# Properties

 Label 230.2.j.a.29.4 Level $230$ Weight $2$ Character 230.29 Analytic conductor $1.837$ Analytic rank $0$ Dimension $120$ CM no Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [230,2,Mod(9,230)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(230, base_ring=CyclotomicField(22))

chi = DirichletCharacter(H, H._module([11, 10]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("230.9");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$230 = 2 \cdot 5 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 230.j (of order $$22$$, degree $$10$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.83655924649$$ Analytic rank: $$0$$ Dimension: $$120$$ Relative dimension: $$12$$ over $$\Q(\zeta_{22})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

## Embedding invariants

 Embedding label 29.4 Character $$\chi$$ $$=$$ 230.29 Dual form 230.2.j.a.119.4

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(-0.909632 - 0.415415i) q^{2} +(0.192005 - 0.653908i) q^{3} +(0.654861 + 0.755750i) q^{4} +(2.23607 + 0.00163718i) q^{5} +(-0.446297 + 0.515054i) q^{6} +(-0.838442 - 0.120550i) q^{7} +(-0.281733 - 0.959493i) q^{8} +(2.13303 + 1.37082i) q^{9} +O(q^{10})$$ $$q+(-0.909632 - 0.415415i) q^{2} +(0.192005 - 0.653908i) q^{3} +(0.654861 + 0.755750i) q^{4} +(2.23607 + 0.00163718i) q^{5} +(-0.446297 + 0.515054i) q^{6} +(-0.838442 - 0.120550i) q^{7} +(-0.281733 - 0.959493i) q^{8} +(2.13303 + 1.37082i) q^{9} +(-2.03332 - 0.930385i) q^{10} +(0.0655354 + 0.143502i) q^{11} +(0.619927 - 0.283111i) q^{12} +(2.33610 - 0.335881i) q^{13} +(0.712596 + 0.457958i) q^{14} +(0.430406 - 1.46187i) q^{15} +(-0.142315 + 0.989821i) q^{16} +(-1.02083 - 0.884550i) q^{17} +(-1.37082 - 2.13303i) q^{18} +(-1.86520 - 2.15256i) q^{19} +(1.46308 + 1.69098i) q^{20} +(-0.239813 + 0.525118i) q^{21} -0.157759i q^{22} +(3.82181 - 2.89719i) q^{23} -0.681514 q^{24} +(4.99999 + 0.00732171i) q^{25} +(-2.26452 - 0.664924i) q^{26} +(2.85110 - 2.47049i) q^{27} +(-0.457958 - 0.712596i) q^{28} +(5.24884 - 6.05748i) q^{29} +(-0.998792 + 1.15096i) q^{30} +(-8.15854 + 2.39556i) q^{31} +(0.540641 - 0.841254i) q^{32} +(0.106420 - 0.0153010i) q^{33} +(0.561120 + 1.22868i) q^{34} +(-1.87462 - 0.270930i) q^{35} +(0.360845 + 2.50973i) q^{36} +(-5.32167 + 8.28068i) q^{37} +(0.802442 + 2.73287i) q^{38} +(0.228907 - 1.59209i) q^{39} +(-0.628402 - 2.14595i) q^{40} +(-4.40840 + 2.83311i) q^{41} +(0.436284 - 0.378042i) q^{42} +(-0.846481 + 2.88285i) q^{43} +(-0.0655354 + 0.143502i) q^{44} +(4.76736 + 3.06873i) q^{45} +(-4.67998 + 1.04774i) q^{46} +5.12942i q^{47} +(0.619927 + 0.283111i) q^{48} +(-6.02800 - 1.76998i) q^{49} +(-4.54511 - 2.08373i) q^{50} +(-0.774417 + 0.497688i) q^{51} +(1.78366 + 1.54555i) q^{52} +(2.24070 + 0.322165i) q^{53} +(-3.61973 + 1.06285i) q^{54} +(0.146307 + 0.320989i) q^{55} +(0.120550 + 0.838442i) q^{56} +(-1.76570 + 0.806368i) q^{57} +(-7.29088 + 3.32963i) q^{58} +(1.21457 + 8.44754i) q^{59} +(1.38666 - 0.632040i) q^{60} +(-7.90952 + 2.32245i) q^{61} +(8.41642 + 1.21010i) q^{62} +(-1.62317 - 1.40649i) q^{63} +(-0.841254 + 0.540641i) q^{64} +(5.22423 - 0.747227i) q^{65} +(-0.103160 - 0.0302904i) q^{66} +(-9.98767 - 4.56122i) q^{67} -1.35075i q^{68} +(-1.16069 - 3.05539i) q^{69} +(1.59266 + 1.02519i) q^{70} +(-2.29577 + 5.02704i) q^{71} +(0.714344 - 2.43283i) q^{72} +(-0.325011 + 0.281624i) q^{73} +(8.28068 - 5.32167i) q^{74} +(0.964810 - 3.26813i) q^{75} +(0.405347 - 2.81925i) q^{76} +(-0.0376485 - 0.128219i) q^{77} +(-0.869598 + 1.35312i) q^{78} +(-0.416071 - 2.89384i) q^{79} +(-0.319846 + 2.21307i) q^{80} +(2.09185 + 4.58052i) q^{81} +(5.18694 - 0.745770i) q^{82} +(4.37858 - 6.81320i) q^{83} +(-0.553902 + 0.162640i) q^{84} +(-2.28119 - 1.97958i) q^{85} +(1.96756 - 2.27069i) q^{86} +(-2.95323 - 4.59532i) q^{87} +(0.119226 - 0.103310i) q^{88} +(5.58913 + 1.64112i) q^{89} +(-3.06174 - 4.77185i) q^{90} -1.99918 q^{91} +(4.69231 + 0.991076i) q^{92} +5.79489i q^{93} +(2.13084 - 4.66589i) q^{94} +(-4.16719 - 4.81631i) q^{95} +(-0.446297 - 0.515054i) q^{96} +(3.23796 + 5.03836i) q^{97} +(4.74798 + 4.11415i) q^{98} +(-0.0569265 + 0.395932i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$120 q + 12 q^{4} - 4 q^{6} + 8 q^{9}+O(q^{10})$$ 120 * q + 12 * q^4 - 4 * q^6 + 8 * q^9 $$120 q + 12 q^{4} - 4 q^{6} + 8 q^{9} + 8 q^{11} - 6 q^{15} - 12 q^{16} - 16 q^{19} - 22 q^{20} + 4 q^{24} - 52 q^{25} - 4 q^{26} - 8 q^{29} - 44 q^{30} + 12 q^{31} + 16 q^{35} - 8 q^{36} - 36 q^{39} - 28 q^{41} - 8 q^{44} + 16 q^{45} - 4 q^{46} - 58 q^{49} + 12 q^{50} - 24 q^{51} - 6 q^{54} - 36 q^{55} + 22 q^{56} - 102 q^{59} - 38 q^{60} + 72 q^{61} + 12 q^{64} - 138 q^{65} + 80 q^{66} - 212 q^{69} - 108 q^{70} + 176 q^{71} - 88 q^{74} - 100 q^{75} + 16 q^{76} - 104 q^{79} - 22 q^{80} - 28 q^{81} - 22 q^{84} + 2 q^{85} + 62 q^{86} + 48 q^{89} + 24 q^{90} - 56 q^{91} + 24 q^{94} + 18 q^{95} - 4 q^{96} + 188 q^{99}+O(q^{100})$$ 120 * q + 12 * q^4 - 4 * q^6 + 8 * q^9 + 8 * q^11 - 6 * q^15 - 12 * q^16 - 16 * q^19 - 22 * q^20 + 4 * q^24 - 52 * q^25 - 4 * q^26 - 8 * q^29 - 44 * q^30 + 12 * q^31 + 16 * q^35 - 8 * q^36 - 36 * q^39 - 28 * q^41 - 8 * q^44 + 16 * q^45 - 4 * q^46 - 58 * q^49 + 12 * q^50 - 24 * q^51 - 6 * q^54 - 36 * q^55 + 22 * q^56 - 102 * q^59 - 38 * q^60 + 72 * q^61 + 12 * q^64 - 138 * q^65 + 80 * q^66 - 212 * q^69 - 108 * q^70 + 176 * q^71 - 88 * q^74 - 100 * q^75 + 16 * q^76 - 104 * q^79 - 22 * q^80 - 28 * q^81 - 22 * q^84 + 2 * q^85 + 62 * q^86 + 48 * q^89 + 24 * q^90 - 56 * q^91 + 24 * q^94 + 18 * q^95 - 4 * q^96 + 188 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/230\mathbb{Z}\right)^\times$$.

 $$n$$ $$47$$ $$51$$ $$\chi(n)$$ $$-1$$ $$e\left(\frac{9}{11}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.909632 0.415415i −0.643207 0.293743i
$$3$$ 0.192005 0.653908i 0.110854 0.377534i −0.885314 0.464993i $$-0.846057\pi$$
0.996168 + 0.0874597i $$0.0278749\pi$$
$$4$$ 0.654861 + 0.755750i 0.327430 + 0.377875i
$$5$$ 2.23607 + 0.00163718i 1.00000 + 0.000732171i
$$6$$ −0.446297 + 0.515054i −0.182200 + 0.210270i
$$7$$ −0.838442 0.120550i −0.316901 0.0455636i −0.0179712 0.999839i $$-0.505721\pi$$
−0.298930 + 0.954275i $$0.596630\pi$$
$$8$$ −0.281733 0.959493i −0.0996075 0.339232i
$$9$$ 2.13303 + 1.37082i 0.711010 + 0.456939i
$$10$$ −2.03332 0.930385i −0.642992 0.294214i
$$11$$ 0.0655354 + 0.143502i 0.0197597 + 0.0432676i 0.919255 0.393664i $$-0.128793\pi$$
−0.899495 + 0.436931i $$0.856065\pi$$
$$12$$ 0.619927 0.283111i 0.178957 0.0817271i
$$13$$ 2.33610 0.335881i 0.647918 0.0931566i 0.189482 0.981884i $$-0.439319\pi$$
0.458436 + 0.888728i $$0.348410\pi$$
$$14$$ 0.712596 + 0.457958i 0.190449 + 0.122394i
$$15$$ 0.430406 1.46187i 0.111130 0.377452i
$$16$$ −0.142315 + 0.989821i −0.0355787 + 0.247455i
$$17$$ −1.02083 0.884550i −0.247586 0.214535i 0.522222 0.852809i $$-0.325103\pi$$
−0.769809 + 0.638274i $$0.779649\pi$$
$$18$$ −1.37082 2.13303i −0.323104 0.502760i
$$19$$ −1.86520 2.15256i −0.427906 0.493830i 0.500323 0.865839i $$-0.333215\pi$$
−0.928229 + 0.372009i $$0.878669\pi$$
$$20$$ 1.46308 + 1.69098i 0.327154 + 0.378114i
$$21$$ −0.239813 + 0.525118i −0.0523315 + 0.114590i
$$22$$ 0.157759i 0.0336343i
$$23$$ 3.82181 2.89719i 0.796903 0.604107i
$$24$$ −0.681514 −0.139113
$$25$$ 4.99999 + 0.00732171i 0.999999 + 0.00146434i
$$26$$ −2.26452 0.664924i −0.444110 0.130402i
$$27$$ 2.85110 2.47049i 0.548694 0.475446i
$$28$$ −0.457958 0.712596i −0.0865458 0.134668i
$$29$$ 5.24884 6.05748i 0.974685 1.12485i −0.0174724 0.999847i $$-0.505562\pi$$
0.992157 0.124999i $$-0.0398926\pi$$
$$30$$ −0.998792 + 1.15096i −0.182354 + 0.210136i
$$31$$ −8.15854 + 2.39556i −1.46532 + 0.430256i −0.914574 0.404419i $$-0.867474\pi$$
−0.550743 + 0.834675i $$0.685656\pi$$
$$32$$ 0.540641 0.841254i 0.0955727 0.148714i
$$33$$ 0.106420 0.0153010i 0.0185254 0.00266355i
$$34$$ 0.561120 + 1.22868i 0.0962312 + 0.210717i
$$35$$ −1.87462 0.270930i −0.316868 0.0457956i
$$36$$ 0.360845 + 2.50973i 0.0601408 + 0.418289i
$$37$$ −5.32167 + 8.28068i −0.874877 + 1.36133i 0.0569291 + 0.998378i $$0.481869\pi$$
−0.931806 + 0.362957i $$0.881767\pi$$
$$38$$ 0.802442 + 2.73287i 0.130173 + 0.443329i
$$39$$ 0.228907 1.59209i 0.0366545 0.254938i
$$40$$ −0.628402 2.14595i −0.0993591 0.339305i
$$41$$ −4.40840 + 2.83311i −0.688477 + 0.442457i −0.837544 0.546370i $$-0.816009\pi$$
0.149067 + 0.988827i $$0.452373\pi$$
$$42$$ 0.436284 0.378042i 0.0673200 0.0583331i
$$43$$ −0.846481 + 2.88285i −0.129087 + 0.439630i −0.998518 0.0544244i $$-0.982668\pi$$
0.869431 + 0.494055i $$0.164486\pi$$
$$44$$ −0.0655354 + 0.143502i −0.00987983 + 0.0216338i
$$45$$ 4.76736 + 3.06873i 0.710676 + 0.457459i
$$46$$ −4.67998 + 1.04774i −0.690026 + 0.154481i
$$47$$ 5.12942i 0.748203i 0.927388 + 0.374102i $$0.122049\pi$$
−0.927388 + 0.374102i $$0.877951\pi$$
$$48$$ 0.619927 + 0.283111i 0.0894787 + 0.0408636i
$$49$$ −6.02800 1.76998i −0.861142 0.252854i
$$50$$ −4.54511 2.08373i −0.642776 0.294684i
$$51$$ −0.774417 + 0.497688i −0.108440 + 0.0696902i
$$52$$ 1.78366 + 1.54555i 0.247350 + 0.214330i
$$53$$ 2.24070 + 0.322165i 0.307784 + 0.0442527i 0.294476 0.955659i $$-0.404855\pi$$
0.0133079 + 0.999911i $$0.495764\pi$$
$$54$$ −3.61973 + 1.06285i −0.492583 + 0.144635i
$$55$$ 0.146307 + 0.320989i 0.0197280 + 0.0432821i
$$56$$ 0.120550 + 0.838442i 0.0161091 + 0.112042i
$$57$$ −1.76570 + 0.806368i −0.233873 + 0.106806i
$$58$$ −7.29088 + 3.32963i −0.957339 + 0.437202i
$$59$$ 1.21457 + 8.44754i 0.158124 + 1.09978i 0.902087 + 0.431555i $$0.142035\pi$$
−0.743963 + 0.668221i $$0.767056\pi$$
$$60$$ 1.38666 0.632040i 0.179017 0.0815961i
$$61$$ −7.90952 + 2.32245i −1.01271 + 0.297359i −0.745662 0.666324i $$-0.767867\pi$$
−0.267049 + 0.963683i $$0.586048\pi$$
$$62$$ 8.41642 + 1.21010i 1.06889 + 0.153683i
$$63$$ −1.62317 1.40649i −0.204500 0.177201i
$$64$$ −0.841254 + 0.540641i −0.105157 + 0.0675801i
$$65$$ 5.22423 0.747227i 0.647986 0.0926821i
$$66$$ −0.103160 0.0302904i −0.0126981 0.00372849i
$$67$$ −9.98767 4.56122i −1.22019 0.557241i −0.301971 0.953317i $$-0.597644\pi$$
−0.918218 + 0.396076i $$0.870372\pi$$
$$68$$ 1.35075i 0.163802i
$$69$$ −1.16069 3.05539i −0.139731 0.367825i
$$70$$ 1.59266 + 1.02519i 0.190360 + 0.122534i
$$71$$ −2.29577 + 5.02704i −0.272458 + 0.596599i −0.995559 0.0941431i $$-0.969989\pi$$
0.723101 + 0.690742i $$0.242716\pi$$
$$72$$ 0.714344 2.43283i 0.0841862 0.286712i
$$73$$ −0.325011 + 0.281624i −0.0380397 + 0.0329616i −0.673673 0.739029i $$-0.735284\pi$$
0.635633 + 0.771991i $$0.280739\pi$$
$$74$$ 8.28068 5.32167i 0.962609 0.618631i
$$75$$ 0.964810 3.26813i 0.111407 0.377371i
$$76$$ 0.405347 2.81925i 0.0464965 0.323390i
$$77$$ −0.0376485 0.128219i −0.00429044 0.0146119i
$$78$$ −0.869598 + 1.35312i −0.0984625 + 0.153211i
$$79$$ −0.416071 2.89384i −0.0468117 0.325582i −0.999749 0.0224143i $$-0.992865\pi$$
0.952937 0.303168i $$-0.0980444\pi$$
$$80$$ −0.319846 + 2.21307i −0.0357599 + 0.247429i
$$81$$ 2.09185 + 4.58052i 0.232428 + 0.508947i
$$82$$ 5.18694 0.745770i 0.572802 0.0823565i
$$83$$ 4.37858 6.81320i 0.480611 0.747846i −0.513279 0.858222i $$-0.671569\pi$$
0.993890 + 0.110376i $$0.0352056\pi$$
$$84$$ −0.553902 + 0.162640i −0.0604356 + 0.0177455i
$$85$$ −2.28119 1.97958i −0.247429 0.214716i
$$86$$ 1.96756 2.27069i 0.212168 0.244855i
$$87$$ −2.95323 4.59532i −0.316620 0.492670i
$$88$$ 0.119226 0.103310i 0.0127096 0.0110129i
$$89$$ 5.58913 + 1.64112i 0.592446 + 0.173958i 0.564193 0.825643i $$-0.309187\pi$$
0.0282533 + 0.999601i $$0.491005\pi$$
$$90$$ −3.06174 4.77185i −0.322736 0.502997i
$$91$$ −1.99918 −0.209571
$$92$$ 4.69231 + 0.991076i 0.489207 + 0.103327i
$$93$$ 5.79489i 0.600902i
$$94$$ 2.13084 4.66589i 0.219779 0.481249i
$$95$$ −4.16719 4.81631i −0.427545 0.494143i
$$96$$ −0.446297 0.515054i −0.0455499 0.0525674i
$$97$$ 3.23796 + 5.03836i 0.328765 + 0.511568i 0.965807 0.259260i $$-0.0834788\pi$$
−0.637043 + 0.770829i $$0.719842\pi$$
$$98$$ 4.74798 + 4.11415i 0.479619 + 0.415592i
$$99$$ −0.0569265 + 0.395932i −0.00572133 + 0.0397927i
$$100$$ 3.26877 + 3.78354i 0.326877 + 0.378354i
$$101$$ 1.28915 + 0.828487i 0.128275 + 0.0824376i 0.603205 0.797586i $$-0.293890\pi$$
−0.474930 + 0.880024i $$0.657526\pi$$
$$102$$ 0.911181 0.131008i 0.0902204 0.0129717i
$$103$$ −6.55682 + 2.99440i −0.646063 + 0.295047i −0.711369 0.702818i $$-0.751925\pi$$
0.0653068 + 0.997865i $$0.479197\pi$$
$$104$$ −0.980431 2.14684i −0.0961392 0.210515i
$$105$$ −0.537098 + 1.17381i −0.0524154 + 0.114552i
$$106$$ −1.90438 1.22387i −0.184970 0.118873i
$$107$$ −3.12112 10.6296i −0.301730 1.02760i −0.961197 0.275864i $$-0.911036\pi$$
0.659467 0.751734i $$-0.270782\pi$$
$$108$$ 3.73415 + 0.536889i 0.359318 + 0.0516622i
$$109$$ 0.652738 0.753300i 0.0625210 0.0721531i −0.723628 0.690191i $$-0.757527\pi$$
0.786148 + 0.618038i $$0.212072\pi$$
$$110$$ 0.000258280 0.352759i 2.46261e−5 0.0336343i
$$111$$ 4.39301 + 5.06981i 0.416966 + 0.481205i
$$112$$ 0.238646 0.812752i 0.0225499 0.0767979i
$$113$$ −11.5161 5.25925i −1.08335 0.494748i −0.207944 0.978141i $$-0.566677\pi$$
−0.875404 + 0.483392i $$0.839404\pi$$
$$114$$ 1.94111 0.181802
$$115$$ 8.55058 6.47206i 0.797346 0.603523i
$$116$$ 8.01520 0.744192
$$117$$ 5.44341 + 2.48592i 0.503243 + 0.229824i
$$118$$ 2.40442 8.18871i 0.221345 0.753831i
$$119$$ 0.749271 + 0.864704i 0.0686855 + 0.0792673i
$$120$$ −1.52391 0.00111576i −0.139113 0.000101855i
$$121$$ 7.18717 8.29444i 0.653379 0.754040i
$$122$$ 8.15954 + 1.17316i 0.738730 + 0.106213i
$$123$$ 1.00616 + 3.42666i 0.0907222 + 0.308971i
$$124$$ −7.15315 4.59705i −0.642372 0.412828i
$$125$$ 11.1803 + 0.0245577i 0.999998 + 0.00219651i
$$126$$ 0.892214 + 1.95368i 0.0794847 + 0.174047i
$$127$$ −5.83410 + 2.66434i −0.517693 + 0.236422i −0.657087 0.753815i $$-0.728212\pi$$
0.139395 + 0.990237i $$0.455484\pi$$
$$128$$ 0.989821 0.142315i 0.0874887 0.0125790i
$$129$$ 1.72259 + 1.10704i 0.151665 + 0.0974695i
$$130$$ −5.06254 1.49052i −0.444014 0.130727i
$$131$$ 1.11243 7.73713i 0.0971936 0.675997i −0.881728 0.471759i $$-0.843619\pi$$
0.978921 0.204238i $$-0.0654716\pi$$
$$132$$ 0.0812543 + 0.0704072i 0.00707228 + 0.00612816i
$$133$$ 1.30437 + 2.02964i 0.113103 + 0.175992i
$$134$$ 7.19031 + 8.29806i 0.621148 + 0.716843i
$$135$$ 6.37930 5.51952i 0.549042 0.475045i
$$136$$ −0.561120 + 1.22868i −0.0481156 + 0.105359i
$$137$$ 10.5092i 0.897863i −0.893566 0.448931i $$-0.851805\pi$$
0.893566 0.448931i $$-0.148195\pi$$
$$138$$ −0.213452 + 3.26145i −0.0181703 + 0.277633i
$$139$$ 6.93930 0.588584 0.294292 0.955716i $$-0.404916\pi$$
0.294292 + 0.955716i $$0.404916\pi$$
$$140$$ −1.02286 1.59416i −0.0864472 0.134731i
$$141$$ 3.35417 + 0.984873i 0.282472 + 0.0829412i
$$142$$ 4.17661 3.61905i 0.350493 0.303704i
$$143$$ 0.201297 + 0.313224i 0.0168333 + 0.0261931i
$$144$$ −1.66043 + 1.91623i −0.138369 + 0.159686i
$$145$$ 11.7467 13.5363i 0.975508 1.12413i
$$146$$ 0.412631 0.121160i 0.0341496 0.0100272i
$$147$$ −2.31481 + 3.60191i −0.190922 + 0.297080i
$$148$$ −9.74307 + 1.40084i −0.800875 + 0.115149i
$$149$$ 4.86908 + 10.6618i 0.398891 + 0.873449i 0.997382 + 0.0723190i $$0.0230400\pi$$
−0.598491 + 0.801130i $$0.704233\pi$$
$$150$$ −2.23525 + 2.57200i −0.182507 + 0.210003i
$$151$$ −0.142151 0.988679i −0.0115681 0.0804576i 0.983220 0.182426i $$-0.0583950\pi$$
−0.994788 + 0.101968i $$0.967486\pi$$
$$152$$ −1.53987 + 2.39609i −0.124900 + 0.194349i
$$153$$ −0.964897 3.28614i −0.0780073 0.265668i
$$154$$ −0.0190178 + 0.132272i −0.00153250 + 0.0106588i
$$155$$ −18.2470 + 5.34329i −1.46563 + 0.429183i
$$156$$ 1.35312 0.869598i 0.108336 0.0696235i
$$157$$ −11.6398 + 10.0859i −0.928958 + 0.804946i −0.981062 0.193695i $$-0.937953\pi$$
0.0521041 + 0.998642i $$0.483407\pi$$
$$158$$ −0.823673 + 2.80517i −0.0655279 + 0.223167i
$$159$$ 0.640891 1.40336i 0.0508260 0.111293i
$$160$$ 1.21029 1.88021i 0.0956816 0.148644i
$$161$$ −3.55363 + 1.96841i −0.280065 + 0.155133i
$$162$$ 5.03558i 0.395632i
$$163$$ 15.1132 + 6.90196i 1.18376 + 0.540603i 0.907325 0.420430i $$-0.138121\pi$$
0.276432 + 0.961034i $$0.410848\pi$$
$$164$$ −5.02801 1.47636i −0.392622 0.115284i
$$165$$ 0.237988 0.0340397i 0.0185274 0.00264999i
$$166$$ −6.81320 + 4.37858i −0.528807 + 0.339843i
$$167$$ −11.1305 9.64460i −0.861301 0.746322i 0.107488 0.994206i $$-0.465719\pi$$
−0.968790 + 0.247884i $$0.920265\pi$$
$$168$$ 0.571410 + 0.0821563i 0.0440852 + 0.00633850i
$$169$$ −7.12885 + 2.09322i −0.548373 + 0.161017i
$$170$$ 1.25269 + 2.74833i 0.0960769 + 0.210787i
$$171$$ −1.02777 7.14831i −0.0785957 0.546645i
$$172$$ −2.73304 + 1.24814i −0.208392 + 0.0951696i
$$173$$ −18.3348 + 8.37321i −1.39397 + 0.636603i −0.963917 0.266202i $$-0.914231\pi$$
−0.430050 + 0.902805i $$0.641504\pi$$
$$174$$ 0.777390 + 5.40687i 0.0589338 + 0.409893i
$$175$$ −4.19133 0.608887i −0.316834 0.0460276i
$$176$$ −0.151369 + 0.0444458i −0.0114098 + 0.00335023i
$$177$$ 5.75711 + 0.827748i 0.432731 + 0.0622174i
$$178$$ −4.40231 3.81462i −0.329967 0.285918i
$$179$$ −3.08803 + 1.98456i −0.230810 + 0.148333i −0.650935 0.759134i $$-0.725623\pi$$
0.420124 + 0.907467i $$0.361986\pi$$
$$180$$ 0.802765 + 5.61252i 0.0598345 + 0.418332i
$$181$$ 18.3680 + 5.39332i 1.36528 + 0.400883i 0.880621 0.473821i $$-0.157125\pi$$
0.484659 + 0.874703i $$0.338944\pi$$
$$182$$ 1.81852 + 0.830488i 0.134797 + 0.0615599i
$$183$$ 5.61802i 0.415296i
$$184$$ −3.85657 2.85077i −0.284310 0.210162i
$$185$$ −11.9132 + 18.5074i −0.875873 + 1.36069i
$$186$$ 2.40728 5.27122i 0.176511 0.386504i
$$187$$ 0.0600349 0.204460i 0.00439019 0.0149516i
$$188$$ −3.87656 + 3.35906i −0.282727 + 0.244984i
$$189$$ −2.68830 + 1.72767i −0.195545 + 0.125669i
$$190$$ 1.78984 + 6.11218i 0.129849 + 0.443424i
$$191$$ 3.32960 23.1579i 0.240922 1.67565i −0.406605 0.913604i $$-0.633287\pi$$
0.647527 0.762043i $$-0.275803\pi$$
$$192$$ 0.192005 + 0.653908i 0.0138567 + 0.0471917i
$$193$$ 3.74555 5.82819i 0.269611 0.419522i −0.679877 0.733326i $$-0.737967\pi$$
0.949488 + 0.313804i $$0.101603\pi$$
$$194$$ −0.852340 5.92815i −0.0611944 0.425617i
$$195$$ 0.514459 3.55964i 0.0368412 0.254911i
$$196$$ −2.60984 5.71475i −0.186417 0.408196i
$$197$$ 0.961948 0.138307i 0.0685360 0.00985398i −0.107962 0.994155i $$-0.534432\pi$$
0.176498 + 0.984301i $$0.443523\pi$$
$$198$$ 0.216258 0.336505i 0.0153688 0.0239143i
$$199$$ −24.9595 + 7.32878i −1.76933 + 0.519523i −0.993741 0.111709i $$-0.964367\pi$$
−0.775594 + 0.631233i $$0.782549\pi$$
$$200$$ −1.40164 4.79952i −0.0991106 0.339377i
$$201$$ −4.90029 + 5.65524i −0.345640 + 0.398890i
$$202$$ −0.828487 1.28915i −0.0582922 0.0907044i
$$203$$ −5.13108 + 4.44610i −0.360131 + 0.312055i
$$204$$ −0.883262 0.259349i −0.0618407 0.0181581i
$$205$$ −9.86213 + 6.32781i −0.688801 + 0.441953i
$$206$$ 7.20821 0.502220
$$207$$ 12.1236 0.940801i 0.842646 0.0653902i
$$208$$ 2.36012i 0.163645i
$$209$$ 0.186660 0.408729i 0.0129116 0.0282724i
$$210$$ 0.976178 0.844613i 0.0673627 0.0582838i
$$211$$ −0.242799 0.280204i −0.0167149 0.0192901i 0.747331 0.664452i $$-0.231335\pi$$
−0.764045 + 0.645162i $$0.776790\pi$$
$$212$$ 1.22387 + 1.90438i 0.0840559 + 0.130794i
$$213$$ 2.84642 + 2.46644i 0.195033 + 0.168997i
$$214$$ −1.57661 + 10.9655i −0.107775 + 0.749589i
$$215$$ −1.89751 + 6.44486i −0.129409 + 0.439536i
$$216$$ −3.17367 2.03959i −0.215941 0.138777i
$$217$$ 7.12925 1.02503i 0.483965 0.0695837i
$$218$$ −0.906684 + 0.414069i −0.0614084 + 0.0280443i
$$219$$ 0.121752 + 0.266600i 0.00822726 + 0.0180152i
$$220$$ −0.146776 + 0.320774i −0.00989567 + 0.0216266i
$$221$$ −2.68185 1.72352i −0.180401 0.115937i
$$222$$ −1.88995 6.43658i −0.126845 0.431995i
$$223$$ 28.5755 + 4.10853i 1.91356 + 0.275128i 0.993243 0.116055i $$-0.0370250\pi$$
0.920313 + 0.391183i $$0.127934\pi$$
$$224$$ −0.554709 + 0.640169i −0.0370631 + 0.0427731i
$$225$$ 10.6551 + 6.86969i 0.710341 + 0.457979i
$$226$$ 8.29069 + 9.56796i 0.551488 + 0.636451i
$$227$$ −7.35169 + 25.0376i −0.487949 + 1.66180i 0.235849 + 0.971790i $$0.424213\pi$$
−0.723798 + 0.690012i $$0.757605\pi$$
$$228$$ −1.76570 0.806368i −0.116936 0.0534030i
$$229$$ −1.92024 −0.126893 −0.0634464 0.997985i $$-0.520209\pi$$
−0.0634464 + 0.997985i $$0.520209\pi$$
$$230$$ −10.4665 + 2.33516i −0.690139 + 0.153976i
$$231$$ −0.0910720 −0.00599209
$$232$$ −7.29088 3.32963i −0.478670 0.218601i
$$233$$ 6.15875 20.9748i 0.403473 1.37410i −0.468030 0.883713i $$-0.655036\pi$$
0.871503 0.490390i $$-0.163146\pi$$
$$234$$ −3.91881 4.52255i −0.256181 0.295648i
$$235$$ −0.00839781 + 11.4697i −0.000547813 + 0.748203i
$$236$$ −5.58885 + 6.44988i −0.363803 + 0.419851i
$$237$$ −1.97219 0.283558i −0.128108 0.0184191i
$$238$$ −0.322349 1.09782i −0.0208948 0.0711612i
$$239$$ 9.65214 + 6.20306i 0.624345 + 0.401242i 0.814212 0.580568i $$-0.197169\pi$$
−0.189867 + 0.981810i $$0.560806\pi$$
$$240$$ 1.38573 + 0.634070i 0.0894488 + 0.0409291i
$$241$$ −7.16563 15.6905i −0.461579 1.01072i −0.987125 0.159952i $$-0.948866\pi$$
0.525546 0.850765i $$-0.323861\pi$$
$$242$$ −9.98331 + 4.55923i −0.641752 + 0.293078i
$$243$$ 14.5993 2.09907i 0.936547 0.134655i
$$244$$ −6.93482 4.45674i −0.443957 0.285314i
$$245$$ −13.4761 3.96766i −0.860957 0.253485i
$$246$$ 0.508252 3.53497i 0.0324050 0.225382i
$$247$$ −5.08030 4.40210i −0.323252 0.280099i
$$248$$ 4.59705 + 7.15315i 0.291913 + 0.454226i
$$249$$ −3.61449 4.17135i −0.229059 0.264349i
$$250$$ −10.1598 4.66681i −0.642560 0.295155i
$$251$$ −1.85426 + 4.06026i −0.117040 + 0.256281i −0.959081 0.283132i $$-0.908627\pi$$
0.842041 + 0.539413i $$0.181354\pi$$
$$252$$ 2.14776i 0.135296i
$$253$$ 0.666219 + 0.358571i 0.0418848 + 0.0225432i
$$254$$ 6.41369 0.402431
$$255$$ −1.73246 + 1.11159i −0.108491 + 0.0696108i
$$256$$ −0.959493 0.281733i −0.0599683 0.0176083i
$$257$$ 11.9204 10.3291i 0.743573 0.644310i −0.198353 0.980131i $$-0.563559\pi$$
0.941926 + 0.335821i $$0.109014\pi$$
$$258$$ −1.10704 1.72259i −0.0689213 0.107244i
$$259$$ 5.46015 6.30135i 0.339277 0.391547i
$$260$$ 3.98586 + 3.45888i 0.247193 + 0.214511i
$$261$$ 19.4996 5.72561i 1.20700 0.354406i
$$262$$ −4.22603 + 6.57582i −0.261085 + 0.406256i
$$263$$ −4.57476 + 0.657751i −0.282092 + 0.0405586i −0.281908 0.959441i $$-0.590967\pi$$
−0.000183226 1.00000i $$0.500058\pi$$
$$264$$ −0.0446633 0.0977989i −0.00274883 0.00601911i
$$265$$ 5.00984 + 0.724050i 0.307752 + 0.0444780i
$$266$$ −0.343355 2.38808i −0.0210524 0.146423i
$$267$$ 2.14628 3.33967i 0.131350 0.204385i
$$268$$ −3.09340 10.5351i −0.188959 0.643536i
$$269$$ 1.66055 11.5494i 0.101245 0.704176i −0.874461 0.485095i $$-0.838785\pi$$
0.975707 0.219081i $$-0.0703060\pi$$
$$270$$ −8.09570 + 2.37068i −0.492689 + 0.144275i
$$271$$ 23.8621 15.3353i 1.44952 0.931550i 0.450268 0.892893i $$-0.351328\pi$$
0.999253 0.0386569i $$-0.0123079\pi$$
$$272$$ 1.02083 0.884550i 0.0618966 0.0536337i
$$273$$ −0.383851 + 1.30728i −0.0232317 + 0.0791200i
$$274$$ −4.36568 + 9.55952i −0.263741 + 0.577511i
$$275$$ 0.326626 + 0.717992i 0.0196963 + 0.0432965i
$$276$$ 1.54902 2.87805i 0.0932399 0.173238i
$$277$$ 27.9347i 1.67843i 0.543797 + 0.839217i $$0.316986\pi$$
−0.543797 + 0.839217i $$0.683014\pi$$
$$278$$ −6.31221 2.88269i −0.378581 0.172892i
$$279$$ −20.6863 6.07405i −1.23846 0.363644i
$$280$$ 0.268185 + 1.87501i 0.0160271 + 0.112053i
$$281$$ −2.62086 + 1.68433i −0.156348 + 0.100479i −0.616475 0.787374i $$-0.711440\pi$$
0.460128 + 0.887853i $$0.347804\pi$$
$$282$$ −2.64193 2.28924i −0.157325 0.136322i
$$283$$ −0.729777 0.104926i −0.0433807 0.00623721i 0.120590 0.992702i $$-0.461521\pi$$
−0.163971 + 0.986465i $$0.552430\pi$$
$$284$$ −5.30259 + 1.55698i −0.314651 + 0.0923898i
$$285$$ −3.94954 + 1.80020i −0.233951 + 0.106635i
$$286$$ −0.0529882 0.368541i −0.00313326 0.0217923i
$$287$$ 4.03772 1.84397i 0.238339 0.108846i
$$288$$ 2.30641 1.05330i 0.135906 0.0620664i
$$289$$ −2.15970 15.0210i −0.127041 0.883590i
$$290$$ −16.3083 + 7.43335i −0.957659 + 0.436501i
$$291$$ 3.91633 1.14994i 0.229579 0.0674105i
$$292$$ −0.425674 0.0612027i −0.0249107 0.00358162i
$$293$$ −10.2257 8.86058i −0.597389 0.517640i 0.302849 0.953039i $$-0.402062\pi$$
−0.900238 + 0.435398i $$0.856608\pi$$
$$294$$ 3.60191 2.31481i 0.210068 0.135002i
$$295$$ 2.70204 + 18.8913i 0.157319 + 1.09989i
$$296$$ 9.44454 + 2.77317i 0.548953 + 0.161187i
$$297$$ 0.541370 + 0.247235i 0.0314135 + 0.0143460i
$$298$$ 11.7210i 0.678979i
$$299$$ 7.95504 8.05181i 0.460052 0.465648i
$$300$$ 3.10170 1.41101i 0.179077 0.0814650i
$$301$$ 1.05725 2.31506i 0.0609390 0.133438i
$$302$$ −0.281407 + 0.958386i −0.0161932 + 0.0551489i
$$303$$ 0.789277 0.683912i 0.0453428 0.0392897i
$$304$$ 2.39609 1.53987i 0.137425 0.0883178i
$$305$$ −17.6900 + 5.18020i −1.01293 + 0.296617i
$$306$$ −0.487409 + 3.39001i −0.0278633 + 0.193794i
$$307$$ −3.95317 13.4633i −0.225619 0.768389i −0.992026 0.126033i $$-0.959775\pi$$
0.766407 0.642356i $$-0.222043\pi$$
$$308$$ 0.0722469 0.112418i 0.00411665 0.00640563i
$$309$$ 0.699121 + 4.86249i 0.0397716 + 0.276618i
$$310$$ 18.8177 + 2.71964i 1.06877 + 0.154465i
$$311$$ 9.54217 + 20.8944i 0.541087 + 1.18481i 0.960822 + 0.277168i $$0.0893958\pi$$
−0.419735 + 0.907647i $$0.637877\pi$$
$$312$$ −1.59209 + 0.228907i −0.0901341 + 0.0129593i
$$313$$ 10.0294 15.6060i 0.566893 0.882102i −0.432920 0.901432i $$-0.642517\pi$$
0.999813 + 0.0193299i $$0.00615327\pi$$
$$314$$ 14.7778 4.33915i 0.833959 0.244873i
$$315$$ −3.62722 3.14766i −0.204371 0.177350i
$$316$$ 1.91455 2.20951i 0.107702 0.124295i
$$317$$ 2.94533 + 4.58303i 0.165426 + 0.257409i 0.914063 0.405572i $$-0.132928\pi$$
−0.748637 + 0.662980i $$0.769291\pi$$
$$318$$ −1.16595 + 1.01030i −0.0653832 + 0.0566549i
$$319$$ 1.21325 + 0.356242i 0.0679289 + 0.0199457i
$$320$$ −1.88198 + 1.20753i −0.105206 + 0.0675031i
$$321$$ −7.55002 −0.421401
$$322$$ 4.05020 0.314299i 0.225709 0.0175152i
$$323$$ 3.84724i 0.214066i
$$324$$ −2.09185 + 4.58052i −0.116214 + 0.254473i
$$325$$ 11.6830 1.66230i 0.648054 0.0922077i
$$326$$ −10.8803 12.5565i −0.602602 0.695440i
$$327$$ −0.367260 0.571467i −0.0203095 0.0316022i
$$328$$ 3.96034 + 3.43165i 0.218673 + 0.189481i
$$329$$ 0.618351 4.30073i 0.0340908 0.237107i
$$330$$ −0.230622 0.0679003i −0.0126953 0.00373779i
$$331$$ 18.6460 + 11.9831i 1.02488 + 0.658649i 0.941202 0.337844i $$-0.109697\pi$$
0.0836763 + 0.996493i $$0.473334\pi$$
$$332$$ 8.01643 1.15259i 0.439959 0.0632565i
$$333$$ −22.7026 + 10.3679i −1.24409 + 0.568158i
$$334$$ 6.11812 + 13.3968i 0.334768 + 0.733040i
$$335$$ −22.3256 10.2155i −1.21978 0.558135i
$$336$$ −0.485644 0.312104i −0.0264940 0.0170267i
$$337$$ −6.81020 23.1934i −0.370975 1.26343i −0.907683 0.419658i $$-0.862150\pi$$
0.536707 0.843769i $$-0.319668\pi$$
$$338$$ 7.35419 + 1.05737i 0.400015 + 0.0575135i
$$339$$ −5.65021 + 6.52070i −0.306878 + 0.354156i
$$340$$ 0.00221142 3.02036i 0.000119931 0.163802i
$$341$$ −0.878443 1.01378i −0.0475703 0.0548991i
$$342$$ −2.03462 + 6.92929i −0.110020 + 0.374693i
$$343$$ 10.2344 + 4.67388i 0.552604 + 0.252366i
$$344$$ 3.00455 0.161995
$$345$$ −2.59038 6.83395i −0.139461 0.367928i
$$346$$ 20.1563 1.08361
$$347$$ 20.7095 + 9.45771i 1.11174 + 0.507716i 0.884696 0.466168i $$-0.154366\pi$$
0.227047 + 0.973884i $$0.427093\pi$$
$$348$$ 1.53895 5.24120i 0.0824966 0.280958i
$$349$$ 21.9046 + 25.2793i 1.17253 + 1.35317i 0.922999 + 0.384801i $$0.125730\pi$$
0.249528 + 0.968368i $$0.419725\pi$$
$$350$$ 3.55962 + 2.29500i 0.190270 + 0.122673i
$$351$$ 5.83067 6.72895i 0.311218 0.359165i
$$352$$ 0.156153 + 0.0224514i 0.00832299 + 0.00119666i
$$353$$ −9.09561 30.9768i −0.484110 1.64873i −0.733024 0.680203i $$-0.761892\pi$$
0.248914 0.968526i $$-0.419926\pi$$
$$354$$ −4.89300 3.14454i −0.260060 0.167130i
$$355$$ −5.14173 + 11.2370i −0.272895 + 0.596400i
$$356$$ 2.41983 + 5.29868i 0.128251 + 0.280830i
$$357$$ 0.709300 0.323927i 0.0375401 0.0171440i
$$358$$ 3.63339 0.522402i 0.192031 0.0276098i
$$359$$ 27.6221 + 17.7516i 1.45784 + 0.936895i 0.998825 + 0.0484650i $$0.0154329\pi$$
0.459012 + 0.888430i $$0.348203\pi$$
$$360$$ 1.60130 5.43881i 0.0843961 0.286650i
$$361$$ 1.54946 10.7767i 0.0815504 0.567196i
$$362$$ −14.4676 12.5363i −0.760402 0.658892i
$$363$$ −4.04382 6.29231i −0.212246 0.330261i
$$364$$ −1.30918 1.51088i −0.0686198 0.0791915i
$$365$$ −0.727208 + 0.629198i −0.0380638 + 0.0329337i
$$366$$ 2.33381 5.11033i 0.121990 0.267121i
$$367$$ 10.7767i 0.562537i 0.959629 + 0.281269i $$0.0907552\pi$$
−0.959629 + 0.281269i $$0.909245\pi$$
$$368$$ 2.32380 + 4.19523i 0.121137 + 0.218691i
$$369$$ −13.2869 −0.691690
$$370$$ 18.5249 11.8861i 0.963062 0.617926i
$$371$$ −1.83986 0.540233i −0.0955210 0.0280475i
$$372$$ −4.37949 + 3.79485i −0.227066 + 0.196754i
$$373$$ −15.4129 23.9830i −0.798050 1.24179i −0.966649 0.256106i $$-0.917560\pi$$
0.168598 0.985685i $$-0.446076\pi$$
$$374$$ −0.139546 + 0.161044i −0.00721573 + 0.00832740i
$$375$$ 2.16273 7.30618i 0.111683 0.377289i
$$376$$ 4.92164 1.44513i 0.253814 0.0745266i
$$377$$ 10.2272 15.9139i 0.526729 0.819606i
$$378$$ 3.16306 0.454780i 0.162690 0.0233913i
$$379$$ −5.60508 12.2734i −0.287914 0.630443i 0.709311 0.704896i $$-0.249006\pi$$
−0.997225 + 0.0744526i $$0.976279\pi$$
$$380$$ 0.910998 6.30336i 0.0467332 0.323356i
$$381$$ 0.622061 + 4.32653i 0.0318691 + 0.221655i
$$382$$ −12.6489 + 19.6820i −0.647172 + 1.00702i
$$383$$ 10.5663 + 35.9854i 0.539911 + 1.83877i 0.544472 + 0.838779i $$0.316730\pi$$
−0.00456073 + 0.999990i $$0.501452\pi$$
$$384$$ 0.0969895 0.674577i 0.00494947 0.0344244i
$$385$$ −0.0839746 0.286768i −0.00427974 0.0146150i
$$386$$ −5.82819 + 3.74555i −0.296647 + 0.190643i
$$387$$ −5.75743 + 4.98884i −0.292666 + 0.253597i
$$388$$ −1.68733 + 5.74651i −0.0856611 + 0.291735i
$$389$$ −2.93825 + 6.43387i −0.148975 + 0.326210i −0.969377 0.245577i $$-0.921023\pi$$
0.820402 + 0.571787i $$0.193750\pi$$
$$390$$ −1.94669 + 3.02424i −0.0985747 + 0.153139i
$$391$$ −6.46412 0.423058i −0.326904 0.0213950i
$$392$$ 6.28248i 0.317313i
$$393$$ −4.84578 2.21299i −0.244437 0.111631i
$$394$$ −0.932474 0.273799i −0.0469773 0.0137938i
$$395$$ −0.925626 6.47150i −0.0465733 0.325617i
$$396$$ −0.336505 + 0.216258i −0.0169100 + 0.0108674i
$$397$$ 10.7817 + 9.34236i 0.541116 + 0.468880i 0.882016 0.471220i $$-0.156186\pi$$
−0.340900 + 0.940100i $$0.610732\pi$$
$$398$$ 25.7485 + 3.70207i 1.29065 + 0.185568i
$$399$$ 1.57764 0.463238i 0.0789810 0.0231909i
$$400$$ −0.718821 + 4.94806i −0.0359410 + 0.247403i
$$401$$ −2.31363 16.0916i −0.115537 0.803577i −0.962375 0.271726i $$-0.912406\pi$$
0.846838 0.531851i $$-0.178504\pi$$
$$402$$ 6.80673 3.10853i 0.339489 0.155039i
$$403$$ −18.2546 + 8.33658i −0.909324 + 0.415275i
$$404$$ 0.218086 + 1.51682i 0.0108502 + 0.0754646i
$$405$$ 4.67003 + 10.2458i 0.232056 + 0.509117i
$$406$$ 6.51437 1.91279i 0.323303 0.0949302i
$$407$$ −1.53706 0.220995i −0.0761890 0.0109543i
$$408$$ 0.695706 + 0.602833i 0.0344426 + 0.0298447i
$$409$$ −30.4398 + 19.5625i −1.50515 + 0.967302i −0.510968 + 0.859600i $$0.670713\pi$$
−0.994183 + 0.107702i $$0.965651\pi$$
$$410$$ 11.5996 1.65910i 0.572862 0.0819371i
$$411$$ −6.87205 2.01782i −0.338973 0.0995316i
$$412$$ −6.55682 2.99440i −0.323031 0.147523i
$$413$$ 7.22919i 0.355725i
$$414$$ −11.4188 4.18053i −0.561204 0.205462i
$$415$$ 9.80195 15.2276i 0.481159 0.747494i
$$416$$ 0.980431 2.14684i 0.0480696 0.105258i
$$417$$ 1.33238 4.53766i 0.0652468 0.222210i
$$418$$ −0.339585 + 0.294252i −0.0166096 + 0.0143923i
$$419$$ 19.8526 12.7585i 0.969864 0.623294i 0.0431532 0.999068i $$-0.486260\pi$$
0.926711 + 0.375775i $$0.122623\pi$$
$$420$$ −1.23883 + 0.362768i −0.0604486 + 0.0177012i
$$421$$ −2.62284 + 18.2422i −0.127829 + 0.889072i 0.820469 + 0.571691i $$0.193712\pi$$
−0.948298 + 0.317381i $$0.897197\pi$$
$$422$$ 0.104456 + 0.355745i 0.00508485 + 0.0173174i
$$423$$ −7.03149 + 10.9412i −0.341883 + 0.531980i
$$424$$ −0.322165 2.24070i −0.0156457 0.108818i
$$425$$ −5.09764 4.43022i −0.247272 0.214897i
$$426$$ −1.56460 3.42599i −0.0758050 0.165990i
$$427$$ 6.91165 0.993745i 0.334478 0.0480907i
$$428$$ 5.98938 9.31966i 0.289508 0.450483i
$$429$$ 0.243470 0.0714892i 0.0117548 0.00345153i
$$430$$ 4.40333 5.07420i 0.212347 0.244699i
$$431$$ −10.5778 + 12.2074i −0.509515 + 0.588011i −0.950974 0.309270i $$-0.899915\pi$$
0.441460 + 0.897281i $$0.354461\pi$$
$$432$$ 2.03959 + 3.17367i 0.0981299 + 0.152693i
$$433$$ −14.7923 + 12.8176i −0.710871 + 0.615973i −0.933352 0.358964i $$-0.883130\pi$$
0.222480 + 0.974937i $$0.428585\pi$$
$$434$$ −6.91081 2.02920i −0.331729 0.0974046i
$$435$$ −6.59610 10.2803i −0.316259 0.492901i
$$436$$ 0.996759 0.0477361
$$437$$ −13.3648 2.82282i −0.639326 0.135034i
$$438$$ 0.293086i 0.0140042i
$$439$$ 2.87649 6.29864i 0.137288 0.300618i −0.828484 0.560013i $$-0.810796\pi$$
0.965771 + 0.259395i $$0.0835233\pi$$
$$440$$ 0.266767 0.230813i 0.0127176 0.0110036i
$$441$$ −10.4316 12.0387i −0.496742 0.573271i
$$442$$ 1.72352 + 2.68185i 0.0819796 + 0.127563i
$$443$$ 16.1098 + 13.9592i 0.765398 + 0.663221i 0.947391 0.320079i $$-0.103709\pi$$
−0.181993 + 0.983300i $$0.558255\pi$$
$$444$$ −0.954693 + 6.64003i −0.0453077 + 0.315122i
$$445$$ 12.4950 + 3.67880i 0.592319 + 0.174392i
$$446$$ −24.2864 15.6079i −1.15000 0.739057i
$$447$$ 7.90672 1.13681i 0.373975 0.0537695i
$$448$$ 0.770517 0.351883i 0.0364035 0.0166249i
$$449$$ 2.15138 + 4.71086i 0.101530 + 0.222319i 0.953579 0.301142i $$-0.0973678\pi$$
−0.852050 + 0.523461i $$0.824641\pi$$
$$450$$ −6.83846 10.6752i −0.322368 0.503233i
$$451$$ −0.695465 0.446948i −0.0327482 0.0210460i
$$452$$ −3.56680 12.1474i −0.167768 0.571366i
$$453$$ −0.673798 0.0968776i −0.0316578 0.00455170i
$$454$$ 17.0883 19.7210i 0.801994 0.925551i
$$455$$ −4.47030 0.00327302i −0.209571 0.000153442i
$$456$$ 1.27116 + 1.46700i 0.0595275 + 0.0686984i
$$457$$ 8.23241 28.0370i 0.385096 1.31152i −0.507886 0.861424i $$-0.669573\pi$$
0.892982 0.450092i $$-0.148609\pi$$
$$458$$ 1.74671 + 0.797695i 0.0816184 + 0.0372739i
$$459$$ −5.09575 −0.237849
$$460$$ 10.4907 + 2.22380i 0.489131 + 0.103685i
$$461$$ −19.3274 −0.900165 −0.450082 0.892987i $$-0.648605\pi$$
−0.450082 + 0.892987i $$0.648605\pi$$
$$462$$ 0.0828420 + 0.0378327i 0.00385416 + 0.00176013i
$$463$$ 9.18540 31.2826i 0.426882 1.45383i −0.412837 0.910805i $$-0.635462\pi$$
0.839719 0.543021i $$-0.182720\pi$$
$$464$$ 5.24884 + 6.05748i 0.243671 + 0.281211i
$$465$$ −0.00948730 + 12.9578i −0.000439963 + 0.600902i
$$466$$ −14.3154 + 16.5209i −0.663149 + 0.765315i
$$467$$ −0.134260 0.0193037i −0.00621283 0.000893271i 0.139208 0.990263i $$-0.455544\pi$$
−0.145421 + 0.989370i $$0.546454\pi$$
$$468$$ 1.68594 + 5.74179i 0.0779326 + 0.265414i
$$469$$ 7.82423 + 5.02833i 0.361290 + 0.232187i
$$470$$ 4.77234 10.4297i 0.220132 0.481088i
$$471$$ 4.36038 + 9.54790i 0.200916 + 0.439944i
$$472$$ 7.76317 3.54532i 0.357329 0.163187i
$$473$$ −0.469171 + 0.0674565i −0.0215725 + 0.00310165i
$$474$$ 1.67617 + 1.07721i 0.0769892 + 0.0494780i
$$475$$ −9.31023 10.7764i −0.427183 0.494456i
$$476$$ −0.162832 + 1.13252i −0.00746340 + 0.0519091i
$$477$$ 4.33786 + 3.75878i 0.198617 + 0.172103i
$$478$$ −6.20306 9.65214i −0.283721 0.441479i
$$479$$ −25.2392 29.1276i −1.15321 1.33087i −0.934866 0.355001i $$-0.884481\pi$$
−0.218342 0.975872i $$-0.570065\pi$$
$$480$$ −0.997106 1.15243i −0.0455114 0.0526008i
$$481$$ −9.65064 + 21.1320i −0.440031 + 0.963534i
$$482$$ 17.2493i 0.785686i
$$483$$ 0.604846 + 2.70169i 0.0275215 + 0.122931i
$$484$$ 10.9751 0.498869
$$485$$ 7.23205 + 11.2714i 0.328390 + 0.511809i
$$486$$ −14.1520 4.15540i −0.641947 0.188493i
$$487$$ −3.33150 + 2.88676i −0.150965 + 0.130811i −0.727069 0.686565i $$-0.759118\pi$$
0.576104 + 0.817376i $$0.304572\pi$$
$$488$$ 4.45674 + 6.93482i 0.201747 + 0.313925i
$$489$$ 7.41505 8.55742i 0.335320 0.386980i
$$490$$ 10.6101 + 9.20729i 0.479314 + 0.415943i
$$491$$ −2.94594 + 0.865007i −0.132949 + 0.0390372i −0.347530 0.937669i $$-0.612979\pi$$
0.214581 + 0.976706i $$0.431161\pi$$
$$492$$ −1.93080 + 3.00439i −0.0870473 + 0.135448i
$$493$$ −10.7163 + 1.54077i −0.482637 + 0.0693928i
$$494$$ 2.79250 + 6.11473i 0.125641 + 0.275115i
$$495$$ −0.127940 + 0.885238i −0.00575046 + 0.0397885i
$$496$$ −1.21010 8.41642i −0.0543350 0.377909i
$$497$$ 2.53088 3.93812i 0.113525 0.176649i
$$498$$ 1.55502 + 5.29591i 0.0696821 + 0.237315i
$$499$$ −2.86829 + 19.9494i −0.128402 + 0.893056i 0.819178 + 0.573539i $$0.194430\pi$$
−0.947580 + 0.319517i $$0.896479\pi$$
$$500$$ 7.30299 + 8.46560i 0.326600 + 0.378593i
$$501$$ −8.44378 + 5.42649i −0.377240 + 0.242438i
$$502$$ 3.37338 2.92305i 0.150562 0.130462i
$$503$$ −8.17978 + 27.8578i −0.364719 + 1.24212i 0.549018 + 0.835810i $$0.315002\pi$$
−0.913737 + 0.406307i $$0.866816\pi$$
$$504$$ −0.892214 + 1.95368i −0.0397424 + 0.0870236i
$$505$$ 2.88127 + 1.85466i 0.128215 + 0.0825315i
$$506$$ −0.457058 0.602925i −0.0203187 0.0268033i
$$507$$ 5.06352i 0.224879i
$$508$$ −5.83410 2.66434i −0.258846 0.118211i
$$509$$ −20.6803 6.07230i −0.916640 0.269150i −0.210807 0.977528i $$-0.567609\pi$$
−0.705833 + 0.708378i $$0.749427\pi$$
$$510$$ 2.03768 0.291451i 0.0902299 0.0129057i
$$511$$ 0.306453 0.196945i 0.0135567 0.00871235i
$$512$$ 0.755750 + 0.654861i 0.0333997 + 0.0289410i
$$513$$ −10.6357 1.52919i −0.469579 0.0675153i
$$514$$ −15.1340 + 4.44375i −0.667533 + 0.196005i
$$515$$ −14.6664 + 6.68494i −0.646279 + 0.294574i
$$516$$ 0.291410 + 2.02680i 0.0128286 + 0.0892250i
$$517$$ −0.736085 + 0.336159i −0.0323730 + 0.0147842i
$$518$$ −7.58440 + 3.46368i −0.333239 + 0.152185i
$$519$$ 1.95495 + 13.5969i 0.0858126 + 0.596839i
$$520$$ −2.18880 4.80210i −0.0959850 0.210586i
$$521$$ −12.4496 + 3.65553i −0.545427 + 0.160152i −0.542826 0.839845i $$-0.682646\pi$$
−0.00260018 + 0.999997i $$0.500828\pi$$
$$522$$ −20.1160 2.89224i −0.880453 0.126590i
$$523$$ 33.2436 + 28.8058i 1.45364 + 1.25959i 0.906271 + 0.422698i $$0.138917\pi$$
0.547371 + 0.836890i $$0.315629\pi$$
$$524$$ 6.57582 4.22603i 0.287266 0.184615i
$$525$$ −1.20291 + 2.62383i −0.0524993 + 0.114513i
$$526$$ 4.43458 + 1.30211i 0.193357 + 0.0567748i
$$527$$ 10.4474 + 4.77119i 0.455098 + 0.207836i
$$528$$ 0.107515i 0.00467898i
$$529$$ 6.21254 22.1451i 0.270110 0.962829i
$$530$$ −4.25633 2.73978i −0.184883 0.119008i
$$531$$ −8.98930 + 19.6838i −0.390102 + 0.854205i
$$532$$ −0.679720 + 2.31491i −0.0294696 + 0.100364i
$$533$$ −9.34690 + 8.09913i −0.404859 + 0.350812i
$$534$$ −3.33967 + 2.14628i −0.144522 + 0.0928785i
$$535$$ −6.96163 23.7735i −0.300978 1.02782i
$$536$$ −1.56260 + 10.8681i −0.0674942 + 0.469432i
$$537$$ 0.704801 + 2.40033i 0.0304144 + 0.103582i
$$538$$ −6.30826 + 9.81584i −0.271968 + 0.423191i
$$539$$ −0.141051 0.981029i −0.00607548 0.0422559i
$$540$$ 8.34892 + 1.20663i 0.359280 + 0.0519253i
$$541$$ 11.0401 + 24.1744i 0.474650 + 1.03934i 0.983900 + 0.178720i $$0.0571956\pi$$
−0.509250 + 0.860619i $$0.670077\pi$$
$$542$$ −28.0762 + 4.03675i −1.20598 + 0.173393i
$$543$$ 7.05347 10.9754i 0.302693 0.471000i
$$544$$ −1.29603 + 0.380549i −0.0555668 + 0.0163159i
$$545$$ 1.46080 1.68336i 0.0625738 0.0721073i
$$546$$ 0.892226 1.02968i 0.0381837 0.0440664i
$$547$$ −2.15783 3.35764i −0.0922620 0.143562i 0.792055 0.610450i $$-0.209012\pi$$
−0.884317 + 0.466888i $$0.845375\pi$$
$$548$$ 7.94233 6.88207i 0.339280 0.293987i
$$549$$ −20.0549 5.88865i −0.855923 0.251322i
$$550$$ 0.00115506 0.788793i 4.92521e−5 0.0336343i
$$551$$ −22.8292 −0.972556
$$552$$ −2.60462 + 1.97448i −0.110860 + 0.0840393i
$$553$$ 2.47648i 0.105310i
$$554$$ 11.6045 25.4103i 0.493028 1.07958i
$$555$$ 9.81477 + 11.3436i 0.416614 + 0.481510i
$$556$$ 4.54427 + 5.24437i 0.192720 + 0.222411i
$$557$$ 16.0950 + 25.0443i 0.681968 + 1.06116i 0.993817 + 0.111031i $$0.0354153\pi$$
−0.311849 + 0.950132i $$0.600948\pi$$
$$558$$ 16.2937 + 14.1185i 0.689766 + 0.597686i
$$559$$ −1.00917 + 7.01895i −0.0426834 + 0.296870i
$$560$$ 0.534958 1.81698i 0.0226061 0.0767813i
$$561$$ −0.122171 0.0785146i −0.00515807 0.00331489i
$$562$$ 3.08372 0.443371i 0.130079 0.0187025i
$$563$$ −30.2254 + 13.8035i −1.27385 + 0.581747i −0.933508 0.358556i $$-0.883269\pi$$
−0.340339 + 0.940303i $$0.610542\pi$$
$$564$$ 1.45220 + 3.17987i 0.0611485 + 0.133896i
$$565$$ −25.7423 11.7789i −1.08299 0.495542i
$$566$$ 0.620241 + 0.398604i 0.0260707 + 0.0167546i
$$567$$ −1.20172 4.09268i −0.0504674 0.171876i
$$568$$ 5.47020 + 0.786496i 0.229524 + 0.0330006i
$$569$$ 9.00955 10.3976i 0.377700 0.435889i −0.534792 0.844984i $$-0.679610\pi$$
0.912492 + 0.409095i $$0.134155\pi$$
$$570$$ 4.34046 + 0.00317796i 0.181802 + 0.000133110i
$$571$$ −27.6480 31.9075i −1.15703 1.33529i −0.932648 0.360788i $$-0.882508\pi$$
−0.224386 0.974500i $$-0.572038\pi$$
$$572$$ −0.104898 + 0.357249i −0.00438599 + 0.0149373i
$$573$$ −14.5038 6.62368i −0.605906 0.276708i
$$574$$ −4.43885 −0.185274
$$575$$ 19.1303 14.4580i 0.797787 0.602939i
$$576$$ −2.53554 −0.105647
$$577$$ −11.6030 5.29891i −0.483039 0.220597i 0.158985 0.987281i $$-0.449178\pi$$
−0.642024 + 0.766684i $$0.721905\pi$$
$$578$$ −4.27543 + 14.5608i −0.177834 + 0.605648i
$$579$$ −3.09193 3.56828i −0.128496 0.148293i
$$580$$ 17.9225 + 0.0131224i 0.744192 + 0.000544876i
$$581$$ −4.49251 + 5.18464i −0.186381 + 0.215095i
$$582$$ −4.04012 0.580881i −0.167468 0.0240783i
$$583$$ 0.100614 + 0.342660i 0.00416700 + 0.0141915i
$$584$$ 0.361782 + 0.232503i 0.0149707 + 0.00962106i
$$585$$ 12.1678 + 5.56760i 0.503075 + 0.230192i
$$586$$ 5.62076 + 12.3078i 0.232192 + 0.508429i
$$587$$ 10.2048 4.66037i 0.421197 0.192354i −0.193530 0.981094i $$-0.561994\pi$$
0.614727 + 0.788740i $$0.289266\pi$$
$$588$$ −4.23802 + 0.609335i −0.174773 + 0.0251285i
$$589$$ 20.3739 + 13.0935i 0.839492 + 0.539509i
$$590$$ 5.38985 18.3066i 0.221897 0.753669i
$$591$$ 0.0942583 0.655581i 0.00387727 0.0269670i
$$592$$ −7.43904 6.44596i −0.305743 0.264928i
$$593$$ −3.28292 5.10832i −0.134813 0.209774i 0.767283 0.641309i $$-0.221608\pi$$
−0.902096 + 0.431535i $$0.857972\pi$$
$$594$$ −0.389742 0.449786i −0.0159913 0.0184550i
$$595$$ 1.67400 + 1.93476i 0.0686275 + 0.0793176i
$$596$$ −4.86908 + 10.6618i −0.199445 + 0.436724i
$$597$$ 17.7284i 0.725575i
$$598$$ −10.5810 + 4.01955i −0.432689 + 0.164371i
$$599$$ 34.6374 1.41524 0.707622 0.706591i $$-0.249768\pi$$
0.707622 + 0.706591i $$0.249768\pi$$
$$600$$ −3.40756 0.00498984i −0.139113 0.000203710i
$$601$$ 26.2051 + 7.69450i 1.06893 + 0.313865i 0.768441 0.639921i $$-0.221033\pi$$
0.300486 + 0.953786i $$0.402851\pi$$
$$602$$ −1.92342 + 1.66665i −0.0783928 + 0.0679277i
$$603$$ −15.0514 23.4205i −0.612942 0.953756i
$$604$$ 0.654105 0.754877i 0.0266152 0.0307155i
$$605$$ 16.0846 18.5352i 0.653931 0.753561i
$$606$$ −1.00206 + 0.294231i −0.0407059 + 0.0119523i
$$607$$ 13.7892 21.4564i 0.559686 0.870889i −0.439945 0.898025i $$-0.645002\pi$$
0.999632 + 0.0271355i $$0.00863857\pi$$
$$608$$ −2.81925 + 0.405347i −0.114336 + 0.0164390i
$$609$$ 1.92215 + 4.20892i 0.0778894 + 0.170554i
$$610$$ 18.2434 + 2.63663i 0.738652 + 0.106754i
$$611$$ 1.72287 + 11.9829i 0.0697000 + 0.484774i
$$612$$ 1.85162 2.88118i 0.0748474 0.116465i
$$613$$ 7.87930 + 26.8344i 0.318242 + 1.08383i 0.950925 + 0.309422i $$0.100135\pi$$
−0.632683 + 0.774411i $$0.718046\pi$$
$$614$$ −1.99691 + 13.8888i −0.0805888 + 0.560507i
$$615$$ 2.24423 + 7.66389i 0.0904959 + 0.309038i
$$616$$ −0.112418 + 0.0722469i −0.00452946 + 0.00291091i
$$617$$ 12.3085 10.6654i 0.495523 0.429373i −0.370908 0.928670i $$-0.620954\pi$$
0.866431 + 0.499296i $$0.166408\pi$$
$$618$$ 1.38401 4.71350i 0.0556730 0.189605i
$$619$$ 2.39946 5.25407i 0.0964423 0.211179i −0.855262 0.518196i $$-0.826604\pi$$
0.951704 + 0.307017i $$0.0993309\pi$$
$$620$$ −15.9874 10.2910i −0.642070 0.413298i
$$621$$ 3.73888 17.7020i 0.150036 0.710355i
$$622$$ 22.9702i 0.921021i
$$623$$ −4.48833 2.04975i −0.179821 0.0821215i
$$624$$ 1.54330 + 0.453155i 0.0617816 + 0.0181407i
$$625$$ 24.9999 + 0.0732170i 0.999996 + 0.00292868i
$$626$$ −15.6060 + 10.0294i −0.623740 + 0.400854i
$$627$$ −0.231432 0.200537i −0.00924249 0.00800866i
$$628$$ −15.2449 2.19189i −0.608338 0.0874658i
$$629$$ 12.7572 3.74584i 0.508661 0.149356i
$$630$$ 1.99185 + 4.37001i 0.0793573 + 0.174105i
$$631$$ 2.99534 + 20.8330i 0.119242 + 0.829349i 0.958393 + 0.285451i $$0.0921433\pi$$
−0.839151 + 0.543899i $$0.816948\pi$$
$$632$$ −2.65940 + 1.21451i −0.105785 + 0.0483105i
$$633$$ −0.229846 + 0.104967i −0.00913557 + 0.00417207i
$$634$$ −0.775311 5.39241i −0.0307915 0.214160i
$$635$$ −13.0498 + 5.94810i −0.517865 + 0.236043i
$$636$$ 1.48028 0.434649i 0.0586969 0.0172350i
$$637$$ −14.6765 2.11016i −0.581505 0.0836078i
$$638$$ −0.955621 0.828050i −0.0378334 0.0327828i
$$639$$ −11.7881 + 7.57574i −0.466330 + 0.299692i
$$640$$ 2.21354 0.316605i 0.0874979 0.0125149i
$$641$$ −11.2921 3.31566i −0.446011 0.130961i 0.0510119 0.998698i $$-0.483755\pi$$
−0.497023 + 0.867737i $$0.665574\pi$$
$$642$$ 6.86774 + 3.13639i 0.271048 + 0.123783i
$$643$$ 4.81021i 0.189696i −0.995492 0.0948481i $$-0.969763\pi$$
0.995492 0.0948481i $$-0.0302365\pi$$
$$644$$ −3.81476 1.39662i −0.150322 0.0550344i
$$645$$ 3.85001 + 2.47824i 0.151594 + 0.0975805i
$$646$$ 1.59820 3.49958i 0.0628805 0.137689i
$$647$$ −1.01117 + 3.44371i −0.0397530 + 0.135386i −0.976979 0.213337i $$-0.931567\pi$$
0.937226 + 0.348724i $$0.113385\pi$$
$$648$$ 3.80563 3.29760i 0.149499 0.129542i
$$649$$ −1.13265 + 0.727907i −0.0444602 + 0.0285729i
$$650$$ −11.3177 3.34120i −0.443918 0.131053i
$$651$$ 0.698573 4.85868i 0.0273792 0.190427i
$$652$$ 4.68088 + 15.9416i 0.183317 + 0.624322i
$$653$$ 24.5693 38.2306i 0.961472 1.49608i 0.0958421 0.995397i $$-0.469446\pi$$
0.865630 0.500684i $$-0.166918\pi$$
$$654$$ 0.0966751 + 0.672390i 0.00378030 + 0.0262925i
$$655$$ 2.50014 17.2989i 0.0976886 0.675925i
$$656$$ −2.17689 4.76673i −0.0849933 0.186109i
$$657$$ −1.07931 + 0.155182i −0.0421080 + 0.00605422i
$$658$$ −2.34906 + 3.65521i −0.0915758 + 0.142495i
$$659$$ 47.2679 13.8791i 1.84130 0.540653i 0.841296 0.540575i $$-0.181793\pi$$
1.00000 7.77027e-5i $$-2.47335e-5\pi$$
$$660$$ 0.181575 + 0.157568i 0.00706779 + 0.00613334i
$$661$$ −2.19577 + 2.53405i −0.0854056 + 0.0985633i −0.796844 0.604185i $$-0.793499\pi$$
0.711438 + 0.702749i $$0.248044\pi$$
$$662$$ −11.9831 18.6460i −0.465735 0.724699i
$$663$$ −1.64195 + 1.42276i −0.0637682 + 0.0552554i
$$664$$ −7.77080 2.28171i −0.301566 0.0885477i
$$665$$ 2.91334 + 4.54055i 0.112975 + 0.176075i
$$666$$ 24.9580 0.967102
$$667$$ 2.51039 38.3575i 0.0972025 1.48521i
$$668$$ 14.7277i 0.569833i
$$669$$ 8.17322 17.8969i 0.315995 0.691933i
$$670$$ 16.0644 + 18.5668i 0.620623 + 0.717298i
$$671$$ −0.851631 0.982834i −0.0328768 0.0379419i
$$672$$ 0.312104 + 0.485644i 0.0120397 + 0.0187341i
$$673$$ 27.4474 + 23.7833i 1.05802 + 0.916778i 0.996686 0.0813400i $$-0.0259200\pi$$
0.0613312 + 0.998117i $$0.480465\pi$$
$$674$$ −3.44012 + 23.9265i −0.132508 + 0.921616i
$$675$$ 14.2736 12.3316i 0.549390 0.474642i
$$676$$ −6.25036 4.01686i −0.240398 0.154495i
$$677$$ 3.27028 0.470196i 0.125687 0.0180711i −0.0791841 0.996860i $$-0.525232\pi$$
0.204871 + 0.978789i $$0.434322\pi$$
$$678$$ 7.84841 3.58425i 0.301416 0.137652i
$$679$$ −2.10747 4.61471i −0.0808772 0.177096i
$$680$$ −1.25671 + 2.74649i −0.0481928 + 0.105323i
$$681$$ 14.9607 + 9.61465i 0.573295 + 0.368434i
$$682$$ 0.377921 + 1.28708i 0.0144714 + 0.0492849i
$$683$$ 35.1573 + 5.05486i 1.34526 + 0.193419i 0.777036 0.629456i $$-0.216722\pi$$
0.568222 + 0.822875i $$0.307631\pi$$
$$684$$ 4.72929 5.45789i 0.180829 0.208688i
$$685$$ 0.0172055 23.4993i 0.000657389 0.897862i
$$686$$ −7.36791 8.50303i −0.281308 0.324647i
$$687$$ −0.368694 + 1.25566i −0.0140666 + 0.0479063i
$$688$$ −2.73304 1.24814i −0.104196 0.0475848i
$$689$$ 5.34272 0.203541
$$690$$ −0.482633 + 7.29247i −0.0183735 + 0.277619i
$$691$$ −16.3035 −0.620215 −0.310108 0.950701i $$-0.600365\pi$$
−0.310108 + 0.950701i $$0.600365\pi$$
$$692$$ −18.3348 8.37321i −0.696984 0.318302i
$$693$$ 0.0954591 0.325104i 0.00362619 0.0123497i
$$694$$ −14.9091 17.2061i −0.565943 0.653133i
$$695$$ 15.5167 + 0.0113609i 0.588584 + 0.000430944i
$$696$$ −3.57715 + 4.12826i −0.135592 + 0.156481i
$$697$$ 7.00624 + 1.00734i 0.265380 + 0.0381559i
$$698$$ −9.42375 32.0944i −0.356694 1.21479i
$$699$$ −12.5331 8.05450i −0.474044 0.304649i
$$700$$ −2.28457 3.56633i −0.0863486 0.134795i
$$701$$ −9.69080 21.2199i −0.366017 0.801465i −0.999613 0.0278012i $$-0.991149\pi$$
0.633597 0.773663i $$-0.281578\pi$$
$$702$$ −8.09907 + 3.69872i −0.305680 + 0.139599i
$$703$$ 27.7506 3.98993i 1.04663 0.150483i
$$704$$ −0.132715 0.0852909i −0.00500189 0.00321452i
$$705$$ 7.49853 + 2.20773i 0.282411 + 0.0831480i
$$706$$ −4.59457 + 31.9559i −0.172919 + 1.20268i
$$707$$ −0.981005 0.850046i −0.0368945 0.0319693i
$$708$$ 3.14454 + 4.89300i 0.118179 + 0.183890i
$$709$$ −9.72912 11.2280i −0.365385 0.421677i 0.543052 0.839699i $$-0.317269\pi$$
−0.908437 + 0.418023i $$0.862723\pi$$
$$710$$ 9.34511 8.08561i 0.350716 0.303448i
$$711$$ 3.07943 6.74301i 0.115488 0.252883i
$$712$$ 5.82509i 0.218304i
$$713$$ −24.2400 + 32.7923i −0.907796 + 1.22808i
$$714$$ −0.779766 −0.0291820
$$715$$ 0.449601 + 0.700720i 0.0168141 + 0.0262055i
$$716$$ −3.52206 1.03417i −0.131626 0.0386488i
$$717$$ 5.90948 5.12059i 0.220694 0.191232i
$$718$$ −17.7516 27.6221i −0.662485 1.03085i
$$719$$ 2.47270 2.85364i 0.0922160 0.106423i −0.707766 0.706447i $$-0.750297\pi$$
0.799982 + 0.600024i $$0.204842\pi$$
$$720$$ −3.71596 + 4.28211i −0.138486 + 0.159585i
$$721$$ 5.85849 1.72021i 0.218182 0.0640639i
$$722$$ −5.88625 + 9.15918i −0.219063 + 0.340869i
$$723$$ −11.6360 + 1.67300i −0.432748 + 0.0622197i
$$724$$ 7.95246 + 17.4135i 0.295551 + 0.647166i
$$725$$ 26.2885 30.2489i 0.976331 1.12342i
$$726$$ 1.06447 + 7.40356i 0.0395062 + 0.274772i
$$727$$ −5.14035 + 7.99854i −0.190645 + 0.296649i −0.923397 0.383846i $$-0.874599\pi$$
0.732752 + 0.680496i $$0.238236\pi$$
$$728$$ 0.563233 + 1.91820i 0.0208748 + 0.0710931i
$$729$$ −0.719370 + 5.00333i −0.0266433 + 0.185308i
$$730$$ 0.922870 0.270245i 0.0341570 0.0100022i
$$731$$ 3.41413 2.19413i 0.126276 0.0811528i
$$732$$ −4.24581 + 3.67902i −0.156930 + 0.135980i
$$733$$ 3.64380 12.4097i 0.134587 0.458361i −0.864427 0.502758i $$-0.832319\pi$$
0.999014 + 0.0443972i $$0.0141367\pi$$
$$734$$ 4.47679 9.80280i 0.165241 0.361828i
$$735$$ −5.18196 + 8.05032i −0.191139 + 0.296941i
$$736$$ −0.371046 4.78146i −0.0136769 0.176247i
$$737$$ 1.73218i 0.0638056i
$$738$$ 12.0862 + 5.51959i 0.444900 + 0.203179i
$$739$$ 12.3471 + 3.62543i 0.454195 + 0.133364i 0.500825 0.865549i $$-0.333030\pi$$
−0.0466302 + 0.998912i $$0.514848\pi$$
$$740$$ −21.7885 + 3.11643i −0.800960 + 0.114562i
$$741$$ −3.85401 + 2.47682i −0.141581 + 0.0909883i
$$742$$ 1.44918 + 1.25572i 0.0532010 + 0.0460989i
$$743$$ −40.7993 5.86605i −1.49678 0.215204i −0.655249 0.755413i $$-0.727436\pi$$
−0.841531 + 0.540209i $$0.818345\pi$$
$$744$$ 5.56016 1.63261i 0.203845 0.0598544i
$$745$$ 10.8701 + 23.8485i 0.398251 + 0.873740i
$$746$$ 4.05720 + 28.2184i 0.148545 + 1.03315i
$$747$$ 18.6793 8.53054i 0.683439 0.312116i
$$748$$ 0.193835 0.0885216i 0.00708732 0.00323667i
$$749$$ 1.33549 + 9.28852i 0.0487977 + 0.339395i
$$750$$ −5.00238 + 5.74750i −0.182661 + 0.209869i
$$751$$ −10.7184 + 3.14721i −0.391120 + 0.114843i −0.471379 0.881931i $$-0.656244\pi$$
0.0802587 + 0.996774i $$0.474425\pi$$
$$752$$ −5.07721 0.729993i −0.185147 0.0266201i
$$753$$ 2.29901 + 1.99210i 0.0837805 + 0.0725962i
$$754$$ −15.9139 + 10.2272i −0.579549 + 0.372454i
$$755$$ −0.316240 2.21099i −0.0115091 0.0804660i
$$756$$ −3.06614 0.900301i −0.111515 0.0327436i
$$757$$ 35.8431 + 16.3690i 1.30274 + 0.594940i 0.941336 0.337470i $$-0.109571\pi$$
0.361402 + 0.932410i $$0.382298\pi$$
$$758$$ 13.4927i 0.490078i
$$759$$ 0.362389 0.366798i 0.0131539 0.0133139i
$$760$$ −3.44719 + 5.35530i −0.125043 + 0.194257i
$$761$$ −11.2013 + 24.5275i −0.406048 + 0.889122i 0.590573 + 0.806984i $$0.298902\pi$$
−0.996621 + 0.0821373i $$0.973825\pi$$
$$762$$ 1.23146 4.19396i 0.0446110 0.151931i
$$763$$ −0.638094 + 0.552911i −0.0231005 + 0.0200167i
$$764$$ 19.6820 12.6489i 0.712070 0.457619i
$$765$$ −2.15219 7.34960i −0.0778127 0.265725i
$$766$$ 5.33746 37.1229i 0.192850 1.34130i
$$767$$ 5.67473 + 19.3264i 0.204903 + 0.697835i
$$768$$ −0.368454 + 0.573326i −0.0132954