Properties

Label 230.2.j.a.29.4
Level $230$
Weight $2$
Character 230.29
Analytic conductor $1.837$
Analytic rank $0$
Dimension $120$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [230,2,Mod(9,230)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(230, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([11, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("230.9");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 230 = 2 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 230.j (of order \(22\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.83655924649\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(12\) over \(\Q(\zeta_{22})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 29.4
Character \(\chi\) \(=\) 230.29
Dual form 230.2.j.a.119.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.909632 - 0.415415i) q^{2} +(0.192005 - 0.653908i) q^{3} +(0.654861 + 0.755750i) q^{4} +(2.23607 + 0.00163718i) q^{5} +(-0.446297 + 0.515054i) q^{6} +(-0.838442 - 0.120550i) q^{7} +(-0.281733 - 0.959493i) q^{8} +(2.13303 + 1.37082i) q^{9} +O(q^{10})\) \(q+(-0.909632 - 0.415415i) q^{2} +(0.192005 - 0.653908i) q^{3} +(0.654861 + 0.755750i) q^{4} +(2.23607 + 0.00163718i) q^{5} +(-0.446297 + 0.515054i) q^{6} +(-0.838442 - 0.120550i) q^{7} +(-0.281733 - 0.959493i) q^{8} +(2.13303 + 1.37082i) q^{9} +(-2.03332 - 0.930385i) q^{10} +(0.0655354 + 0.143502i) q^{11} +(0.619927 - 0.283111i) q^{12} +(2.33610 - 0.335881i) q^{13} +(0.712596 + 0.457958i) q^{14} +(0.430406 - 1.46187i) q^{15} +(-0.142315 + 0.989821i) q^{16} +(-1.02083 - 0.884550i) q^{17} +(-1.37082 - 2.13303i) q^{18} +(-1.86520 - 2.15256i) q^{19} +(1.46308 + 1.69098i) q^{20} +(-0.239813 + 0.525118i) q^{21} -0.157759i q^{22} +(3.82181 - 2.89719i) q^{23} -0.681514 q^{24} +(4.99999 + 0.00732171i) q^{25} +(-2.26452 - 0.664924i) q^{26} +(2.85110 - 2.47049i) q^{27} +(-0.457958 - 0.712596i) q^{28} +(5.24884 - 6.05748i) q^{29} +(-0.998792 + 1.15096i) q^{30} +(-8.15854 + 2.39556i) q^{31} +(0.540641 - 0.841254i) q^{32} +(0.106420 - 0.0153010i) q^{33} +(0.561120 + 1.22868i) q^{34} +(-1.87462 - 0.270930i) q^{35} +(0.360845 + 2.50973i) q^{36} +(-5.32167 + 8.28068i) q^{37} +(0.802442 + 2.73287i) q^{38} +(0.228907 - 1.59209i) q^{39} +(-0.628402 - 2.14595i) q^{40} +(-4.40840 + 2.83311i) q^{41} +(0.436284 - 0.378042i) q^{42} +(-0.846481 + 2.88285i) q^{43} +(-0.0655354 + 0.143502i) q^{44} +(4.76736 + 3.06873i) q^{45} +(-4.67998 + 1.04774i) q^{46} +5.12942i q^{47} +(0.619927 + 0.283111i) q^{48} +(-6.02800 - 1.76998i) q^{49} +(-4.54511 - 2.08373i) q^{50} +(-0.774417 + 0.497688i) q^{51} +(1.78366 + 1.54555i) q^{52} +(2.24070 + 0.322165i) q^{53} +(-3.61973 + 1.06285i) q^{54} +(0.146307 + 0.320989i) q^{55} +(0.120550 + 0.838442i) q^{56} +(-1.76570 + 0.806368i) q^{57} +(-7.29088 + 3.32963i) q^{58} +(1.21457 + 8.44754i) q^{59} +(1.38666 - 0.632040i) q^{60} +(-7.90952 + 2.32245i) q^{61} +(8.41642 + 1.21010i) q^{62} +(-1.62317 - 1.40649i) q^{63} +(-0.841254 + 0.540641i) q^{64} +(5.22423 - 0.747227i) q^{65} +(-0.103160 - 0.0302904i) q^{66} +(-9.98767 - 4.56122i) q^{67} -1.35075i q^{68} +(-1.16069 - 3.05539i) q^{69} +(1.59266 + 1.02519i) q^{70} +(-2.29577 + 5.02704i) q^{71} +(0.714344 - 2.43283i) q^{72} +(-0.325011 + 0.281624i) q^{73} +(8.28068 - 5.32167i) q^{74} +(0.964810 - 3.26813i) q^{75} +(0.405347 - 2.81925i) q^{76} +(-0.0376485 - 0.128219i) q^{77} +(-0.869598 + 1.35312i) q^{78} +(-0.416071 - 2.89384i) q^{79} +(-0.319846 + 2.21307i) q^{80} +(2.09185 + 4.58052i) q^{81} +(5.18694 - 0.745770i) q^{82} +(4.37858 - 6.81320i) q^{83} +(-0.553902 + 0.162640i) q^{84} +(-2.28119 - 1.97958i) q^{85} +(1.96756 - 2.27069i) q^{86} +(-2.95323 - 4.59532i) q^{87} +(0.119226 - 0.103310i) q^{88} +(5.58913 + 1.64112i) q^{89} +(-3.06174 - 4.77185i) q^{90} -1.99918 q^{91} +(4.69231 + 0.991076i) q^{92} +5.79489i q^{93} +(2.13084 - 4.66589i) q^{94} +(-4.16719 - 4.81631i) q^{95} +(-0.446297 - 0.515054i) q^{96} +(3.23796 + 5.03836i) q^{97} +(4.74798 + 4.11415i) q^{98} +(-0.0569265 + 0.395932i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120 q + 12 q^{4} - 4 q^{6} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 120 q + 12 q^{4} - 4 q^{6} + 8 q^{9} + 8 q^{11} - 6 q^{15} - 12 q^{16} - 16 q^{19} - 22 q^{20} + 4 q^{24} - 52 q^{25} - 4 q^{26} - 8 q^{29} - 44 q^{30} + 12 q^{31} + 16 q^{35} - 8 q^{36} - 36 q^{39} - 28 q^{41} - 8 q^{44} + 16 q^{45} - 4 q^{46} - 58 q^{49} + 12 q^{50} - 24 q^{51} - 6 q^{54} - 36 q^{55} + 22 q^{56} - 102 q^{59} - 38 q^{60} + 72 q^{61} + 12 q^{64} - 138 q^{65} + 80 q^{66} - 212 q^{69} - 108 q^{70} + 176 q^{71} - 88 q^{74} - 100 q^{75} + 16 q^{76} - 104 q^{79} - 22 q^{80} - 28 q^{81} - 22 q^{84} + 2 q^{85} + 62 q^{86} + 48 q^{89} + 24 q^{90} - 56 q^{91} + 24 q^{94} + 18 q^{95} - 4 q^{96} + 188 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/230\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(-1\) \(e\left(\frac{9}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.909632 0.415415i −0.643207 0.293743i
\(3\) 0.192005 0.653908i 0.110854 0.377534i −0.885314 0.464993i \(-0.846057\pi\)
0.996168 + 0.0874597i \(0.0278749\pi\)
\(4\) 0.654861 + 0.755750i 0.327430 + 0.377875i
\(5\) 2.23607 + 0.00163718i 1.00000 + 0.000732171i
\(6\) −0.446297 + 0.515054i −0.182200 + 0.210270i
\(7\) −0.838442 0.120550i −0.316901 0.0455636i −0.0179712 0.999839i \(-0.505721\pi\)
−0.298930 + 0.954275i \(0.596630\pi\)
\(8\) −0.281733 0.959493i −0.0996075 0.339232i
\(9\) 2.13303 + 1.37082i 0.711010 + 0.456939i
\(10\) −2.03332 0.930385i −0.642992 0.294214i
\(11\) 0.0655354 + 0.143502i 0.0197597 + 0.0432676i 0.919255 0.393664i \(-0.128793\pi\)
−0.899495 + 0.436931i \(0.856065\pi\)
\(12\) 0.619927 0.283111i 0.178957 0.0817271i
\(13\) 2.33610 0.335881i 0.647918 0.0931566i 0.189482 0.981884i \(-0.439319\pi\)
0.458436 + 0.888728i \(0.348410\pi\)
\(14\) 0.712596 + 0.457958i 0.190449 + 0.122394i
\(15\) 0.430406 1.46187i 0.111130 0.377452i
\(16\) −0.142315 + 0.989821i −0.0355787 + 0.247455i
\(17\) −1.02083 0.884550i −0.247586 0.214535i 0.522222 0.852809i \(-0.325103\pi\)
−0.769809 + 0.638274i \(0.779649\pi\)
\(18\) −1.37082 2.13303i −0.323104 0.502760i
\(19\) −1.86520 2.15256i −0.427906 0.493830i 0.500323 0.865839i \(-0.333215\pi\)
−0.928229 + 0.372009i \(0.878669\pi\)
\(20\) 1.46308 + 1.69098i 0.327154 + 0.378114i
\(21\) −0.239813 + 0.525118i −0.0523315 + 0.114590i
\(22\) 0.157759i 0.0336343i
\(23\) 3.82181 2.89719i 0.796903 0.604107i
\(24\) −0.681514 −0.139113
\(25\) 4.99999 + 0.00732171i 0.999999 + 0.00146434i
\(26\) −2.26452 0.664924i −0.444110 0.130402i
\(27\) 2.85110 2.47049i 0.548694 0.475446i
\(28\) −0.457958 0.712596i −0.0865458 0.134668i
\(29\) 5.24884 6.05748i 0.974685 1.12485i −0.0174724 0.999847i \(-0.505562\pi\)
0.992157 0.124999i \(-0.0398926\pi\)
\(30\) −0.998792 + 1.15096i −0.182354 + 0.210136i
\(31\) −8.15854 + 2.39556i −1.46532 + 0.430256i −0.914574 0.404419i \(-0.867474\pi\)
−0.550743 + 0.834675i \(0.685656\pi\)
\(32\) 0.540641 0.841254i 0.0955727 0.148714i
\(33\) 0.106420 0.0153010i 0.0185254 0.00266355i
\(34\) 0.561120 + 1.22868i 0.0962312 + 0.210717i
\(35\) −1.87462 0.270930i −0.316868 0.0457956i
\(36\) 0.360845 + 2.50973i 0.0601408 + 0.418289i
\(37\) −5.32167 + 8.28068i −0.874877 + 1.36133i 0.0569291 + 0.998378i \(0.481869\pi\)
−0.931806 + 0.362957i \(0.881767\pi\)
\(38\) 0.802442 + 2.73287i 0.130173 + 0.443329i
\(39\) 0.228907 1.59209i 0.0366545 0.254938i
\(40\) −0.628402 2.14595i −0.0993591 0.339305i
\(41\) −4.40840 + 2.83311i −0.688477 + 0.442457i −0.837544 0.546370i \(-0.816009\pi\)
0.149067 + 0.988827i \(0.452373\pi\)
\(42\) 0.436284 0.378042i 0.0673200 0.0583331i
\(43\) −0.846481 + 2.88285i −0.129087 + 0.439630i −0.998518 0.0544244i \(-0.982668\pi\)
0.869431 + 0.494055i \(0.164486\pi\)
\(44\) −0.0655354 + 0.143502i −0.00987983 + 0.0216338i
\(45\) 4.76736 + 3.06873i 0.710676 + 0.457459i
\(46\) −4.67998 + 1.04774i −0.690026 + 0.154481i
\(47\) 5.12942i 0.748203i 0.927388 + 0.374102i \(0.122049\pi\)
−0.927388 + 0.374102i \(0.877951\pi\)
\(48\) 0.619927 + 0.283111i 0.0894787 + 0.0408636i
\(49\) −6.02800 1.76998i −0.861142 0.252854i
\(50\) −4.54511 2.08373i −0.642776 0.294684i
\(51\) −0.774417 + 0.497688i −0.108440 + 0.0696902i
\(52\) 1.78366 + 1.54555i 0.247350 + 0.214330i
\(53\) 2.24070 + 0.322165i 0.307784 + 0.0442527i 0.294476 0.955659i \(-0.404855\pi\)
0.0133079 + 0.999911i \(0.495764\pi\)
\(54\) −3.61973 + 1.06285i −0.492583 + 0.144635i
\(55\) 0.146307 + 0.320989i 0.0197280 + 0.0432821i
\(56\) 0.120550 + 0.838442i 0.0161091 + 0.112042i
\(57\) −1.76570 + 0.806368i −0.233873 + 0.106806i
\(58\) −7.29088 + 3.32963i −0.957339 + 0.437202i
\(59\) 1.21457 + 8.44754i 0.158124 + 1.09978i 0.902087 + 0.431555i \(0.142035\pi\)
−0.743963 + 0.668221i \(0.767056\pi\)
\(60\) 1.38666 0.632040i 0.179017 0.0815961i
\(61\) −7.90952 + 2.32245i −1.01271 + 0.297359i −0.745662 0.666324i \(-0.767867\pi\)
−0.267049 + 0.963683i \(0.586048\pi\)
\(62\) 8.41642 + 1.21010i 1.06889 + 0.153683i
\(63\) −1.62317 1.40649i −0.204500 0.177201i
\(64\) −0.841254 + 0.540641i −0.105157 + 0.0675801i
\(65\) 5.22423 0.747227i 0.647986 0.0926821i
\(66\) −0.103160 0.0302904i −0.0126981 0.00372849i
\(67\) −9.98767 4.56122i −1.22019 0.557241i −0.301971 0.953317i \(-0.597644\pi\)
−0.918218 + 0.396076i \(0.870372\pi\)
\(68\) 1.35075i 0.163802i
\(69\) −1.16069 3.05539i −0.139731 0.367825i
\(70\) 1.59266 + 1.02519i 0.190360 + 0.122534i
\(71\) −2.29577 + 5.02704i −0.272458 + 0.596599i −0.995559 0.0941431i \(-0.969989\pi\)
0.723101 + 0.690742i \(0.242716\pi\)
\(72\) 0.714344 2.43283i 0.0841862 0.286712i
\(73\) −0.325011 + 0.281624i −0.0380397 + 0.0329616i −0.673673 0.739029i \(-0.735284\pi\)
0.635633 + 0.771991i \(0.280739\pi\)
\(74\) 8.28068 5.32167i 0.962609 0.618631i
\(75\) 0.964810 3.26813i 0.111407 0.377371i
\(76\) 0.405347 2.81925i 0.0464965 0.323390i
\(77\) −0.0376485 0.128219i −0.00429044 0.0146119i
\(78\) −0.869598 + 1.35312i −0.0984625 + 0.153211i
\(79\) −0.416071 2.89384i −0.0468117 0.325582i −0.999749 0.0224143i \(-0.992865\pi\)
0.952937 0.303168i \(-0.0980444\pi\)
\(80\) −0.319846 + 2.21307i −0.0357599 + 0.247429i
\(81\) 2.09185 + 4.58052i 0.232428 + 0.508947i
\(82\) 5.18694 0.745770i 0.572802 0.0823565i
\(83\) 4.37858 6.81320i 0.480611 0.747846i −0.513279 0.858222i \(-0.671569\pi\)
0.993890 + 0.110376i \(0.0352056\pi\)
\(84\) −0.553902 + 0.162640i −0.0604356 + 0.0177455i
\(85\) −2.28119 1.97958i −0.247429 0.214716i
\(86\) 1.96756 2.27069i 0.212168 0.244855i
\(87\) −2.95323 4.59532i −0.316620 0.492670i
\(88\) 0.119226 0.103310i 0.0127096 0.0110129i
\(89\) 5.58913 + 1.64112i 0.592446 + 0.173958i 0.564193 0.825643i \(-0.309187\pi\)
0.0282533 + 0.999601i \(0.491005\pi\)
\(90\) −3.06174 4.77185i −0.322736 0.502997i
\(91\) −1.99918 −0.209571
\(92\) 4.69231 + 0.991076i 0.489207 + 0.103327i
\(93\) 5.79489i 0.600902i
\(94\) 2.13084 4.66589i 0.219779 0.481249i
\(95\) −4.16719 4.81631i −0.427545 0.494143i
\(96\) −0.446297 0.515054i −0.0455499 0.0525674i
\(97\) 3.23796 + 5.03836i 0.328765 + 0.511568i 0.965807 0.259260i \(-0.0834788\pi\)
−0.637043 + 0.770829i \(0.719842\pi\)
\(98\) 4.74798 + 4.11415i 0.479619 + 0.415592i
\(99\) −0.0569265 + 0.395932i −0.00572133 + 0.0397927i
\(100\) 3.26877 + 3.78354i 0.326877 + 0.378354i
\(101\) 1.28915 + 0.828487i 0.128275 + 0.0824376i 0.603205 0.797586i \(-0.293890\pi\)
−0.474930 + 0.880024i \(0.657526\pi\)
\(102\) 0.911181 0.131008i 0.0902204 0.0129717i
\(103\) −6.55682 + 2.99440i −0.646063 + 0.295047i −0.711369 0.702818i \(-0.751925\pi\)
0.0653068 + 0.997865i \(0.479197\pi\)
\(104\) −0.980431 2.14684i −0.0961392 0.210515i
\(105\) −0.537098 + 1.17381i −0.0524154 + 0.114552i
\(106\) −1.90438 1.22387i −0.184970 0.118873i
\(107\) −3.12112 10.6296i −0.301730 1.02760i −0.961197 0.275864i \(-0.911036\pi\)
0.659467 0.751734i \(-0.270782\pi\)
\(108\) 3.73415 + 0.536889i 0.359318 + 0.0516622i
\(109\) 0.652738 0.753300i 0.0625210 0.0721531i −0.723628 0.690191i \(-0.757527\pi\)
0.786148 + 0.618038i \(0.212072\pi\)
\(110\) 0.000258280 0.352759i 2.46261e−5 0.0336343i
\(111\) 4.39301 + 5.06981i 0.416966 + 0.481205i
\(112\) 0.238646 0.812752i 0.0225499 0.0767979i
\(113\) −11.5161 5.25925i −1.08335 0.494748i −0.207944 0.978141i \(-0.566677\pi\)
−0.875404 + 0.483392i \(0.839404\pi\)
\(114\) 1.94111 0.181802
\(115\) 8.55058 6.47206i 0.797346 0.603523i
\(116\) 8.01520 0.744192
\(117\) 5.44341 + 2.48592i 0.503243 + 0.229824i
\(118\) 2.40442 8.18871i 0.221345 0.753831i
\(119\) 0.749271 + 0.864704i 0.0686855 + 0.0792673i
\(120\) −1.52391 0.00111576i −0.139113 0.000101855i
\(121\) 7.18717 8.29444i 0.653379 0.754040i
\(122\) 8.15954 + 1.17316i 0.738730 + 0.106213i
\(123\) 1.00616 + 3.42666i 0.0907222 + 0.308971i
\(124\) −7.15315 4.59705i −0.642372 0.412828i
\(125\) 11.1803 + 0.0245577i 0.999998 + 0.00219651i
\(126\) 0.892214 + 1.95368i 0.0794847 + 0.174047i
\(127\) −5.83410 + 2.66434i −0.517693 + 0.236422i −0.657087 0.753815i \(-0.728212\pi\)
0.139395 + 0.990237i \(0.455484\pi\)
\(128\) 0.989821 0.142315i 0.0874887 0.0125790i
\(129\) 1.72259 + 1.10704i 0.151665 + 0.0974695i
\(130\) −5.06254 1.49052i −0.444014 0.130727i
\(131\) 1.11243 7.73713i 0.0971936 0.675997i −0.881728 0.471759i \(-0.843619\pi\)
0.978921 0.204238i \(-0.0654716\pi\)
\(132\) 0.0812543 + 0.0704072i 0.00707228 + 0.00612816i
\(133\) 1.30437 + 2.02964i 0.113103 + 0.175992i
\(134\) 7.19031 + 8.29806i 0.621148 + 0.716843i
\(135\) 6.37930 5.51952i 0.549042 0.475045i
\(136\) −0.561120 + 1.22868i −0.0481156 + 0.105359i
\(137\) 10.5092i 0.897863i −0.893566 0.448931i \(-0.851805\pi\)
0.893566 0.448931i \(-0.148195\pi\)
\(138\) −0.213452 + 3.26145i −0.0181703 + 0.277633i
\(139\) 6.93930 0.588584 0.294292 0.955716i \(-0.404916\pi\)
0.294292 + 0.955716i \(0.404916\pi\)
\(140\) −1.02286 1.59416i −0.0864472 0.134731i
\(141\) 3.35417 + 0.984873i 0.282472 + 0.0829412i
\(142\) 4.17661 3.61905i 0.350493 0.303704i
\(143\) 0.201297 + 0.313224i 0.0168333 + 0.0261931i
\(144\) −1.66043 + 1.91623i −0.138369 + 0.159686i
\(145\) 11.7467 13.5363i 0.975508 1.12413i
\(146\) 0.412631 0.121160i 0.0341496 0.0100272i
\(147\) −2.31481 + 3.60191i −0.190922 + 0.297080i
\(148\) −9.74307 + 1.40084i −0.800875 + 0.115149i
\(149\) 4.86908 + 10.6618i 0.398891 + 0.873449i 0.997382 + 0.0723190i \(0.0230400\pi\)
−0.598491 + 0.801130i \(0.704233\pi\)
\(150\) −2.23525 + 2.57200i −0.182507 + 0.210003i
\(151\) −0.142151 0.988679i −0.0115681 0.0804576i 0.983220 0.182426i \(-0.0583950\pi\)
−0.994788 + 0.101968i \(0.967486\pi\)
\(152\) −1.53987 + 2.39609i −0.124900 + 0.194349i
\(153\) −0.964897 3.28614i −0.0780073 0.265668i
\(154\) −0.0190178 + 0.132272i −0.00153250 + 0.0106588i
\(155\) −18.2470 + 5.34329i −1.46563 + 0.429183i
\(156\) 1.35312 0.869598i 0.108336 0.0696235i
\(157\) −11.6398 + 10.0859i −0.928958 + 0.804946i −0.981062 0.193695i \(-0.937953\pi\)
0.0521041 + 0.998642i \(0.483407\pi\)
\(158\) −0.823673 + 2.80517i −0.0655279 + 0.223167i
\(159\) 0.640891 1.40336i 0.0508260 0.111293i
\(160\) 1.21029 1.88021i 0.0956816 0.148644i
\(161\) −3.55363 + 1.96841i −0.280065 + 0.155133i
\(162\) 5.03558i 0.395632i
\(163\) 15.1132 + 6.90196i 1.18376 + 0.540603i 0.907325 0.420430i \(-0.138121\pi\)
0.276432 + 0.961034i \(0.410848\pi\)
\(164\) −5.02801 1.47636i −0.392622 0.115284i
\(165\) 0.237988 0.0340397i 0.0185274 0.00264999i
\(166\) −6.81320 + 4.37858i −0.528807 + 0.339843i
\(167\) −11.1305 9.64460i −0.861301 0.746322i 0.107488 0.994206i \(-0.465719\pi\)
−0.968790 + 0.247884i \(0.920265\pi\)
\(168\) 0.571410 + 0.0821563i 0.0440852 + 0.00633850i
\(169\) −7.12885 + 2.09322i −0.548373 + 0.161017i
\(170\) 1.25269 + 2.74833i 0.0960769 + 0.210787i
\(171\) −1.02777 7.14831i −0.0785957 0.546645i
\(172\) −2.73304 + 1.24814i −0.208392 + 0.0951696i
\(173\) −18.3348 + 8.37321i −1.39397 + 0.636603i −0.963917 0.266202i \(-0.914231\pi\)
−0.430050 + 0.902805i \(0.641504\pi\)
\(174\) 0.777390 + 5.40687i 0.0589338 + 0.409893i
\(175\) −4.19133 0.608887i −0.316834 0.0460276i
\(176\) −0.151369 + 0.0444458i −0.0114098 + 0.00335023i
\(177\) 5.75711 + 0.827748i 0.432731 + 0.0622174i
\(178\) −4.40231 3.81462i −0.329967 0.285918i
\(179\) −3.08803 + 1.98456i −0.230810 + 0.148333i −0.650935 0.759134i \(-0.725623\pi\)
0.420124 + 0.907467i \(0.361986\pi\)
\(180\) 0.802765 + 5.61252i 0.0598345 + 0.418332i
\(181\) 18.3680 + 5.39332i 1.36528 + 0.400883i 0.880621 0.473821i \(-0.157125\pi\)
0.484659 + 0.874703i \(0.338944\pi\)
\(182\) 1.81852 + 0.830488i 0.134797 + 0.0615599i
\(183\) 5.61802i 0.415296i
\(184\) −3.85657 2.85077i −0.284310 0.210162i
\(185\) −11.9132 + 18.5074i −0.875873 + 1.36069i
\(186\) 2.40728 5.27122i 0.176511 0.386504i
\(187\) 0.0600349 0.204460i 0.00439019 0.0149516i
\(188\) −3.87656 + 3.35906i −0.282727 + 0.244984i
\(189\) −2.68830 + 1.72767i −0.195545 + 0.125669i
\(190\) 1.78984 + 6.11218i 0.129849 + 0.443424i
\(191\) 3.32960 23.1579i 0.240922 1.67565i −0.406605 0.913604i \(-0.633287\pi\)
0.647527 0.762043i \(-0.275803\pi\)
\(192\) 0.192005 + 0.653908i 0.0138567 + 0.0471917i
\(193\) 3.74555 5.82819i 0.269611 0.419522i −0.679877 0.733326i \(-0.737967\pi\)
0.949488 + 0.313804i \(0.101603\pi\)
\(194\) −0.852340 5.92815i −0.0611944 0.425617i
\(195\) 0.514459 3.55964i 0.0368412 0.254911i
\(196\) −2.60984 5.71475i −0.186417 0.408196i
\(197\) 0.961948 0.138307i 0.0685360 0.00985398i −0.107962 0.994155i \(-0.534432\pi\)
0.176498 + 0.984301i \(0.443523\pi\)
\(198\) 0.216258 0.336505i 0.0153688 0.0239143i
\(199\) −24.9595 + 7.32878i −1.76933 + 0.519523i −0.993741 0.111709i \(-0.964367\pi\)
−0.775594 + 0.631233i \(0.782549\pi\)
\(200\) −1.40164 4.79952i −0.0991106 0.339377i
\(201\) −4.90029 + 5.65524i −0.345640 + 0.398890i
\(202\) −0.828487 1.28915i −0.0582922 0.0907044i
\(203\) −5.13108 + 4.44610i −0.360131 + 0.312055i
\(204\) −0.883262 0.259349i −0.0618407 0.0181581i
\(205\) −9.86213 + 6.32781i −0.688801 + 0.441953i
\(206\) 7.20821 0.502220
\(207\) 12.1236 0.940801i 0.842646 0.0653902i
\(208\) 2.36012i 0.163645i
\(209\) 0.186660 0.408729i 0.0129116 0.0282724i
\(210\) 0.976178 0.844613i 0.0673627 0.0582838i
\(211\) −0.242799 0.280204i −0.0167149 0.0192901i 0.747331 0.664452i \(-0.231335\pi\)
−0.764045 + 0.645162i \(0.776790\pi\)
\(212\) 1.22387 + 1.90438i 0.0840559 + 0.130794i
\(213\) 2.84642 + 2.46644i 0.195033 + 0.168997i
\(214\) −1.57661 + 10.9655i −0.107775 + 0.749589i
\(215\) −1.89751 + 6.44486i −0.129409 + 0.439536i
\(216\) −3.17367 2.03959i −0.215941 0.138777i
\(217\) 7.12925 1.02503i 0.483965 0.0695837i
\(218\) −0.906684 + 0.414069i −0.0614084 + 0.0280443i
\(219\) 0.121752 + 0.266600i 0.00822726 + 0.0180152i
\(220\) −0.146776 + 0.320774i −0.00989567 + 0.0216266i
\(221\) −2.68185 1.72352i −0.180401 0.115937i
\(222\) −1.88995 6.43658i −0.126845 0.431995i
\(223\) 28.5755 + 4.10853i 1.91356 + 0.275128i 0.993243 0.116055i \(-0.0370250\pi\)
0.920313 + 0.391183i \(0.127934\pi\)
\(224\) −0.554709 + 0.640169i −0.0370631 + 0.0427731i
\(225\) 10.6551 + 6.86969i 0.710341 + 0.457979i
\(226\) 8.29069 + 9.56796i 0.551488 + 0.636451i
\(227\) −7.35169 + 25.0376i −0.487949 + 1.66180i 0.235849 + 0.971790i \(0.424213\pi\)
−0.723798 + 0.690012i \(0.757605\pi\)
\(228\) −1.76570 0.806368i −0.116936 0.0534030i
\(229\) −1.92024 −0.126893 −0.0634464 0.997985i \(-0.520209\pi\)
−0.0634464 + 0.997985i \(0.520209\pi\)
\(230\) −10.4665 + 2.33516i −0.690139 + 0.153976i
\(231\) −0.0910720 −0.00599209
\(232\) −7.29088 3.32963i −0.478670 0.218601i
\(233\) 6.15875 20.9748i 0.403473 1.37410i −0.468030 0.883713i \(-0.655036\pi\)
0.871503 0.490390i \(-0.163146\pi\)
\(234\) −3.91881 4.52255i −0.256181 0.295648i
\(235\) −0.00839781 + 11.4697i −0.000547813 + 0.748203i
\(236\) −5.58885 + 6.44988i −0.363803 + 0.419851i
\(237\) −1.97219 0.283558i −0.128108 0.0184191i
\(238\) −0.322349 1.09782i −0.0208948 0.0711612i
\(239\) 9.65214 + 6.20306i 0.624345 + 0.401242i 0.814212 0.580568i \(-0.197169\pi\)
−0.189867 + 0.981810i \(0.560806\pi\)
\(240\) 1.38573 + 0.634070i 0.0894488 + 0.0409291i
\(241\) −7.16563 15.6905i −0.461579 1.01072i −0.987125 0.159952i \(-0.948866\pi\)
0.525546 0.850765i \(-0.323861\pi\)
\(242\) −9.98331 + 4.55923i −0.641752 + 0.293078i
\(243\) 14.5993 2.09907i 0.936547 0.134655i
\(244\) −6.93482 4.45674i −0.443957 0.285314i
\(245\) −13.4761 3.96766i −0.860957 0.253485i
\(246\) 0.508252 3.53497i 0.0324050 0.225382i
\(247\) −5.08030 4.40210i −0.323252 0.280099i
\(248\) 4.59705 + 7.15315i 0.291913 + 0.454226i
\(249\) −3.61449 4.17135i −0.229059 0.264349i
\(250\) −10.1598 4.66681i −0.642560 0.295155i
\(251\) −1.85426 + 4.06026i −0.117040 + 0.256281i −0.959081 0.283132i \(-0.908627\pi\)
0.842041 + 0.539413i \(0.181354\pi\)
\(252\) 2.14776i 0.135296i
\(253\) 0.666219 + 0.358571i 0.0418848 + 0.0225432i
\(254\) 6.41369 0.402431
\(255\) −1.73246 + 1.11159i −0.108491 + 0.0696108i
\(256\) −0.959493 0.281733i −0.0599683 0.0176083i
\(257\) 11.9204 10.3291i 0.743573 0.644310i −0.198353 0.980131i \(-0.563559\pi\)
0.941926 + 0.335821i \(0.109014\pi\)
\(258\) −1.10704 1.72259i −0.0689213 0.107244i
\(259\) 5.46015 6.30135i 0.339277 0.391547i
\(260\) 3.98586 + 3.45888i 0.247193 + 0.214511i
\(261\) 19.4996 5.72561i 1.20700 0.354406i
\(262\) −4.22603 + 6.57582i −0.261085 + 0.406256i
\(263\) −4.57476 + 0.657751i −0.282092 + 0.0405586i −0.281908 0.959441i \(-0.590967\pi\)
−0.000183226 1.00000i \(0.500058\pi\)
\(264\) −0.0446633 0.0977989i −0.00274883 0.00601911i
\(265\) 5.00984 + 0.724050i 0.307752 + 0.0444780i
\(266\) −0.343355 2.38808i −0.0210524 0.146423i
\(267\) 2.14628 3.33967i 0.131350 0.204385i
\(268\) −3.09340 10.5351i −0.188959 0.643536i
\(269\) 1.66055 11.5494i 0.101245 0.704176i −0.874461 0.485095i \(-0.838785\pi\)
0.975707 0.219081i \(-0.0703060\pi\)
\(270\) −8.09570 + 2.37068i −0.492689 + 0.144275i
\(271\) 23.8621 15.3353i 1.44952 0.931550i 0.450268 0.892893i \(-0.351328\pi\)
0.999253 0.0386569i \(-0.0123079\pi\)
\(272\) 1.02083 0.884550i 0.0618966 0.0536337i
\(273\) −0.383851 + 1.30728i −0.0232317 + 0.0791200i
\(274\) −4.36568 + 9.55952i −0.263741 + 0.577511i
\(275\) 0.326626 + 0.717992i 0.0196963 + 0.0432965i
\(276\) 1.54902 2.87805i 0.0932399 0.173238i
\(277\) 27.9347i 1.67843i 0.543797 + 0.839217i \(0.316986\pi\)
−0.543797 + 0.839217i \(0.683014\pi\)
\(278\) −6.31221 2.88269i −0.378581 0.172892i
\(279\) −20.6863 6.07405i −1.23846 0.363644i
\(280\) 0.268185 + 1.87501i 0.0160271 + 0.112053i
\(281\) −2.62086 + 1.68433i −0.156348 + 0.100479i −0.616475 0.787374i \(-0.711440\pi\)
0.460128 + 0.887853i \(0.347804\pi\)
\(282\) −2.64193 2.28924i −0.157325 0.136322i
\(283\) −0.729777 0.104926i −0.0433807 0.00623721i 0.120590 0.992702i \(-0.461521\pi\)
−0.163971 + 0.986465i \(0.552430\pi\)
\(284\) −5.30259 + 1.55698i −0.314651 + 0.0923898i
\(285\) −3.94954 + 1.80020i −0.233951 + 0.106635i
\(286\) −0.0529882 0.368541i −0.00313326 0.0217923i
\(287\) 4.03772 1.84397i 0.238339 0.108846i
\(288\) 2.30641 1.05330i 0.135906 0.0620664i
\(289\) −2.15970 15.0210i −0.127041 0.883590i
\(290\) −16.3083 + 7.43335i −0.957659 + 0.436501i
\(291\) 3.91633 1.14994i 0.229579 0.0674105i
\(292\) −0.425674 0.0612027i −0.0249107 0.00358162i
\(293\) −10.2257 8.86058i −0.597389 0.517640i 0.302849 0.953039i \(-0.402062\pi\)
−0.900238 + 0.435398i \(0.856608\pi\)
\(294\) 3.60191 2.31481i 0.210068 0.135002i
\(295\) 2.70204 + 18.8913i 0.157319 + 1.09989i
\(296\) 9.44454 + 2.77317i 0.548953 + 0.161187i
\(297\) 0.541370 + 0.247235i 0.0314135 + 0.0143460i
\(298\) 11.7210i 0.678979i
\(299\) 7.95504 8.05181i 0.460052 0.465648i
\(300\) 3.10170 1.41101i 0.179077 0.0814650i
\(301\) 1.05725 2.31506i 0.0609390 0.133438i
\(302\) −0.281407 + 0.958386i −0.0161932 + 0.0551489i
\(303\) 0.789277 0.683912i 0.0453428 0.0392897i
\(304\) 2.39609 1.53987i 0.137425 0.0883178i
\(305\) −17.6900 + 5.18020i −1.01293 + 0.296617i
\(306\) −0.487409 + 3.39001i −0.0278633 + 0.193794i
\(307\) −3.95317 13.4633i −0.225619 0.768389i −0.992026 0.126033i \(-0.959775\pi\)
0.766407 0.642356i \(-0.222043\pi\)
\(308\) 0.0722469 0.112418i 0.00411665 0.00640563i
\(309\) 0.699121 + 4.86249i 0.0397716 + 0.276618i
\(310\) 18.8177 + 2.71964i 1.06877 + 0.154465i
\(311\) 9.54217 + 20.8944i 0.541087 + 1.18481i 0.960822 + 0.277168i \(0.0893958\pi\)
−0.419735 + 0.907647i \(0.637877\pi\)
\(312\) −1.59209 + 0.228907i −0.0901341 + 0.0129593i
\(313\) 10.0294 15.6060i 0.566893 0.882102i −0.432920 0.901432i \(-0.642517\pi\)
0.999813 + 0.0193299i \(0.00615327\pi\)
\(314\) 14.7778 4.33915i 0.833959 0.244873i
\(315\) −3.62722 3.14766i −0.204371 0.177350i
\(316\) 1.91455 2.20951i 0.107702 0.124295i
\(317\) 2.94533 + 4.58303i 0.165426 + 0.257409i 0.914063 0.405572i \(-0.132928\pi\)
−0.748637 + 0.662980i \(0.769291\pi\)
\(318\) −1.16595 + 1.01030i −0.0653832 + 0.0566549i
\(319\) 1.21325 + 0.356242i 0.0679289 + 0.0199457i
\(320\) −1.88198 + 1.20753i −0.105206 + 0.0675031i
\(321\) −7.55002 −0.421401
\(322\) 4.05020 0.314299i 0.225709 0.0175152i
\(323\) 3.84724i 0.214066i
\(324\) −2.09185 + 4.58052i −0.116214 + 0.254473i
\(325\) 11.6830 1.66230i 0.648054 0.0922077i
\(326\) −10.8803 12.5565i −0.602602 0.695440i
\(327\) −0.367260 0.571467i −0.0203095 0.0316022i
\(328\) 3.96034 + 3.43165i 0.218673 + 0.189481i
\(329\) 0.618351 4.30073i 0.0340908 0.237107i
\(330\) −0.230622 0.0679003i −0.0126953 0.00373779i
\(331\) 18.6460 + 11.9831i 1.02488 + 0.658649i 0.941202 0.337844i \(-0.109697\pi\)
0.0836763 + 0.996493i \(0.473334\pi\)
\(332\) 8.01643 1.15259i 0.439959 0.0632565i
\(333\) −22.7026 + 10.3679i −1.24409 + 0.568158i
\(334\) 6.11812 + 13.3968i 0.334768 + 0.733040i
\(335\) −22.3256 10.2155i −1.21978 0.558135i
\(336\) −0.485644 0.312104i −0.0264940 0.0170267i
\(337\) −6.81020 23.1934i −0.370975 1.26343i −0.907683 0.419658i \(-0.862150\pi\)
0.536707 0.843769i \(-0.319668\pi\)
\(338\) 7.35419 + 1.05737i 0.400015 + 0.0575135i
\(339\) −5.65021 + 6.52070i −0.306878 + 0.354156i
\(340\) 0.00221142 3.02036i 0.000119931 0.163802i
\(341\) −0.878443 1.01378i −0.0475703 0.0548991i
\(342\) −2.03462 + 6.92929i −0.110020 + 0.374693i
\(343\) 10.2344 + 4.67388i 0.552604 + 0.252366i
\(344\) 3.00455 0.161995
\(345\) −2.59038 6.83395i −0.139461 0.367928i
\(346\) 20.1563 1.08361
\(347\) 20.7095 + 9.45771i 1.11174 + 0.507716i 0.884696 0.466168i \(-0.154366\pi\)
0.227047 + 0.973884i \(0.427093\pi\)
\(348\) 1.53895 5.24120i 0.0824966 0.280958i
\(349\) 21.9046 + 25.2793i 1.17253 + 1.35317i 0.922999 + 0.384801i \(0.125730\pi\)
0.249528 + 0.968368i \(0.419725\pi\)
\(350\) 3.55962 + 2.29500i 0.190270 + 0.122673i
\(351\) 5.83067 6.72895i 0.311218 0.359165i
\(352\) 0.156153 + 0.0224514i 0.00832299 + 0.00119666i
\(353\) −9.09561 30.9768i −0.484110 1.64873i −0.733024 0.680203i \(-0.761892\pi\)
0.248914 0.968526i \(-0.419926\pi\)
\(354\) −4.89300 3.14454i −0.260060 0.167130i
\(355\) −5.14173 + 11.2370i −0.272895 + 0.596400i
\(356\) 2.41983 + 5.29868i 0.128251 + 0.280830i
\(357\) 0.709300 0.323927i 0.0375401 0.0171440i
\(358\) 3.63339 0.522402i 0.192031 0.0276098i
\(359\) 27.6221 + 17.7516i 1.45784 + 0.936895i 0.998825 + 0.0484650i \(0.0154329\pi\)
0.459012 + 0.888430i \(0.348203\pi\)
\(360\) 1.60130 5.43881i 0.0843961 0.286650i
\(361\) 1.54946 10.7767i 0.0815504 0.567196i
\(362\) −14.4676 12.5363i −0.760402 0.658892i
\(363\) −4.04382 6.29231i −0.212246 0.330261i
\(364\) −1.30918 1.51088i −0.0686198 0.0791915i
\(365\) −0.727208 + 0.629198i −0.0380638 + 0.0329337i
\(366\) 2.33381 5.11033i 0.121990 0.267121i
\(367\) 10.7767i 0.562537i 0.959629 + 0.281269i \(0.0907552\pi\)
−0.959629 + 0.281269i \(0.909245\pi\)
\(368\) 2.32380 + 4.19523i 0.121137 + 0.218691i
\(369\) −13.2869 −0.691690
\(370\) 18.5249 11.8861i 0.963062 0.617926i
\(371\) −1.83986 0.540233i −0.0955210 0.0280475i
\(372\) −4.37949 + 3.79485i −0.227066 + 0.196754i
\(373\) −15.4129 23.9830i −0.798050 1.24179i −0.966649 0.256106i \(-0.917560\pi\)
0.168598 0.985685i \(-0.446076\pi\)
\(374\) −0.139546 + 0.161044i −0.00721573 + 0.00832740i
\(375\) 2.16273 7.30618i 0.111683 0.377289i
\(376\) 4.92164 1.44513i 0.253814 0.0745266i
\(377\) 10.2272 15.9139i 0.526729 0.819606i
\(378\) 3.16306 0.454780i 0.162690 0.0233913i
\(379\) −5.60508 12.2734i −0.287914 0.630443i 0.709311 0.704896i \(-0.249006\pi\)
−0.997225 + 0.0744526i \(0.976279\pi\)
\(380\) 0.910998 6.30336i 0.0467332 0.323356i
\(381\) 0.622061 + 4.32653i 0.0318691 + 0.221655i
\(382\) −12.6489 + 19.6820i −0.647172 + 1.00702i
\(383\) 10.5663 + 35.9854i 0.539911 + 1.83877i 0.544472 + 0.838779i \(0.316730\pi\)
−0.00456073 + 0.999990i \(0.501452\pi\)
\(384\) 0.0969895 0.674577i 0.00494947 0.0344244i
\(385\) −0.0839746 0.286768i −0.00427974 0.0146150i
\(386\) −5.82819 + 3.74555i −0.296647 + 0.190643i
\(387\) −5.75743 + 4.98884i −0.292666 + 0.253597i
\(388\) −1.68733 + 5.74651i −0.0856611 + 0.291735i
\(389\) −2.93825 + 6.43387i −0.148975 + 0.326210i −0.969377 0.245577i \(-0.921023\pi\)
0.820402 + 0.571787i \(0.193750\pi\)
\(390\) −1.94669 + 3.02424i −0.0985747 + 0.153139i
\(391\) −6.46412 0.423058i −0.326904 0.0213950i
\(392\) 6.28248i 0.317313i
\(393\) −4.84578 2.21299i −0.244437 0.111631i
\(394\) −0.932474 0.273799i −0.0469773 0.0137938i
\(395\) −0.925626 6.47150i −0.0465733 0.325617i
\(396\) −0.336505 + 0.216258i −0.0169100 + 0.0108674i
\(397\) 10.7817 + 9.34236i 0.541116 + 0.468880i 0.882016 0.471220i \(-0.156186\pi\)
−0.340900 + 0.940100i \(0.610732\pi\)
\(398\) 25.7485 + 3.70207i 1.29065 + 0.185568i
\(399\) 1.57764 0.463238i 0.0789810 0.0231909i
\(400\) −0.718821 + 4.94806i −0.0359410 + 0.247403i
\(401\) −2.31363 16.0916i −0.115537 0.803577i −0.962375 0.271726i \(-0.912406\pi\)
0.846838 0.531851i \(-0.178504\pi\)
\(402\) 6.80673 3.10853i 0.339489 0.155039i
\(403\) −18.2546 + 8.33658i −0.909324 + 0.415275i
\(404\) 0.218086 + 1.51682i 0.0108502 + 0.0754646i
\(405\) 4.67003 + 10.2458i 0.232056 + 0.509117i
\(406\) 6.51437 1.91279i 0.323303 0.0949302i
\(407\) −1.53706 0.220995i −0.0761890 0.0109543i
\(408\) 0.695706 + 0.602833i 0.0344426 + 0.0298447i
\(409\) −30.4398 + 19.5625i −1.50515 + 0.967302i −0.510968 + 0.859600i \(0.670713\pi\)
−0.994183 + 0.107702i \(0.965651\pi\)
\(410\) 11.5996 1.65910i 0.572862 0.0819371i
\(411\) −6.87205 2.01782i −0.338973 0.0995316i
\(412\) −6.55682 2.99440i −0.323031 0.147523i
\(413\) 7.22919i 0.355725i
\(414\) −11.4188 4.18053i −0.561204 0.205462i
\(415\) 9.80195 15.2276i 0.481159 0.747494i
\(416\) 0.980431 2.14684i 0.0480696 0.105258i
\(417\) 1.33238 4.53766i 0.0652468 0.222210i
\(418\) −0.339585 + 0.294252i −0.0166096 + 0.0143923i
\(419\) 19.8526 12.7585i 0.969864 0.623294i 0.0431532 0.999068i \(-0.486260\pi\)
0.926711 + 0.375775i \(0.122623\pi\)
\(420\) −1.23883 + 0.362768i −0.0604486 + 0.0177012i
\(421\) −2.62284 + 18.2422i −0.127829 + 0.889072i 0.820469 + 0.571691i \(0.193712\pi\)
−0.948298 + 0.317381i \(0.897197\pi\)
\(422\) 0.104456 + 0.355745i 0.00508485 + 0.0173174i
\(423\) −7.03149 + 10.9412i −0.341883 + 0.531980i
\(424\) −0.322165 2.24070i −0.0156457 0.108818i
\(425\) −5.09764 4.43022i −0.247272 0.214897i
\(426\) −1.56460 3.42599i −0.0758050 0.165990i
\(427\) 6.91165 0.993745i 0.334478 0.0480907i
\(428\) 5.98938 9.31966i 0.289508 0.450483i
\(429\) 0.243470 0.0714892i 0.0117548 0.00345153i
\(430\) 4.40333 5.07420i 0.212347 0.244699i
\(431\) −10.5778 + 12.2074i −0.509515 + 0.588011i −0.950974 0.309270i \(-0.899915\pi\)
0.441460 + 0.897281i \(0.354461\pi\)
\(432\) 2.03959 + 3.17367i 0.0981299 + 0.152693i
\(433\) −14.7923 + 12.8176i −0.710871 + 0.615973i −0.933352 0.358964i \(-0.883130\pi\)
0.222480 + 0.974937i \(0.428585\pi\)
\(434\) −6.91081 2.02920i −0.331729 0.0974046i
\(435\) −6.59610 10.2803i −0.316259 0.492901i
\(436\) 0.996759 0.0477361
\(437\) −13.3648 2.82282i −0.639326 0.135034i
\(438\) 0.293086i 0.0140042i
\(439\) 2.87649 6.29864i 0.137288 0.300618i −0.828484 0.560013i \(-0.810796\pi\)
0.965771 + 0.259395i \(0.0835233\pi\)
\(440\) 0.266767 0.230813i 0.0127176 0.0110036i
\(441\) −10.4316 12.0387i −0.496742 0.573271i
\(442\) 1.72352 + 2.68185i 0.0819796 + 0.127563i
\(443\) 16.1098 + 13.9592i 0.765398 + 0.663221i 0.947391 0.320079i \(-0.103709\pi\)
−0.181993 + 0.983300i \(0.558255\pi\)
\(444\) −0.954693 + 6.64003i −0.0453077 + 0.315122i
\(445\) 12.4950 + 3.67880i 0.592319 + 0.174392i
\(446\) −24.2864 15.6079i −1.15000 0.739057i
\(447\) 7.90672 1.13681i 0.373975 0.0537695i
\(448\) 0.770517 0.351883i 0.0364035 0.0166249i
\(449\) 2.15138 + 4.71086i 0.101530 + 0.222319i 0.953579 0.301142i \(-0.0973678\pi\)
−0.852050 + 0.523461i \(0.824641\pi\)
\(450\) −6.83846 10.6752i −0.322368 0.503233i
\(451\) −0.695465 0.446948i −0.0327482 0.0210460i
\(452\) −3.56680 12.1474i −0.167768 0.571366i
\(453\) −0.673798 0.0968776i −0.0316578 0.00455170i
\(454\) 17.0883 19.7210i 0.801994 0.925551i
\(455\) −4.47030 0.00327302i −0.209571 0.000153442i
\(456\) 1.27116 + 1.46700i 0.0595275 + 0.0686984i
\(457\) 8.23241 28.0370i 0.385096 1.31152i −0.507886 0.861424i \(-0.669573\pi\)
0.892982 0.450092i \(-0.148609\pi\)
\(458\) 1.74671 + 0.797695i 0.0816184 + 0.0372739i
\(459\) −5.09575 −0.237849
\(460\) 10.4907 + 2.22380i 0.489131 + 0.103685i
\(461\) −19.3274 −0.900165 −0.450082 0.892987i \(-0.648605\pi\)
−0.450082 + 0.892987i \(0.648605\pi\)
\(462\) 0.0828420 + 0.0378327i 0.00385416 + 0.00176013i
\(463\) 9.18540 31.2826i 0.426882 1.45383i −0.412837 0.910805i \(-0.635462\pi\)
0.839719 0.543021i \(-0.182720\pi\)
\(464\) 5.24884 + 6.05748i 0.243671 + 0.281211i
\(465\) −0.00948730 + 12.9578i −0.000439963 + 0.600902i
\(466\) −14.3154 + 16.5209i −0.663149 + 0.765315i
\(467\) −0.134260 0.0193037i −0.00621283 0.000893271i 0.139208 0.990263i \(-0.455544\pi\)
−0.145421 + 0.989370i \(0.546454\pi\)
\(468\) 1.68594 + 5.74179i 0.0779326 + 0.265414i
\(469\) 7.82423 + 5.02833i 0.361290 + 0.232187i
\(470\) 4.77234 10.4297i 0.220132 0.481088i
\(471\) 4.36038 + 9.54790i 0.200916 + 0.439944i
\(472\) 7.76317 3.54532i 0.357329 0.163187i
\(473\) −0.469171 + 0.0674565i −0.0215725 + 0.00310165i
\(474\) 1.67617 + 1.07721i 0.0769892 + 0.0494780i
\(475\) −9.31023 10.7764i −0.427183 0.494456i
\(476\) −0.162832 + 1.13252i −0.00746340 + 0.0519091i
\(477\) 4.33786 + 3.75878i 0.198617 + 0.172103i
\(478\) −6.20306 9.65214i −0.283721 0.441479i
\(479\) −25.2392 29.1276i −1.15321 1.33087i −0.934866 0.355001i \(-0.884481\pi\)
−0.218342 0.975872i \(-0.570065\pi\)
\(480\) −0.997106 1.15243i −0.0455114 0.0526008i
\(481\) −9.65064 + 21.1320i −0.440031 + 0.963534i
\(482\) 17.2493i 0.785686i
\(483\) 0.604846 + 2.70169i 0.0275215 + 0.122931i
\(484\) 10.9751 0.498869
\(485\) 7.23205 + 11.2714i 0.328390 + 0.511809i
\(486\) −14.1520 4.15540i −0.641947 0.188493i
\(487\) −3.33150 + 2.88676i −0.150965 + 0.130811i −0.727069 0.686565i \(-0.759118\pi\)
0.576104 + 0.817376i \(0.304572\pi\)
\(488\) 4.45674 + 6.93482i 0.201747 + 0.313925i
\(489\) 7.41505 8.55742i 0.335320 0.386980i
\(490\) 10.6101 + 9.20729i 0.479314 + 0.415943i
\(491\) −2.94594 + 0.865007i −0.132949 + 0.0390372i −0.347530 0.937669i \(-0.612979\pi\)
0.214581 + 0.976706i \(0.431161\pi\)
\(492\) −1.93080 + 3.00439i −0.0870473 + 0.135448i
\(493\) −10.7163 + 1.54077i −0.482637 + 0.0693928i
\(494\) 2.79250 + 6.11473i 0.125641 + 0.275115i
\(495\) −0.127940 + 0.885238i −0.00575046 + 0.0397885i
\(496\) −1.21010 8.41642i −0.0543350 0.377909i
\(497\) 2.53088 3.93812i 0.113525 0.176649i
\(498\) 1.55502 + 5.29591i 0.0696821 + 0.237315i
\(499\) −2.86829 + 19.9494i −0.128402 + 0.893056i 0.819178 + 0.573539i \(0.194430\pi\)
−0.947580 + 0.319517i \(0.896479\pi\)
\(500\) 7.30299 + 8.46560i 0.326600 + 0.378593i
\(501\) −8.44378 + 5.42649i −0.377240 + 0.242438i
\(502\) 3.37338 2.92305i 0.150562 0.130462i
\(503\) −8.17978 + 27.8578i −0.364719 + 1.24212i 0.549018 + 0.835810i \(0.315002\pi\)
−0.913737 + 0.406307i \(0.866816\pi\)
\(504\) −0.892214 + 1.95368i −0.0397424 + 0.0870236i
\(505\) 2.88127 + 1.85466i 0.128215 + 0.0825315i
\(506\) −0.457058 0.602925i −0.0203187 0.0268033i
\(507\) 5.06352i 0.224879i
\(508\) −5.83410 2.66434i −0.258846 0.118211i
\(509\) −20.6803 6.07230i −0.916640 0.269150i −0.210807 0.977528i \(-0.567609\pi\)
−0.705833 + 0.708378i \(0.749427\pi\)
\(510\) 2.03768 0.291451i 0.0902299 0.0129057i
\(511\) 0.306453 0.196945i 0.0135567 0.00871235i
\(512\) 0.755750 + 0.654861i 0.0333997 + 0.0289410i
\(513\) −10.6357 1.52919i −0.469579 0.0675153i
\(514\) −15.1340 + 4.44375i −0.667533 + 0.196005i
\(515\) −14.6664 + 6.68494i −0.646279 + 0.294574i
\(516\) 0.291410 + 2.02680i 0.0128286 + 0.0892250i
\(517\) −0.736085 + 0.336159i −0.0323730 + 0.0147842i
\(518\) −7.58440 + 3.46368i −0.333239 + 0.152185i
\(519\) 1.95495 + 13.5969i 0.0858126 + 0.596839i
\(520\) −2.18880 4.80210i −0.0959850 0.210586i
\(521\) −12.4496 + 3.65553i −0.545427 + 0.160152i −0.542826 0.839845i \(-0.682646\pi\)
−0.00260018 + 0.999997i \(0.500828\pi\)
\(522\) −20.1160 2.89224i −0.880453 0.126590i
\(523\) 33.2436 + 28.8058i 1.45364 + 1.25959i 0.906271 + 0.422698i \(0.138917\pi\)
0.547371 + 0.836890i \(0.315629\pi\)
\(524\) 6.57582 4.22603i 0.287266 0.184615i
\(525\) −1.20291 + 2.62383i −0.0524993 + 0.114513i
\(526\) 4.43458 + 1.30211i 0.193357 + 0.0567748i
\(527\) 10.4474 + 4.77119i 0.455098 + 0.207836i
\(528\) 0.107515i 0.00467898i
\(529\) 6.21254 22.1451i 0.270110 0.962829i
\(530\) −4.25633 2.73978i −0.184883 0.119008i
\(531\) −8.98930 + 19.6838i −0.390102 + 0.854205i
\(532\) −0.679720 + 2.31491i −0.0294696 + 0.100364i
\(533\) −9.34690 + 8.09913i −0.404859 + 0.350812i
\(534\) −3.33967 + 2.14628i −0.144522 + 0.0928785i
\(535\) −6.96163 23.7735i −0.300978 1.02782i
\(536\) −1.56260 + 10.8681i −0.0674942 + 0.469432i
\(537\) 0.704801 + 2.40033i 0.0304144 + 0.103582i
\(538\) −6.30826 + 9.81584i −0.271968 + 0.423191i
\(539\) −0.141051 0.981029i −0.00607548 0.0422559i
\(540\) 8.34892 + 1.20663i 0.359280 + 0.0519253i
\(541\) 11.0401 + 24.1744i 0.474650 + 1.03934i 0.983900 + 0.178720i \(0.0571956\pi\)
−0.509250 + 0.860619i \(0.670077\pi\)
\(542\) −28.0762 + 4.03675i −1.20598 + 0.173393i
\(543\) 7.05347 10.9754i 0.302693 0.471000i
\(544\) −1.29603 + 0.380549i −0.0555668 + 0.0163159i
\(545\) 1.46080 1.68336i 0.0625738 0.0721073i
\(546\) 0.892226 1.02968i 0.0381837 0.0440664i
\(547\) −2.15783 3.35764i −0.0922620 0.143562i 0.792055 0.610450i \(-0.209012\pi\)
−0.884317 + 0.466888i \(0.845375\pi\)
\(548\) 7.94233 6.88207i 0.339280 0.293987i
\(549\) −20.0549 5.88865i −0.855923 0.251322i
\(550\) 0.00115506 0.788793i 4.92521e−5 0.0336343i
\(551\) −22.8292 −0.972556
\(552\) −2.60462 + 1.97448i −0.110860 + 0.0840393i
\(553\) 2.47648i 0.105310i
\(554\) 11.6045 25.4103i 0.493028 1.07958i
\(555\) 9.81477 + 11.3436i 0.416614 + 0.481510i
\(556\) 4.54427 + 5.24437i 0.192720 + 0.222411i
\(557\) 16.0950 + 25.0443i 0.681968 + 1.06116i 0.993817 + 0.111031i \(0.0354153\pi\)
−0.311849 + 0.950132i \(0.600948\pi\)
\(558\) 16.2937 + 14.1185i 0.689766 + 0.597686i
\(559\) −1.00917 + 7.01895i −0.0426834 + 0.296870i
\(560\) 0.534958 1.81698i 0.0226061 0.0767813i
\(561\) −0.122171 0.0785146i −0.00515807 0.00331489i
\(562\) 3.08372 0.443371i 0.130079 0.0187025i
\(563\) −30.2254 + 13.8035i −1.27385 + 0.581747i −0.933508 0.358556i \(-0.883269\pi\)
−0.340339 + 0.940303i \(0.610542\pi\)
\(564\) 1.45220 + 3.17987i 0.0611485 + 0.133896i
\(565\) −25.7423 11.7789i −1.08299 0.495542i
\(566\) 0.620241 + 0.398604i 0.0260707 + 0.0167546i
\(567\) −1.20172 4.09268i −0.0504674 0.171876i
\(568\) 5.47020 + 0.786496i 0.229524 + 0.0330006i
\(569\) 9.00955 10.3976i 0.377700 0.435889i −0.534792 0.844984i \(-0.679610\pi\)
0.912492 + 0.409095i \(0.134155\pi\)
\(570\) 4.34046 + 0.00317796i 0.181802 + 0.000133110i
\(571\) −27.6480 31.9075i −1.15703 1.33529i −0.932648 0.360788i \(-0.882508\pi\)
−0.224386 0.974500i \(-0.572038\pi\)
\(572\) −0.104898 + 0.357249i −0.00438599 + 0.0149373i
\(573\) −14.5038 6.62368i −0.605906 0.276708i
\(574\) −4.43885 −0.185274
\(575\) 19.1303 14.4580i 0.797787 0.602939i
\(576\) −2.53554 −0.105647
\(577\) −11.6030 5.29891i −0.483039 0.220597i 0.158985 0.987281i \(-0.449178\pi\)
−0.642024 + 0.766684i \(0.721905\pi\)
\(578\) −4.27543 + 14.5608i −0.177834 + 0.605648i
\(579\) −3.09193 3.56828i −0.128496 0.148293i
\(580\) 17.9225 + 0.0131224i 0.744192 + 0.000544876i
\(581\) −4.49251 + 5.18464i −0.186381 + 0.215095i
\(582\) −4.04012 0.580881i −0.167468 0.0240783i
\(583\) 0.100614 + 0.342660i 0.00416700 + 0.0141915i
\(584\) 0.361782 + 0.232503i 0.0149707 + 0.00962106i
\(585\) 12.1678 + 5.56760i 0.503075 + 0.230192i
\(586\) 5.62076 + 12.3078i 0.232192 + 0.508429i
\(587\) 10.2048 4.66037i 0.421197 0.192354i −0.193530 0.981094i \(-0.561994\pi\)
0.614727 + 0.788740i \(0.289266\pi\)
\(588\) −4.23802 + 0.609335i −0.174773 + 0.0251285i
\(589\) 20.3739 + 13.0935i 0.839492 + 0.539509i
\(590\) 5.38985 18.3066i 0.221897 0.753669i
\(591\) 0.0942583 0.655581i 0.00387727 0.0269670i
\(592\) −7.43904 6.44596i −0.305743 0.264928i
\(593\) −3.28292 5.10832i −0.134813 0.209774i 0.767283 0.641309i \(-0.221608\pi\)
−0.902096 + 0.431535i \(0.857972\pi\)
\(594\) −0.389742 0.449786i −0.0159913 0.0184550i
\(595\) 1.67400 + 1.93476i 0.0686275 + 0.0793176i
\(596\) −4.86908 + 10.6618i −0.199445 + 0.436724i
\(597\) 17.7284i 0.725575i
\(598\) −10.5810 + 4.01955i −0.432689 + 0.164371i
\(599\) 34.6374 1.41524 0.707622 0.706591i \(-0.249768\pi\)
0.707622 + 0.706591i \(0.249768\pi\)
\(600\) −3.40756 0.00498984i −0.139113 0.000203710i
\(601\) 26.2051 + 7.69450i 1.06893 + 0.313865i 0.768441 0.639921i \(-0.221033\pi\)
0.300486 + 0.953786i \(0.402851\pi\)
\(602\) −1.92342 + 1.66665i −0.0783928 + 0.0679277i
\(603\) −15.0514 23.4205i −0.612942 0.953756i
\(604\) 0.654105 0.754877i 0.0266152 0.0307155i
\(605\) 16.0846 18.5352i 0.653931 0.753561i
\(606\) −1.00206 + 0.294231i −0.0407059 + 0.0119523i
\(607\) 13.7892 21.4564i 0.559686 0.870889i −0.439945 0.898025i \(-0.645002\pi\)
0.999632 + 0.0271355i \(0.00863857\pi\)
\(608\) −2.81925 + 0.405347i −0.114336 + 0.0164390i
\(609\) 1.92215 + 4.20892i 0.0778894 + 0.170554i
\(610\) 18.2434 + 2.63663i 0.738652 + 0.106754i
\(611\) 1.72287 + 11.9829i 0.0697000 + 0.484774i
\(612\) 1.85162 2.88118i 0.0748474 0.116465i
\(613\) 7.87930 + 26.8344i 0.318242 + 1.08383i 0.950925 + 0.309422i \(0.100135\pi\)
−0.632683 + 0.774411i \(0.718046\pi\)
\(614\) −1.99691 + 13.8888i −0.0805888 + 0.560507i
\(615\) 2.24423 + 7.66389i 0.0904959 + 0.309038i
\(616\) −0.112418 + 0.0722469i −0.00452946 + 0.00291091i
\(617\) 12.3085 10.6654i 0.495523 0.429373i −0.370908 0.928670i \(-0.620954\pi\)
0.866431 + 0.499296i \(0.166408\pi\)
\(618\) 1.38401 4.71350i 0.0556730 0.189605i
\(619\) 2.39946 5.25407i 0.0964423 0.211179i −0.855262 0.518196i \(-0.826604\pi\)
0.951704 + 0.307017i \(0.0993309\pi\)
\(620\) −15.9874 10.2910i −0.642070 0.413298i
\(621\) 3.73888 17.7020i 0.150036 0.710355i
\(622\) 22.9702i 0.921021i
\(623\) −4.48833 2.04975i −0.179821 0.0821215i
\(624\) 1.54330 + 0.453155i 0.0617816 + 0.0181407i
\(625\) 24.9999 + 0.0732170i 0.999996 + 0.00292868i
\(626\) −15.6060 + 10.0294i −0.623740 + 0.400854i
\(627\) −0.231432 0.200537i −0.00924249 0.00800866i
\(628\) −15.2449 2.19189i −0.608338 0.0874658i
\(629\) 12.7572 3.74584i 0.508661 0.149356i
\(630\) 1.99185 + 4.37001i 0.0793573 + 0.174105i
\(631\) 2.99534 + 20.8330i 0.119242 + 0.829349i 0.958393 + 0.285451i \(0.0921433\pi\)
−0.839151 + 0.543899i \(0.816948\pi\)
\(632\) −2.65940 + 1.21451i −0.105785 + 0.0483105i
\(633\) −0.229846 + 0.104967i −0.00913557 + 0.00417207i
\(634\) −0.775311 5.39241i −0.0307915 0.214160i
\(635\) −13.0498 + 5.94810i −0.517865 + 0.236043i
\(636\) 1.48028 0.434649i 0.0586969 0.0172350i
\(637\) −14.6765 2.11016i −0.581505 0.0836078i
\(638\) −0.955621 0.828050i −0.0378334 0.0327828i
\(639\) −11.7881 + 7.57574i −0.466330 + 0.299692i
\(640\) 2.21354 0.316605i 0.0874979 0.0125149i
\(641\) −11.2921 3.31566i −0.446011 0.130961i 0.0510119 0.998698i \(-0.483755\pi\)
−0.497023 + 0.867737i \(0.665574\pi\)
\(642\) 6.86774 + 3.13639i 0.271048 + 0.123783i
\(643\) 4.81021i 0.189696i −0.995492 0.0948481i \(-0.969763\pi\)
0.995492 0.0948481i \(-0.0302365\pi\)
\(644\) −3.81476 1.39662i −0.150322 0.0550344i
\(645\) 3.85001 + 2.47824i 0.151594 + 0.0975805i
\(646\) 1.59820 3.49958i 0.0628805 0.137689i
\(647\) −1.01117 + 3.44371i −0.0397530 + 0.135386i −0.976979 0.213337i \(-0.931567\pi\)
0.937226 + 0.348724i \(0.113385\pi\)
\(648\) 3.80563 3.29760i 0.149499 0.129542i
\(649\) −1.13265 + 0.727907i −0.0444602 + 0.0285729i
\(650\) −11.3177 3.34120i −0.443918 0.131053i
\(651\) 0.698573 4.85868i 0.0273792 0.190427i
\(652\) 4.68088 + 15.9416i 0.183317 + 0.624322i
\(653\) 24.5693 38.2306i 0.961472 1.49608i 0.0958421 0.995397i \(-0.469446\pi\)
0.865630 0.500684i \(-0.166918\pi\)
\(654\) 0.0966751 + 0.672390i 0.00378030 + 0.0262925i
\(655\) 2.50014 17.2989i 0.0976886 0.675925i
\(656\) −2.17689 4.76673i −0.0849933 0.186109i
\(657\) −1.07931 + 0.155182i −0.0421080 + 0.00605422i
\(658\) −2.34906 + 3.65521i −0.0915758 + 0.142495i
\(659\) 47.2679 13.8791i 1.84130 0.540653i 0.841296 0.540575i \(-0.181793\pi\)
1.00000 7.77027e-5i \(-2.47335e-5\pi\)
\(660\) 0.181575 + 0.157568i 0.00706779 + 0.00613334i
\(661\) −2.19577 + 2.53405i −0.0854056 + 0.0985633i −0.796844 0.604185i \(-0.793499\pi\)
0.711438 + 0.702749i \(0.248044\pi\)
\(662\) −11.9831 18.6460i −0.465735 0.724699i
\(663\) −1.64195 + 1.42276i −0.0637682 + 0.0552554i
\(664\) −7.77080 2.28171i −0.301566 0.0885477i
\(665\) 2.91334 + 4.54055i 0.112975 + 0.176075i
\(666\) 24.9580 0.967102
\(667\) 2.51039 38.3575i 0.0972025 1.48521i
\(668\) 14.7277i 0.569833i
\(669\) 8.17322 17.8969i 0.315995 0.691933i
\(670\) 16.0644 + 18.5668i 0.620623 + 0.717298i
\(671\) −0.851631 0.982834i −0.0328768 0.0379419i
\(672\) 0.312104 + 0.485644i 0.0120397 + 0.0187341i
\(673\) 27.4474 + 23.7833i 1.05802 + 0.916778i 0.996686 0.0813400i \(-0.0259200\pi\)
0.0613312 + 0.998117i \(0.480465\pi\)
\(674\) −3.44012 + 23.9265i −0.132508 + 0.921616i
\(675\) 14.2736 12.3316i 0.549390 0.474642i
\(676\) −6.25036 4.01686i −0.240398 0.154495i
\(677\) 3.27028 0.470196i 0.125687 0.0180711i −0.0791841 0.996860i \(-0.525232\pi\)
0.204871 + 0.978789i \(0.434322\pi\)
\(678\) 7.84841 3.58425i 0.301416 0.137652i
\(679\) −2.10747 4.61471i −0.0808772 0.177096i
\(680\) −1.25671 + 2.74649i −0.0481928 + 0.105323i
\(681\) 14.9607 + 9.61465i 0.573295 + 0.368434i
\(682\) 0.377921 + 1.28708i 0.0144714 + 0.0492849i
\(683\) 35.1573 + 5.05486i 1.34526 + 0.193419i 0.777036 0.629456i \(-0.216722\pi\)
0.568222 + 0.822875i \(0.307631\pi\)
\(684\) 4.72929 5.45789i 0.180829 0.208688i
\(685\) 0.0172055 23.4993i 0.000657389 0.897862i
\(686\) −7.36791 8.50303i −0.281308 0.324647i
\(687\) −0.368694 + 1.25566i −0.0140666 + 0.0479063i
\(688\) −2.73304 1.24814i −0.104196 0.0475848i
\(689\) 5.34272 0.203541
\(690\) −0.482633 + 7.29247i −0.0183735 + 0.277619i
\(691\) −16.3035 −0.620215 −0.310108 0.950701i \(-0.600365\pi\)
−0.310108 + 0.950701i \(0.600365\pi\)
\(692\) −18.3348 8.37321i −0.696984 0.318302i
\(693\) 0.0954591 0.325104i 0.00362619 0.0123497i
\(694\) −14.9091 17.2061i −0.565943 0.653133i
\(695\) 15.5167 + 0.0113609i 0.588584 + 0.000430944i
\(696\) −3.57715 + 4.12826i −0.135592 + 0.156481i
\(697\) 7.00624 + 1.00734i 0.265380 + 0.0381559i
\(698\) −9.42375 32.0944i −0.356694 1.21479i
\(699\) −12.5331 8.05450i −0.474044 0.304649i
\(700\) −2.28457 3.56633i −0.0863486 0.134795i
\(701\) −9.69080 21.2199i −0.366017 0.801465i −0.999613 0.0278012i \(-0.991149\pi\)
0.633597 0.773663i \(-0.281578\pi\)
\(702\) −8.09907 + 3.69872i −0.305680 + 0.139599i
\(703\) 27.7506 3.98993i 1.04663 0.150483i
\(704\) −0.132715 0.0852909i −0.00500189 0.00321452i
\(705\) 7.49853 + 2.20773i 0.282411 + 0.0831480i
\(706\) −4.59457 + 31.9559i −0.172919 + 1.20268i
\(707\) −0.981005 0.850046i −0.0368945 0.0319693i
\(708\) 3.14454 + 4.89300i 0.118179 + 0.183890i
\(709\) −9.72912 11.2280i −0.365385 0.421677i 0.543052 0.839699i \(-0.317269\pi\)
−0.908437 + 0.418023i \(0.862723\pi\)
\(710\) 9.34511 8.08561i 0.350716 0.303448i
\(711\) 3.07943 6.74301i 0.115488 0.252883i
\(712\) 5.82509i 0.218304i
\(713\) −24.2400 + 32.7923i −0.907796 + 1.22808i
\(714\) −0.779766 −0.0291820
\(715\) 0.449601 + 0.700720i 0.0168141 + 0.0262055i
\(716\) −3.52206 1.03417i −0.131626 0.0386488i
\(717\) 5.90948 5.12059i 0.220694 0.191232i
\(718\) −17.7516 27.6221i −0.662485 1.03085i
\(719\) 2.47270 2.85364i 0.0922160 0.106423i −0.707766 0.706447i \(-0.750297\pi\)
0.799982 + 0.600024i \(0.204842\pi\)
\(720\) −3.71596 + 4.28211i −0.138486 + 0.159585i
\(721\) 5.85849 1.72021i 0.218182 0.0640639i
\(722\) −5.88625 + 9.15918i −0.219063 + 0.340869i
\(723\) −11.6360 + 1.67300i −0.432748 + 0.0622197i
\(724\) 7.95246 + 17.4135i 0.295551 + 0.647166i
\(725\) 26.2885 30.2489i 0.976331 1.12342i
\(726\) 1.06447 + 7.40356i 0.0395062 + 0.274772i
\(727\) −5.14035 + 7.99854i −0.190645 + 0.296649i −0.923397 0.383846i \(-0.874599\pi\)
0.732752 + 0.680496i \(0.238236\pi\)
\(728\) 0.563233 + 1.91820i 0.0208748 + 0.0710931i
\(729\) −0.719370 + 5.00333i −0.0266433 + 0.185308i
\(730\) 0.922870 0.270245i 0.0341570 0.0100022i
\(731\) 3.41413 2.19413i 0.126276 0.0811528i
\(732\) −4.24581 + 3.67902i −0.156930 + 0.135980i
\(733\) 3.64380 12.4097i 0.134587 0.458361i −0.864427 0.502758i \(-0.832319\pi\)
0.999014 + 0.0443972i \(0.0141367\pi\)
\(734\) 4.47679 9.80280i 0.165241 0.361828i
\(735\) −5.18196 + 8.05032i −0.191139 + 0.296941i
\(736\) −0.371046 4.78146i −0.0136769 0.176247i
\(737\) 1.73218i 0.0638056i
\(738\) 12.0862 + 5.51959i 0.444900 + 0.203179i
\(739\) 12.3471 + 3.62543i 0.454195 + 0.133364i 0.500825 0.865549i \(-0.333030\pi\)
−0.0466302 + 0.998912i \(0.514848\pi\)
\(740\) −21.7885 + 3.11643i −0.800960 + 0.114562i
\(741\) −3.85401 + 2.47682i −0.141581 + 0.0909883i
\(742\) 1.44918 + 1.25572i 0.0532010 + 0.0460989i
\(743\) −40.7993 5.86605i −1.49678 0.215204i −0.655249 0.755413i \(-0.727436\pi\)
−0.841531 + 0.540209i \(0.818345\pi\)
\(744\) 5.56016 1.63261i 0.203845 0.0598544i
\(745\) 10.8701 + 23.8485i 0.398251 + 0.873740i
\(746\) 4.05720 + 28.2184i 0.148545 + 1.03315i
\(747\) 18.6793 8.53054i 0.683439 0.312116i
\(748\) 0.193835 0.0885216i 0.00708732 0.00323667i
\(749\) 1.33549 + 9.28852i 0.0487977 + 0.339395i
\(750\) −5.00238 + 5.74750i −0.182661 + 0.209869i
\(751\) −10.7184 + 3.14721i −0.391120 + 0.114843i −0.471379 0.881931i \(-0.656244\pi\)
0.0802587 + 0.996774i \(0.474425\pi\)
\(752\) −5.07721 0.729993i −0.185147 0.0266201i
\(753\) 2.29901 + 1.99210i 0.0837805 + 0.0725962i
\(754\) −15.9139 + 10.2272i −0.579549 + 0.372454i
\(755\) −0.316240 2.21099i −0.0115091 0.0804660i
\(756\) −3.06614 0.900301i −0.111515 0.0327436i
\(757\) 35.8431 + 16.3690i 1.30274 + 0.594940i 0.941336 0.337470i \(-0.109571\pi\)
0.361402 + 0.932410i \(0.382298\pi\)
\(758\) 13.4927i 0.490078i
\(759\) 0.362389 0.366798i 0.0131539 0.0133139i
\(760\) −3.44719 + 5.35530i −0.125043 + 0.194257i
\(761\) −11.2013 + 24.5275i −0.406048 + 0.889122i 0.590573 + 0.806984i \(0.298902\pi\)
−0.996621 + 0.0821373i \(0.973825\pi\)
\(762\) 1.23146 4.19396i 0.0446110 0.151931i
\(763\) −0.638094 + 0.552911i −0.0231005 + 0.0200167i
\(764\) 19.6820 12.6489i 0.712070 0.457619i
\(765\) −2.15219 7.34960i −0.0778127 0.265725i
\(766\) 5.33746 37.1229i 0.192850 1.34130i
\(767\) 5.67473 + 19.3264i 0.204903 + 0.697835i
\(768\) −0.368454 + 0.573326i −0.0132954