353$$ −7.24558 24.6762i −0.385643 1.31338i −0.892382 0.451281i $$-0.850967\pi$$
0.506738 0.862100i $$-0.330851\pi$$
$$354$$ −8.95804 5.75698i −0.476114 0.305980i
$$355$$ −28.8170 + 14.0456i −1.52945 + 0.745463i
$$356$$ −6.74558 14.7707i −0.357515 0.782848i
$$357$$ 4.90323 2.23923i 0.259506 0.118513i
$$358$$ −24.3731 + 3.50432i −1.28816 + 0.185209i
$$359$$ −0.532753 0.342380i −0.0281177 0.0180701i 0.526506 0.850171i $$-0.323502\pi$$
−0.554624 + 0.832101i $$0.687138\pi$$
$$360$$ 1.18257 0.802670i 0.0623268 0.0423044i
$$361$$ 2.69465 18.7417i 0.141824 0.986406i
$$362$$ 3.57440 + 3.09724i 0.187866 + 0.162787i
$$363$$ 2.33355 + 3.63107i 0.122479 + 0.190582i
$$364$$ −3.68301 4.25043i −0.193042 0.222783i
$$365$$ −2.32375 + 0.0583939i −0.121631 + 0.00305647i
$$366$$ −6.68077 + 14.6288i −0.349209 + 0.764662i
$$367$$ 6.01653i 0.314060i −0.987594 0.157030i $$-0.949808\pi$$
0.987594 0.157030i $$-0.0501920\pi$$
$$368$$ 1.97801 + 4.36892i 0.103111 + 0.227746i
$$369$$ −5.99085 −0.311871
$$370$$ −8.24987 0.975316i −0.428890 0.0507043i
$$371$$ 35.9606 + 10.5590i 1.86698 + 0.548195i
$$372$$ −7.71585 + 6.68582i −0.400048 + 0.346644i
$$373$$ 18.0163 + 28.0339i 0.932848 + 1.45154i 0.891824 + 0.452382i $$0.149426\pi$$
0.0410244 + 0.999158i $$0.486938\pi$$
$$374$$ 1.84377 2.12782i 0.0953389 0.110027i
$$375$$ −15.1412 15.0214i −0.781887 0.775701i
$$376$$ 7.74607 2.27445i 0.399473 0.117296i
$$377$$ −0.0419579 + 0.0652878i −0.00216094 + 0.00336249i
$$378$$ 13.2242 1.90136i 0.680181 0.0977953i
$$379$$ 4.92740 + 10.7895i 0.253103 + 0.554219i 0.992947 0.118560i $$-0.0378278\pi$$
−0.739844 + 0.672779i $$0.765101\pi$$
$$380$$ −0.423156 + 0.385699i −0.0217075 + 0.0197859i
$$381$$ −0.477033 3.31784i −0.0244392 0.169978i
$$382$$ −5.06058 + 7.87442i −0.258922 + 0.402891i
$$383$$ −3.83003 13.0439i −0.195706 0.666512i −0.997612 0.0690628i $$-0.977999\pi$$
0.801907 0.597449i $$-0.203819\pi$$
$$384$$ 0.271489 1.88825i 0.0138544 0.0963591i
$$385$$ −7.69468 + 18.0347i −0.392157 + 0.919134i
$$386$$ 17.1030 10.9915i 0.870522 0.559450i
$$387$$ −5.32821 + 4.61692i −0.270848 + 0.234691i
$$388$$ 0.945393 3.21971i 0.0479950 0.163456i
$$389$$ −4.79087 + 10.4905i −0.242907 + 0.531891i −0.991340 0.131318i $$-0.958079\pi$$
0.748434 + 0.663210i $$0.230806\pi$$
$$390$$ −7.69982 + 2.47261i −0.389896 + 0.125205i
$$391$$ 4.51940 + 0.664853i 0.228556 + 0.0336231i
$$392$$ 1.80030i 0.0909290i
$$393$$ −9.01853 4.11862i −0.454924 0.207757i
$$394$$ −5.33356 1.56607i −0.268701 0.0788976i
$$395$$ 1.01143 1.66432i 0.0508908 0.0837409i
$$396$$ −1.58943 + 1.02146i −0.0798717 + 0.0513304i
$$397$$ 12.0135 + 10.4097i 0.602939 + 0.522450i 0.901973 0.431793i $$-0.142119\pi$$
−0.299034 + 0.954243i $$0.596664\pi$$
$$398$$ 26.9191 + 3.87038i 1.34933 + 0.194005i
$$399$$ 1.39036 0.408247i 0.0696052 0.0204379i
$$400$$ −4.99369 + 0.251133i −0.249684 + 0.0125566i
$$401$$ 1.46816 + 10.2113i 0.0733166 + 0.509928i 0.993079 + 0.117452i $$0.0374725\pi$$
−0.919762 + 0.392477i $$0.871618\pi$$
$$402$$ 9.97246 4.55427i 0.497381 0.227146i
$$403$$ 9.22944 4.21495i 0.459751 0.209961i
$$404$$ −0.0412186 0.286681i −0.00205070 0.0142629i
$$405$$ 6.05188 22.7061i 0.300721 1.12828i
$$406$$ 0.116517 0.0342125i 0.00578265 0.00169794i
$$407$$ 10.8699 + 1.56285i 0.538799 + 0.0774676i
$$408$$ −1.37324 1.18992i −0.0679854 0.0589096i
$$409$$ −7.78549 + 5.00343i −0.384968 + 0.247404i −0.718783 0.695235i $$-0.755300\pi$$
0.333815 + 0.942639i $$0.391664\pi$$
$$410$$ 17.9101 + 10.8843i 0.884517 + 0.537537i
$$411$$ 6.47092 + 1.90003i 0.319187 + 0.0937217i
$$412$$ 8.77628 + 4.00799i 0.432376 + 0.197460i
$$413$$ 16.5590i 0.814813i
$$414$$ −2.78421 1.28250i −0.136836 0.0630316i
$$415$$ −24.0781 + 7.73208i −1.18195 + 0.379553i
$$416$$ −0.787568 + 1.72453i −0.0386137 + 0.0845522i
$$417$$ 10.0999 34.3971i 0.494594 1.68443i
$$418$$ 0.572012 0.495651i 0.0279780 0.0242431i
$$419$$ −10.2420 + 6.58215i −0.500356 + 0.321559i −0.766359 0.642413i $$-0.777933\pi$$
0.266003 + 0.963972i $$0.414297\pi$$
$$420$$ 11.6391 + 4.96593i 0.567930 + 0.242313i
$$421$$ −2.31536 + 16.1037i −0.112844 + 0.784845i 0.852287 + 0.523075i $$0.175215\pi$$
−0.965130 + 0.261770i $$0.915694\pi$$
$$422$$ −2.66870 9.08874i −0.129910 0.442433i
$$423$$ −2.78978 + 4.34099i −0.135644 + 0.211066i
$$424$$ −1.79799 12.5053i −0.0873179 0.607309i
$$425$$ −2.37033 + 4.13074i −0.114978 + 0.200371i
$$426$$ −11.3614 24.8780i −0.550461 1.20534i
$$427$$ −24.7542 + 3.55911i −1.19794 + 0.172237i
$$428$$ −8.47491 + 13.1872i −0.409650 + 0.637428i
$$429$$ 10.2575 3.01187i 0.495236 0.145414i
$$430$$ 24.3172 4.12225i 1.17268 0.198793i
$$431$$ 25.2443 29.1334i 1.21597 1.40331i 0.327205 0.944953i $$-0.393893\pi$$
0.888769 0.458355i $$-0.151561\pi$$
$$432$$ −2.43486 3.78871i −0.117147 0.182285i
$$433$$ −17.8974 + 15.5082i −0.860094 + 0.745276i −0.968548 0.248826i $$-0.919955\pi$$
0.108454 + 0.994101i $$0.465410\pi$$
$$434$$ −15.2333 4.47291i −0.731223 0.214706i
$$435$$ 0.0205008 0.173409i 0.000982938 0.00831434i
$$436$$ 6.88827 0.329888
$$437$$ 1.17713 + 0.349812i 0.0563096 + 0.0167338i
$$438$$ 1.98309i 0.0947559i
$$439$$ −0.427987 + 0.937161i −0.0204267 + 0.0447283i −0.919570 0.392925i $$-0.871463\pi$$
0.899144 + 0.437654i $$0.144190\pi$$
$$440$$ 6.60753 0.166042i 0.315002 0.00791572i
$$441$$ −0.753558 0.869652i −0.0358837 0.0414120i
$$442$$ 0.976294 + 1.51914i 0.0464375 + 0.0722582i
$$443$$ −1.42284 1.23290i −0.0676012 0.0585768i 0.620405 0.784282i $$-0.286968\pi$$
−0.688006 + 0.725705i $$0.741514\pi$$
$$444$$ 1.00862 7.01511i 0.0478670 0.332922i
$$445$$ −20.3916 30.0428i −0.966655 1.42417i
$$446$$ −2.33144 1.49833i −0.110397 0.0709478i
$$447$$ 29.7034 4.27071i 1.40492 0.201997i
$$448$$ 2.69845 1.23234i 0.127490 0.0582226i
$$449$$ −12.7865 27.9986i −0.603434 1.32134i −0.926975 0.375122i $$-0.877601\pi$$
0.323542 0.946214i $$-0.395126\pi$$
$$450$$ 2.30713 2.21154i 0.108759 0.104253i
$$451$$ −23.3069 14.9784i −1.09748 0.705306i
$$452$$ −3.02927 10.3168i −0.142485 0.485259i
$$453$$ −37.4939 5.39081i −1.76162 0.253282i
$$454$$ 3.20579 3.69967i 0.150455 0.173634i
$$455$$ −9.70813 7.99411i −0.455124 0.374770i
$$456$$ −0.319880 0.369161i −0.0149797 0.0172875i
$$457$$ 3.27623 11.1578i 0.153255 0.521940i −0.846693 0.532081i $$-0.821410\pi$$
0.999949 + 0.0101415i $$0.00322819\pi$$
$$458$$ 16.7091 + 7.63079i 0.780765 + 0.356564i
$$459$$ −4.28974 −0.200228
$$460$$ 5.99354 + 8.89255i 0.279450 + 0.414617i
$$461$$ −1.25915 −0.0586445 −0.0293223 0.999570i $$-0.509335\pi$$
−0.0293223 + 0.999570i $$0.509335\pi$$
$$462$$ −15.2162 6.94903i −0.707924 0.323298i
$$463$$ −3.83011 + 13.0442i −0.178000 + 0.606213i 0.821359 + 0.570412i $$0.193216\pi$$
−0.999359 + 0.0358012i $$0.988602\pi$$
$$464$$ −0.0268070 0.0309369i −0.00124448 0.00143621i
$$465$$ −14.5118 + 17.6233i −0.672969 + 0.817260i
$$466$$ −13.9530 + 16.1026i −0.646359 + 0.745938i
$$467$$ −22.0760 3.17405i −1.02156 0.146877i −0.388875 0.921291i $$-0.627136\pi$$
−0.632680 + 0.774413i $$0.718045\pi$$
$$468$$ −0.341401 1.16271i −0.0157813 0.0537461i
$$469$$ 14.3420 + 9.21706i 0.662253 + 0.425604i
$$470$$ 16.2271 7.90920i 0.748499 0.364824i
$$471$$ 1.67541 + 3.66865i 0.0771990 + 0.169042i
$$472$$ −5.07750 + 2.31882i −0.233711 + 0.106732i
$$473$$ −32.2722 + 4.64005i −1.48388 + 0.213350i
$$474$$ 1.39776 + 0.898285i 0.0642012 + 0.0412596i
$$475$$ −0.788751 + 1.00846i −0.0361904 + 0.0462714i
$$476$$ 0.402128 2.79686i 0.0184315 0.128194i
$$477$$ 6.10290 + 5.28819i 0.279433 + 0.242130i
$$478$$ −0.584249 0.909109i −0.0267229 0.0415817i
$$479$$ 0.174615 + 0.201516i 0.00797836 + 0.00920751i 0.759725 0.650245i $$-0.225334\pi$$
−0.751746 + 0.659452i $$0.770788\pi$$
$$480$$ −0.107159 4.26432i −0.00489110 0.194639i
$$481$$ −2.92593 + 6.40689i −0.133411 + 0.292129i
$$482$$ 14.6420i 0.666925i
$$483$$ −3.77477 26.8765i −0.171758 1.22292i
$$484$$ 2.26259 0.102845
$$485$$ 0.880936 7.45154i 0.0400013 0.338357i
$$486$$ 6.27187 + 1.84159i 0.284498 + 0.0835361i
$$487$$ −0.649982 + 0.563213i −0.0294535 + 0.0255216i −0.669463 0.742845i $$-0.733476\pi$$
0.640010 + 0.768367i $$0.278930\pi$$
$$488$$ 4.55776 + 7.09201i 0.206320 + 0.321040i
$$489$$ −8.44604 + 9.74725i −0.381943 + 0.440786i
$$490$$ 0.672820 + 3.96897i 0.0303949 + 0.179300i
$$491$$ 31.2363 9.17181i 1.40968 0.413918i 0.513680 0.857982i $$-0.328282\pi$$
0.895995 + 0.444064i $$0.146464\pi$$
$$492$$ −9.66666 + 15.0416i −0.435807 + 0.678128i
$$493$$ −0.0385942 + 0.00554901i −0.00173820 + 0.000249915i
$$494$$ 0.201662 + 0.441578i 0.00907320 + 0.0198675i
$$495$$ −3.12233 + 2.84594i −0.140338 + 0.127916i
$$496$$ 0.761648 + 5.29738i 0.0341990 + 0.237859i
$$497$$ 22.9935 35.7786i 1.03140 1.60489i
$$498$$ −6.07838 20.7011i −0.272379 0.927636i
$$499$$ −2.09574 + 14.5762i −0.0938184 + 0.652521i 0.887596 + 0.460622i $$0.152374\pi$$
−0.981415 + 0.191899i $$0.938535\pi$$
$$500$$ −10.9153 + 2.41992i −0.488147 + 0.108222i
$$501$$ 29.7353 19.1097i 1.32847 0.853758i
$$502$$ 8.45143 7.32320i 0.377206 0.326851i
$$503$$ −6.57420 + 22.3897i −0.293129 + 0.998306i 0.672870 + 0.739761i $$0.265061\pi$$
−0.965999 + 0.258545i $$0.916757\pi$$
$$504$$ −0.787686 + 1.72479i −0.0350863 + 0.0768284i
$$505$$ −0.198011 0.616618i −0.00881139 0.0274391i
$$506$$ −7.62519 11.9506i −0.338981 0.531269i
$$507$$ 17.9430i 0.796874i
$$508$$ −1.59832 0.729926i −0.0709138 0.0323852i
$$509$$ −32.1300 9.43422i −1.42414 0.418165i −0.523236 0.852188i $$-0.675275\pi$$
−0.900902 + 0.434023i $$0.857094\pi$$
$$510$$ −3.47216 2.11009i −0.153750 0.0934365i
$$511$$ 2.59428 1.66724i 0.114764 0.0737545i
$$512$$ −0.755750 0.654861i −0.0333997 0.0289410i
$$513$$ −1.14145 0.164116i −0.0503963 0.00724590i
$$514$$ 28.7939 8.45466i 1.27005 0.372919i
$$515$$ 20.8462 + 5.55616i 0.918594 + 0.244834i
$$516$$ 2.99456 + 20.8276i 0.131828 + 0.916885i
$$517$$ −21.7068 + 9.91318i −0.954666 + 0.435981i
$$518$$ 10.0251 4.57833i 0.440479 0.201160i
$$519$$ 5.00771 + 34.8294i 0.219814 + 1.52884i
$$520$$ −1.09178 + 4.09627i −0.0478778 + 0.179633i
$$521$$ −4.03729 + 1.18546i −0.176877 + 0.0519357i −0.368972 0.929441i $$-0.620290\pi$$
0.192095 + 0.981376i $$0.438472\pi$$
$$522$$ 0.0258987 + 0.00372368i 0.00113356 + 0.000162981i
$$523$$ 24.2454 + 21.0088i 1.06018 + 0.918650i 0.996847 0.0793426i $$-0.0252821\pi$$
0.0633312 + 0.997993i $$0.479828\pi$$
$$524$$ −4.37215 + 2.80981i −0.190998 + 0.122747i
$$525$$ 27.5157 + 6.59813i 1.20088 + 0.287966i
$$526$$ 15.5708 + 4.57199i 0.678917 + 0.199348i
$$527$$ 4.63698 + 2.11764i 0.201990 + 0.0922458i
$$528$$ 5.63888i 0.245401i
$$529$$ 9.69090 20.8587i 0.421344 0.906901i
$$530$$ −8.63741 26.8973i −0.375185 1.16835i
$$531$$ 1.48214 3.24543i 0.0643193 0.140840i
$$532$$ 0.214004 0.728831i 0.00927825 0.0315988i
$$533$$ 13.4292 11.6364i 0.581682 0.504031i
$$534$$ 26.0595 16.7474i 1.12770 0.724731i
$$535$$ −13.7555 + 32.2400i −0.594702 + 1.39386i
$$536$$ 0.817871 5.68842i 0.0353267 0.245702i
$$537$$ −13.2340 45.0710i −0.571091 1.94496i
$$538$$ −10.3534 + 16.1102i −0.446366 + 0.694560i
$$539$$ −0.757333 5.26737i −0.0326206 0.226882i
$$540$$ −6.78387 7.44268i −0.291931 0.320282i
$$541$$ 9.77877 + 21.4125i 0.420422 + 0.920596i 0.994785 + 0.101995i $$0.0325226\pi$$
−0.574363 + 0.818601i $$0.694750\pi$$
$$542$$ −1.38979 + 0.199821i −0.0596965 + 0.00858305i
$$543$$ −4.87794 + 7.59022i −0.209332 + 0.325727i
$$544$$ −0.913919 + 0.268351i −0.0391839 + 0.0115054i
$$545$$ 15.1860 2.57433i 0.650496 0.110272i
$$546$$ 7.02595 8.10838i 0.300683 0.347007i
$$547$$ −8.01047 12.4645i −0.342503 0.532945i 0.626683 0.779274i $$-0.284412\pi$$
−0.969186 + 0.246329i $$0.920776\pi$$
$$548$$ 2.67178 2.31511i 0.114133 0.0988966i
$$549$$ −5.17019 1.51811i −0.220658 0.0647912i
$$550$$ 14.5050 2.83547i 0.618496 0.120905i
$$551$$ −0.0104818 −0.000446539
$$552$$ −7.71259 + 4.92109i −0.328270 + 0.209455i
$$553$$ 2.58376i 0.109873i
$$554$$ −7.27950 + 15.9399i −0.309276 + 0.677221i
$$555$$ −0.398110 15.8426i −0.0168988 0.672480i
$$556$$ −12.3063 14.2022i −0.521902 0.602308i
$$557$$ −6.01408 9.35810i −0.254825 0.396515i 0.690146 0.723670i $$-0.257546\pi$$
−0.944971 + 0.327155i $$0.893910\pi$$
$$558$$ −2.58526 2.24014i −0.109443 0.0948327i
$$559$$ 2.97603 20.6987i 0.125873 0.875463i
$$560$$ 5.48849 3.72532i 0.231931 0.157424i
$$561$$ 4.51841 + 2.90381i 0.190767 + 0.122599i
$$562$$ −31.7629 + 4.56681i −1.33984 + 0.192639i
$$563$$ 12.4961 5.70679i 0.526649 0.240512i −0.134304 0.990940i $$-0.542880\pi$$
0.660952 + 0.750428i $$0.270152\pi$$
$$564$$ 6.39769 + 14.0090i 0.269391 + 0.589885i
$$565$$ −10.5340 21.6124i −0.443170 0.909239i
$$566$$ 3.04499 + 1.95690i 0.127991 + 0.0822546i
$$567$$ 8.78308 + 29.9124i 0.368855 + 1.25620i
$$568$$ −14.1907 2.04032i −0.595429 0.0856098i
$$569$$ −8.21383 + 9.47926i −0.344342 + 0.397391i −0.901333 0.433127i $$-0.857410\pi$$
0.556991 + 0.830518i $$0.311956\pi$$
$$570$$ −0.843177 0.694310i −0.0353168 0.0290815i
$$571$$ −12.6512 14.6003i −0.529436 0.611002i 0.426532 0.904473i $$-0.359735\pi$$
−0.955968 + 0.293471i $$0.905190\pi$$
$$572$$ 1.57883 5.37699i 0.0660140 0.224823i
$$573$$ −16.2427 7.41781i −0.678550 0.309883i
$$574$$ −27.8045 −1.16054
$$575$$ 16.5368 + 17.3647i 0.689633 + 0.724159i
$$576$$ 0.639179 0.0266324
$$577$$ −5.00558 2.28597i −0.208385 0.0951663i 0.308488 0.951228i $$-0.400177\pi$$
−0.516873 + 0.856062i $$0.672904\pi$$
$$578$$ 4.53385 15.4409i 0.188583 0.642256i
$$579$$ 25.3978 + 29.3107i 1.05550 + 1.21811i
$$580$$ −0.0706611 0.0581856i −0.00293404 0.00241603i
$$581$$ 21.9708 25.3557i 0.911504 1.05193i
$$582$$ 6.33627 + 0.911018i 0.262647 + 0.0377629i
$$583$$ 10.5212 + 35.8319i 0.435743 + 1.48400i
$$584$$ −0.874517 0.562018i −0.0361878 0.0232565i
$$585$$ −1.18719 2.43573i −0.0490844 0.100705i
$$586$$ −2.82973 6.19625i −0.116895 0.255965i
$$587$$ 9.60539 4.38663i 0.396457 0.181056i −0.207203 0.978298i $$-0.566436\pi$$
0.603659 + 0.797242i $$0.293709\pi$$
$$588$$ −3.39941 + 0.488762i −0.140189 + 0.0201562i
$$589$$ 1.15283 + 0.740882i 0.0475017 + 0.0305275i
$$590$$ −10.3273 + 7.00969i −0.425170 + 0.288585i
$$591$$ 1.50913 10.4962i 0.0620774 0.431757i
$$592$$ −2.80772 2.43290i −0.115397 0.0999917i
$$593$$ 8.27934 + 12.8829i 0.339992 + 0.529038i 0.968580 0.248700i $$-0.0800035\pi$$
−0.628589 + 0.777738i $$0.716367\pi$$
$$594$$ 8.71776 + 10.0608i 0.357694 + 0.412801i
$$595$$ −0.158723 6.31630i −0.00650701 0.258943i
$$596$$ 6.53477 14.3091i 0.267674 0.586125i
$$597$$ 51.8807i 2.12333i
$$598$$ 8.73223 2.53309i 0.357087 0.103586i
$$599$$ 5.42374 0.221608 0.110804 0.993842i $$-0.464657\pi$$
0.110804 + 0.993842i $$0.464657\pi$$
$$600$$ −1.82993 9.36113i −0.0747066 0.382167i
$$601$$ 30.5924 + 8.98275i 1.24789 + 0.366414i 0.837975 0.545709i $$-0.183740\pi$$
0.409916 + 0.912123i $$0.365558\pi$$
$$602$$ −24.7291 + 21.4279i −1.00788 + 0.873334i
$$603$$ 1.98594 + 3.09018i 0.0808737 + 0.125842i
$$604$$ −13.0032 + 15.0065i −0.529094 + 0.610607i
$$605$$ 4.98814 0.845589i 0.202797 0.0343781i
$$606$$ 0.530135 0.155662i 0.0215352 0.00632332i
$$607$$ 23.1899 36.0841i 0.941248 1.46461i 0.0565743 0.998398i $$-0.481982\pi$$
0.884673 0.466211i $$-0.154381\pi$$
$$608$$ −0.253450 + 0.0364407i −0.0102788 + 0.00147786i
$$609$$ 0.0962348 + 0.210725i 0.00389963 + 0.00853900i
$$610$$ 12.6986 + 13.9318i 0.514150 + 0.564082i
$$611$$ −2.17819 15.1496i −0.0881201 0.612889i
$$612$$ 0.329152 0.512171i 0.0133052 0.0207033i
$$613$$ −10.6884 36.4012i −0.431699 1.47023i −0.832479 0.554057i $$-0.813079\pi$$
0.400780 0.916174i $$-0.368739\pi$$
$$614$$ −0.483946 + 3.36592i −0.0195305 + 0.135837i
$$615$$ −15.6898 + 36.7737i −0.632674 + 1.48286i
$$616$$ −7.37678 + 4.74077i −0.297219 + 0.191011i
$$617$$ −4.64812 + 4.02762i −0.187126 + 0.162146i −0.743386 0.668863i $$-0.766781\pi$$
0.556260 + 0.831008i $$0.312236\pi$$
$$618$$ −5.18542 + 17.6599i −0.208588 + 0.710386i
$$619$$ −4.96800 + 10.8784i −0.199681 + 0.437240i −0.982810 0.184619i $$-0.940895\pi$$
0.783130 + 0.621859i $$0.213622\pi$$
$$620$$ 3.65891 + 11.3940i 0.146945 + 0.457595i
$$621$$ −6.15268 + 20.7039i −0.246898 + 0.830818i
$$622$$ 20.0610i 0.804374i
$$623$$ 43.8179 + 20.0110i 1.75553 + 0.801722i
$$624$$ −3.47016 1.01893i −0.138917 0.0407899i
$$625$$ −23.1597 + 9.41434i −0.926387 + 0.376574i
$$626$$ −12.4830 + 8.02235i −0.498922 + 0.320637i
$$627$$ 1.09121 + 0.945536i 0.0435786 + 0.0377611i
$$628$$ 2.09264 + 0.300877i 0.0835056 + 0.0120063i
$$629$$ −3.39534 + 0.996963i −0.135381 + 0.0397515i
$$630$$ −1.09195 + 4.09688i −0.0435041 + 0.163224i
$$631$$ −6.21662 43.2375i −0.247480 1.72126i −0.612682 0.790330i $$-0.709909\pi$$
0.365202 0.930928i $$-0.381000\pi$$
$$632$$ 0.792263 0.361815i 0.0315145 0.0143922i
$$633$$ 16.4373 7.50665i 0.653323 0.298362i
$$634$$ 2.52826 + 17.5844i 0.100410 + 0.698367i
$$635$$ −3.79646 1.01187i −0.150658 0.0401550i
$$636$$ 23.1249 6.79008i 0.916961 0.269244i
$$637$$ 3.37838 + 0.485737i 0.133856 + 0.0192456i
$$638$$ 0.0914469 + 0.0792392i 0.00362042 + 0.00313711i
$$639$$ 7.70898 4.95426i 0.304962 0.195987i
$$640$$ −1.91088 1.16127i −0.0755340 0.0459033i
$$641$$ 10.8536 + 3.18690i 0.428691 + 0.125875i 0.488958 0.872307i $$-0.337377\pi$$
−0.0602670 + 0.998182i $$0.519195\pi$$
$$642$$ −27.2015 12.4225i −1.07356 0.490278i
$$643$$ 26.3024i 1.03727i 0.854997 + 0.518634i $$0.173559\pi$$
−0.854997 + 0.518634i $$0.826441\pi$$
$$644$$ −12.9220 5.95231i −0.509196 0.234554i
$$645$$ 14.3857 + 44.7977i 0.566435 + 1.76391i
$$646$$ −0.101317 + 0.221854i −0.00398628 + 0.00872873i
$$647$$ 3.90089 13.2852i 0.153360 0.522296i −0.846591 0.532245i $$-0.821349\pi$$
0.999951 + 0.00994875i $$0.00316684\pi$$
$$648$$ 7.94216 6.88192i 0.311998 0.270347i
$$649$$ 13.8804 8.92040i 0.544854 0.350156i
$$650$$ −0.876075 + 9.43872i −0.0343625 + 0.370217i
$$651$$ 4.31027 29.9786i 0.168933 1.17495i
$$652$$ 1.90476 + 6.48701i 0.0745961 + 0.254051i
$$653$$ −14.2893 + 22.2347i −0.559185 + 0.870110i −0.999617 0.0276767i $$-0.991189\pi$$
0.440431 + 0.897786i $$0.354825\pi$$
$$654$$ 1.87009 + 13.0067i 0.0731262 + 0.508604i
$$655$$ −8.58881 + 7.82854i −0.335593 + 0.305886i
$$656$$ 3.89357 + 8.52573i 0.152018 + 0.332874i
$$657$$ 0.657689 0.0945614i 0.0256589 0.00368919i
$$658$$ −12.9478 + 20.1472i −0.504759 + 0.785421i
$$659$$ −42.4985 + 12.4787i −1.65551 + 0.486100i −0.970231 0.242183i $$-0.922136\pi$$
−0.685276 + 0.728284i $$0.740318\pi$$
$$660$$ 2.10740 + 12.4316i 0.0820304 + 0.483898i
$$661$$ −24.2167 + 27.9476i −0.941921 + 1.08703i 0.0541553 + 0.998533i $$0.482753\pi$$
−0.996076 + 0.0885019i $$0.971792\pi$$
$$662$$ −6.08991 9.47608i −0.236691 0.368298i
$$663$$ −2.60346 + 2.25591i −0.101110 + 0.0876124i
$$664$$ −10.8515 3.18629i −0.421121 0.123652i
$$665$$ 0.199413 1.68677i 0.00773292 0.0654101i
$$666$$ 2.37464 0.0920156
$$667$$ −0.0285732 + 0.194229i −0.00110636 + 0.00752058i
$$668$$ 18.5286i 0.716894i
$$669$$ 2.19625 4.80912i 0.0849119 0.185931i
$$670$$ −0.322820 12.8464i −0.0124716 0.496301i
$$671$$ −16.3186 18.8327i −0.629973 0.727027i
$$672$$ 3.05956 + 4.76077i 0.118025 + 0.183651i
$$673$$ −20.6317 17.8775i −0.795295 0.689127i 0.159236 0.987241i $$-0.449097\pi$$
−0.954530 + 0.298114i $$0.903642\pi$$
$$674$$ −3.86586 + 26.8877i −0.148907 + 1.03567i
$$675$$ −17.7373 13.8729i −0.682711 0.533970i
$$676$$ −7.91260 5.08512i −0.304331 0.195581i
$$677$$ 17.5137 2.51809i 0.673106 0.0967780i 0.202717 0.979237i $$-0.435023\pi$$
0.470389 + 0.882459i $$0.344114\pi$$
$$678$$ 18.6582 8.52090i 0.716562 0.327243i
$$679$$ 4.13529 + 9.05503i 0.158698 + 0.347500i
$$680$$ −1.91455 + 0.933166i −0.0734196 + 0.0357853i
$$681$$ 7.85623 + 5.04889i 0.301051 + 0.193474i
$$682$$ −4.45689 15.1788i −0.170663 0.581226i
$$683$$ −30.3133 4.35840i −1.15991 0.166770i −0.464626 0.885507i $$-0.653811\pi$$
−0.695282 + 0.718737i $$0.744720\pi$$
$$684$$ 0.107178 0.123690i 0.00409807 0.00472942i
$$685$$ 5.02503 6.10244i 0.191996 0.233162i
$$686$$ 10.1013 + 11.6575i 0.385668 + 0.445085i
$$687$$ −9.87248 + 33.6226i −0.376659 + 1.28278i
$$688$$ 10.0334 + 4.58209i 0.382519 + 0.174690i
$$689$$ −23.9520 −0.912499
$$690$$ −15.1642 + 13.7315i −0.577289 + 0.522749i
$$691$$ 21.1619 0.805035 0.402517 0.915412i $$-0.368135\pi$$
0.402517 + 0.915412i $$0.368135\pi$$
$$692$$ 16.7785 + 7.66249i 0.637823 + 0.291284i
$$693$$ 1.57906 5.37780i 0.0599836 0.204286i
$$694$$ 11.5974 + 13.3842i 0.440233 + 0.508056i
$$695$$ −32.4383 26.7112i −1.23046 1.01321i
$$696$$ 0.0511388 0.0590173i 0.00193841 0.00223704i
$$697$$ 8.83667 + 1.27052i 0.334713 + 0.0481244i
$$698$$ 5.78894 + 19.7153i 0.219115 + 0.746236i
$$699$$ −34.1937 21.9750i −1.29333 0.831170i
$$700$$ 10.7078 10.2641i 0.404715 0.387946i
$$701$$ −9.47002 20.7364i −0.357678 0.783205i −0.999861 0.0166540i $$-0.994699\pi$$
0.642184 0.766551i $$-0.278029\pi$$
$$702$$ −7.76670 + 3.54693i −0.293135 + 0.133870i
$$703$$ −0.941605 + 0.135382i −0.0355133 + 0.00510604i
$$704$$ 2.48667 + 1.59809i 0.0937199 + 0.0602301i
$$705$$ 19.3400 + 28.4935i 0.728386 + 1.07313i
$$706$$ 3.66005 25.4562i 0.137748 0.958056i
$$707$$ 0.649336 + 0.562653i 0.0244208 + 0.0211607i
$$708$$ −5.75698 8.95804i −0.216361 0.336664i
$$709$$ −12.8245 14.8002i −0.481633 0.555834i 0.461978 0.886891i $$-0.347140\pi$$
−0.943610 + 0.331058i $$0.892594\pi$$
$$710$$ −32.0476 + 0.805329i −1.20272 + 0.0302234i
$$711$$ −0.231264 + 0.506398i −0.00867308 + 0.0189914i
$$712$$ 16.2382i 0.608551i
$$713$$ 16.8712 19.3425i 0.631833 0.724384i
$$714$$ 5.39034 0.201728
$$715$$ 1.47118 12.4442i 0.0550191 0.465388i
$$716$$ −23.6263 6.93731i −0.882956 0.259259i
$$717$$ 1.55800 1.35002i 0.0581847 0.0504174i
$$718$$ −0.342380 0.532753i −0.0127775 0.0198822i
$$719$$ 22.8049 26.3183i 0.850481 0.981507i −0.149493 0.988763i $$-0.547764\pi$$
0.999974 + 0.00725573i $$0.00230959\pi$$
$$720$$ 1.40914 0.238878i 0.0525157 0.00890245i
$$721$$ −27.4622 + 8.06363i −1.02275 + 0.300305i
$$722$$ 10.2367 15.9287i 0.380972 0.592803i
$$723$$ 27.6477 3.97514i 1.02823 0.147837i
$$724$$ 1.96475 + 4.30221i 0.0730195 + 0.159890i
$$725$$ −0.177526 0.101869i −0.00659315 0.00378332i
$$726$$ 0.614268 + 4.27233i 0.0227976 + 0.158561i
$$727$$ −11.1869 + 17.4071i −0.414898 + 0.645594i −0.984308 0.176460i $$-0.943535\pi$$
0.569410 + 0.822054i $$0.307172\pi$$
$$728$$ −1.58450 5.39630i −0.0587254 0.200000i
$$729$$ 2.71213 18.8633i 0.100449 0.698639i
$$730$$ −2.13802 0.912204i −0.0791315 0.0337622i
$$731$$ 8.83840 5.68010i 0.326900 0.210086i
$$732$$ −12.1541 + 10.5316i −0.449228 + 0.389258i
$$733$$ 2.20751 7.51810i 0.0815364 0.277688i −0.908626 0.417611i $$-0.862867\pi$$
0.990162 + 0.139924i $$0.0446857\pi$$
$$734$$ 2.49936 5.47283i 0.0922530 0.202006i
$$735$$ −7.31173 + 2.34798i −0.269697 + 0.0866066i
$$736$$ −0.0156518 + 4.79581i −0.000576934 + 0.176776i
$$737$$ 16.9874i 0.625738i
$$738$$ −5.44946 2.48869i −0.200598 0.0916098i
$$739$$ −9.88396 2.90219i −0.363587 0.106759i 0.0948358 0.995493i $$-0.469767\pi$$
−0.458423 + 0.888734i $$0.651586\pi$$
$$740$$ −7.09919 4.31430i −0.260971 0.158597i
$$741$$ −0.779059 + 0.500671i −0.0286194 + 0.0183926i
$$742$$ 28.3245 + 24.5433i 1.03983 + 0.901015i
$$743$$ −25.9834 3.73584i −0.953237 0.137055i −0.351889 0.936042i $$-0.614461\pi$$
−0.601348 + 0.798987i $$0.705370\pi$$
$$744$$ −9.79597 + 2.87636i −0.359138 + 0.105452i
$$745$$ 9.05894 33.9884i 0.331894 1.24524i
$$746$$ 4.74249 + 32.9848i 0.173635 + 1.20766i
$$747$$ 6.57562 3.00299i 0.240590 0.109874i
$$748$$ 2.56108 1.16961i 0.0936423 0.0427650i
$$749$$ −6.61797 46.0290i −0.241815 1.68186i
$$750$$ −7.53280 19.9538i −0.275059 0.728610i
$$751$$ −19.6037 + 5.75615i −0.715347 + 0.210045i −0.619100 0.785312i $$-0.712502\pi$$
−0.0962478 + 0.995357i $$0.530684\pi$$
$$752$$ 7.99091 + 1.14892i 0.291399 + 0.0418968i
$$753$$ 16.1225 + 13.9702i 0.587536 + 0.509103i
$$754$$ −0.0652878 + 0.0419579i −0.00237764 + 0.00152802i
$$755$$ −23.0588 + 37.9432i −0.839195 + 1.38090i
$$756$$ 12.8190 + 3.76401i 0.466224 + 0.136896i
$$757$$ 18.7288 + 8.55314i 0.680709 + 0.310869i 0.725594 0.688123i $$-0.241565\pi$$
−0.0448854 + 0.998992i $$0.514292\pi$$
$$758$$ 11.8614i 0.430825i
$$759$$ 20.4955 17.6427i 0.743940 0.640389i
$$760$$ −0.545142 + 0.175059i −0.0197744 + 0.00635004i
$$761$$ 16.3218 35.7399i 0.591667 1.29557i −0.342763 0.939422i $$-0.611363\pi$$
0.934430 0.356147i $$-0.115910\pi$$
$$762$$ 0.944356 3.21618i 0.0342104 0.116510i
$$763$$ −15.4432 + 13.3816i −0.559081 + 0.484446i
$$764$$ −7.87442 + 5.06058i −0.284887 + 0.183086i
$$765$$ 0.534243 1.25215i 0.0193156 0.0452717i
$$766$$ 1.93471 13.4562i 0.0699039 0.486192i
$$767$$ 2.98145 + 10.1539i 0.107654 + 0.366635i
$$768$$ 1.03136 1.60483i