# Properties

 Label 230.2.j.a.29.10 Level $230$ Weight $2$ Character 230.29 Analytic conductor $1.837$ Analytic rank $0$ Dimension $120$ CM no Inner twists $4$

# Learn more

## Newspace parameters

 Level: $$N$$ $$=$$ $$230 = 2 \cdot 5 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 230.j (of order $$22$$, degree $$10$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$1.83655924649$$ Analytic rank: $$0$$ Dimension: $$120$$ Relative dimension: $$12$$ over $$\Q(\zeta_{22})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

## Embedding invariants

 Embedding label 29.10 Character $$\chi$$ $$=$$ 230.29 Dual form 230.2.j.a.119.10

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.909632 + 0.415415i) q^{2} +(-0.0359844 + 0.122552i) q^{3} +(0.654861 + 0.755750i) q^{4} +(-1.78273 + 1.34976i) q^{5} +(-0.0836423 + 0.0965284i) q^{6} +(0.277941 + 0.0399619i) q^{7} +(0.281733 + 0.959493i) q^{8} +(2.51004 + 1.61310i) q^{9} +O(q^{10})$$ $$q+(0.909632 + 0.415415i) q^{2} +(-0.0359844 + 0.122552i) q^{3} +(0.654861 + 0.755750i) q^{4} +(-1.78273 + 1.34976i) q^{5} +(-0.0836423 + 0.0965284i) q^{6} +(0.277941 + 0.0399619i) q^{7} +(0.281733 + 0.959493i) q^{8} +(2.51004 + 1.61310i) q^{9} +(-2.18234 + 0.487212i) q^{10} +(2.07071 + 4.53422i) q^{11} +(-0.116183 + 0.0530590i) q^{12} +(3.69726 - 0.531586i) q^{13} +(0.236223 + 0.151811i) q^{14} +(-0.101265 - 0.267047i) q^{15} +(-0.142315 + 0.989821i) q^{16} +(-5.80355 - 5.02880i) q^{17} +(1.61310 + 2.51004i) q^{18} +(-2.73415 - 3.15538i) q^{19} +(-2.18752 - 0.463395i) q^{20} +(-0.0148989 + 0.0326241i) q^{21} +4.98467i q^{22} +(-0.919072 - 4.70694i) q^{23} -0.127725 q^{24} +(1.35629 - 4.81253i) q^{25} +(3.58398 + 1.05235i) q^{26} +(-0.577595 + 0.500489i) q^{27} +(0.151811 + 0.236223i) q^{28} +(-1.53549 + 1.77205i) q^{29} +(0.0188217 - 0.284982i) q^{30} +(3.18900 - 0.936376i) q^{31} +(-0.540641 + 0.841254i) q^{32} +(-0.630188 + 0.0906074i) q^{33} +(-3.19005 - 6.98524i) q^{34} +(-0.549434 + 0.303913i) q^{35} +(0.424623 + 2.95332i) q^{36} +(4.55996 - 7.09543i) q^{37} +(-1.17628 - 4.00604i) q^{38} +(-0.0678970 + 0.472234i) q^{39} +(-1.79734 - 1.33025i) q^{40} +(1.35119 - 0.868354i) q^{41} +(-0.0271051 + 0.0234867i) q^{42} +(-2.28629 + 7.78640i) q^{43} +(-2.07071 + 4.53422i) q^{44} +(-6.65203 + 0.512218i) q^{45} +(1.11932 - 4.66338i) q^{46} +5.98632i q^{47} +(-0.116183 - 0.0530590i) q^{48} +(-6.64080 - 1.94991i) q^{49} +(3.23292 - 3.81421i) q^{50} +(0.825125 - 0.530276i) q^{51} +(2.82294 + 2.44609i) q^{52} +(10.5552 + 1.51760i) q^{53} +(-0.733310 + 0.215319i) q^{54} +(-9.81163 - 5.28834i) q^{55} +(0.0399619 + 0.277941i) q^{56} +(0.485083 - 0.221530i) q^{57} +(-2.13286 + 0.974046i) q^{58} +(-1.46074 - 10.1597i) q^{59} +(0.135506 - 0.251410i) q^{60} +(10.4089 - 3.05634i) q^{61} +(3.28980 + 0.473003i) q^{62} +(0.633179 + 0.548653i) q^{63} +(-0.841254 + 0.540641i) q^{64} +(-5.87372 + 5.93810i) q^{65} +(-0.610879 - 0.179370i) q^{66} +(-8.30299 - 3.79185i) q^{67} -7.67920i q^{68} +(0.609915 + 0.0567427i) q^{69} +(-0.626032 + 0.0482056i) q^{70} +(-1.57188 + 3.44193i) q^{71} +(-0.840602 + 2.86283i) q^{72} +(7.70105 - 6.67300i) q^{73} +(7.09543 - 4.55996i) q^{74} +(0.540978 + 0.339391i) q^{75} +(0.594188 - 4.13267i) q^{76} +(0.394338 + 1.34299i) q^{77} +(-0.257934 + 0.401354i) q^{78} +(0.687186 + 4.77948i) q^{79} +(-1.08231 - 1.95668i) q^{80} +(3.67785 + 8.05337i) q^{81} +(1.58981 - 0.228580i) q^{82} +(-6.83669 + 10.6381i) q^{83} +(-0.0344123 + 0.0101044i) q^{84} +(17.1339 + 1.13161i) q^{85} +(-5.31428 + 6.13300i) q^{86} +(-0.161914 - 0.251942i) q^{87} +(-3.76716 + 3.26427i) q^{88} +(-5.36601 - 1.57560i) q^{89} +(-6.26369 - 2.29742i) q^{90} +1.04886 q^{91} +(2.95541 - 3.77698i) q^{92} +0.424512i q^{93} +(-2.48681 + 5.44534i) q^{94} +(9.13328 + 1.93475i) q^{95} +(-0.0836423 - 0.0965284i) q^{96} +(-2.46614 - 3.83739i) q^{97} +(-5.23066 - 4.53239i) q^{98} +(-2.11660 + 14.7213i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$120 q + 12 q^{4} - 4 q^{6} + 8 q^{9}+O(q^{10})$$ 120 * q + 12 * q^4 - 4 * q^6 + 8 * q^9 $$120 q + 12 q^{4} - 4 q^{6} + 8 q^{9} + 8 q^{11} - 6 q^{15} - 12 q^{16} - 16 q^{19} - 22 q^{20} + 4 q^{24} - 52 q^{25} - 4 q^{26} - 8 q^{29} - 44 q^{30} + 12 q^{31} + 16 q^{35} - 8 q^{36} - 36 q^{39} - 28 q^{41} - 8 q^{44} + 16 q^{45} - 4 q^{46} - 58 q^{49} + 12 q^{50} - 24 q^{51} - 6 q^{54} - 36 q^{55} + 22 q^{56} - 102 q^{59} - 38 q^{60} + 72 q^{61} + 12 q^{64} - 138 q^{65} + 80 q^{66} - 212 q^{69} - 108 q^{70} + 176 q^{71} - 88 q^{74} - 100 q^{75} + 16 q^{76} - 104 q^{79} - 22 q^{80} - 28 q^{81} - 22 q^{84} + 2 q^{85} + 62 q^{86} + 48 q^{89} + 24 q^{90} - 56 q^{91} + 24 q^{94} + 18 q^{95} - 4 q^{96} + 188 q^{99}+O(q^{100})$$ 120 * q + 12 * q^4 - 4 * q^6 + 8 * q^9 + 8 * q^11 - 6 * q^15 - 12 * q^16 - 16 * q^19 - 22 * q^20 + 4 * q^24 - 52 * q^25 - 4 * q^26 - 8 * q^29 - 44 * q^30 + 12 * q^31 + 16 * q^35 - 8 * q^36 - 36 * q^39 - 28 * q^41 - 8 * q^44 + 16 * q^45 - 4 * q^46 - 58 * q^49 + 12 * q^50 - 24 * q^51 - 6 * q^54 - 36 * q^55 + 22 * q^56 - 102 * q^59 - 38 * q^60 + 72 * q^61 + 12 * q^64 - 138 * q^65 + 80 * q^66 - 212 * q^69 - 108 * q^70 + 176 * q^71 - 88 * q^74 - 100 * q^75 + 16 * q^76 - 104 * q^79 - 22 * q^80 - 28 * q^81 - 22 * q^84 + 2 * q^85 + 62 * q^86 + 48 * q^89 + 24 * q^90 - 56 * q^91 + 24 * q^94 + 18 * q^95 - 4 * q^96 + 188 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/230\mathbb{Z}\right)^\times$$.

 $$n$$ $$47$$ $$51$$ $$\chi(n)$$ $$-1$$ $$e\left(\frac{9}{11}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.909632 + 0.415415i 0.643207 + 0.293743i
$$3$$ −0.0359844 + 0.122552i −0.0207756 + 0.0707552i −0.969228 0.246163i $$-0.920830\pi$$
0.948453 + 0.316919i $$0.102648\pi$$
$$4$$ 0.654861 + 0.755750i 0.327430 + 0.377875i
$$5$$ −1.78273 + 1.34976i −0.797263 + 0.603632i
$$6$$ −0.0836423 + 0.0965284i −0.0341468 + 0.0394075i
$$7$$ 0.277941 + 0.0399619i 0.105052 + 0.0151042i 0.194640 0.980875i $$-0.437646\pi$$
−0.0895884 + 0.995979i $$0.528555\pi$$
$$8$$ 0.281733 + 0.959493i 0.0996075 + 0.339232i
$$9$$ 2.51004 + 1.61310i 0.836679 + 0.537701i
$$10$$ −2.18234 + 0.487212i −0.690118 + 0.154070i
$$11$$ 2.07071 + 4.53422i 0.624342 + 1.36712i 0.912319 + 0.409480i $$0.134290\pi$$
−0.287977 + 0.957637i $$0.592983\pi$$
$$12$$ −0.116183 + 0.0530590i −0.0335392 + 0.0153168i
$$13$$ 3.69726 0.531586i 1.02544 0.147435i 0.390984 0.920397i $$-0.372135\pi$$
0.634452 + 0.772962i $$0.281226\pi$$
$$14$$ 0.236223 + 0.151811i 0.0631333 + 0.0405733i
$$15$$ −0.101265 0.267047i −0.0261465 0.0689513i
$$16$$ −0.142315 + 0.989821i −0.0355787 + 0.247455i
$$17$$ −5.80355 5.02880i −1.40757 1.21966i −0.942420 0.334431i $$-0.891456\pi$$
−0.465147 0.885233i $$-0.653999\pi$$
$$18$$ 1.61310 + 2.51004i 0.380212 + 0.591621i
$$19$$ −2.73415 3.15538i −0.627258 0.723894i 0.349811 0.936820i $$-0.386246\pi$$
−0.977068 + 0.212927i $$0.931700\pi$$
$$20$$ −2.18752 0.463395i −0.489145 0.103618i
$$21$$ −0.0148989 + 0.0326241i −0.00325121 + 0.00711916i
$$22$$ 4.98467i 1.06274i
$$23$$ −0.919072 4.70694i −0.191640 0.981465i
$$24$$ −0.127725 −0.0260718
$$25$$ 1.35629 4.81253i 0.271257 0.962507i
$$26$$ 3.58398 + 1.05235i 0.702876 + 0.206383i
$$27$$ −0.577595 + 0.500489i −0.111158 + 0.0963192i
$$28$$ 0.151811 + 0.236223i 0.0286897 + 0.0446420i
$$29$$ −1.53549 + 1.77205i −0.285133 + 0.329061i −0.880189 0.474623i $$-0.842584\pi$$
0.595056 + 0.803684i $$0.297130\pi$$
$$30$$ 0.0188217 0.284982i 0.00343636 0.0520303i
$$31$$ 3.18900 0.936376i 0.572762 0.168178i 0.0174902 0.999847i $$-0.494432\pi$$
0.555272 + 0.831669i $$0.312614\pi$$
$$32$$ −0.540641 + 0.841254i −0.0955727 + 0.148714i
$$33$$ −0.630188 + 0.0906074i −0.109702 + 0.0157727i
$$34$$ −3.19005 6.98524i −0.547090 1.19796i
$$35$$ −0.549434 + 0.303913i −0.0928712 + 0.0513706i
$$36$$ 0.424623 + 2.95332i 0.0707705 + 0.492219i
$$37$$ 4.55996 7.09543i 0.749652 1.16648i −0.231423 0.972853i $$-0.574338\pi$$
0.981075 0.193628i $$-0.0620255\pi$$
$$38$$ −1.17628 4.00604i −0.190818 0.649866i
$$39$$ −0.0678970 + 0.472234i −0.0108722 + 0.0756180i
$$40$$ −1.79734 1.33025i −0.284185 0.210331i
$$41$$ 1.35119 0.868354i 0.211020 0.135614i −0.430862 0.902418i $$-0.641790\pi$$
0.641882 + 0.766804i $$0.278154\pi$$
$$42$$ −0.0271051 + 0.0234867i −0.00418240 + 0.00362407i
$$43$$ −2.28629 + 7.78640i −0.348657 + 1.18742i 0.579421 + 0.815028i $$0.303279\pi$$
−0.928078 + 0.372387i $$0.878539\pi$$
$$44$$ −2.07071 + 4.53422i −0.312171 + 0.683559i
$$45$$ −6.65203 + 0.512218i −0.991627 + 0.0763570i
$$46$$ 1.11932 4.66338i 0.165034 0.687578i
$$47$$ 5.98632i 0.873194i 0.899657 + 0.436597i $$0.143816\pi$$
−0.899657 + 0.436597i $$0.856184\pi$$
$$48$$ −0.116183 0.0530590i −0.0167696 0.00765841i
$$49$$ −6.64080 1.94991i −0.948685 0.278559i
$$50$$ 3.23292 3.81421i 0.457204 0.539411i
$$51$$ 0.825125 0.530276i 0.115541 0.0742534i
$$52$$ 2.82294 + 2.44609i 0.391471 + 0.339212i
$$53$$ 10.5552 + 1.51760i 1.44986 + 0.208459i 0.821832 0.569731i $$-0.192952\pi$$
0.628030 + 0.778189i $$0.283862\pi$$
$$54$$ −0.733310 + 0.215319i −0.0997909 + 0.0293012i
$$55$$ −9.81163 5.28834i −1.32300 0.713080i
$$56$$ 0.0399619 + 0.277941i 0.00534013 + 0.0371414i
$$57$$ 0.485083 0.221530i 0.0642509 0.0293424i
$$58$$ −2.13286 + 0.974046i −0.280059 + 0.127899i
$$59$$ −1.46074 10.1597i −0.190173 1.32268i −0.831548 0.555453i $$-0.812545\pi$$
0.641375 0.767227i $$-0.278364\pi$$
$$60$$ 0.135506 0.251410i 0.0174938 0.0324568i
$$61$$ 10.4089 3.05634i 1.33273 0.391325i 0.463659 0.886014i $$-0.346536\pi$$
0.869070 + 0.494689i $$0.164718\pi$$
$$62$$ 3.28980 + 0.473003i 0.417806 + 0.0600714i
$$63$$ 0.633179 + 0.548653i 0.0797731 + 0.0691238i
$$64$$ −0.841254 + 0.540641i −0.105157 + 0.0675801i
$$65$$ −5.87372 + 5.93810i −0.728546 + 0.736531i
$$66$$ −0.610879 0.179370i −0.0751940 0.0220790i
$$67$$ −8.30299 3.79185i −1.01437 0.463248i −0.162338 0.986735i $$-0.551903\pi$$
−0.852033 + 0.523487i $$0.824631\pi$$
$$68$$ 7.67920i 0.931239i
$$69$$ 0.609915 + 0.0567427i 0.0734252 + 0.00683102i
$$70$$ −0.626032 + 0.0482056i −0.0748252 + 0.00576167i
$$71$$ −1.57188 + 3.44193i −0.186547 + 0.408482i −0.979680 0.200567i $$-0.935721\pi$$
0.793133 + 0.609049i $$0.208449\pi$$
$$72$$ −0.840602 + 2.86283i −0.0990658 + 0.337387i
$$73$$ 7.70105 6.67300i 0.901340 0.781015i −0.0750167 0.997182i $$-0.523901\pi$$
0.976356 + 0.216167i $$0.0693556\pi$$
$$74$$ 7.09543 4.55996i 0.824827 0.530084i
$$75$$ 0.540978 + 0.339391i 0.0624668 + 0.0391895i
$$76$$ 0.594188 4.13267i 0.0681580 0.474050i
$$77$$ 0.394338 + 1.34299i 0.0449390 + 0.153048i
$$78$$ −0.257934 + 0.401354i −0.0292053 + 0.0454444i
$$79$$ 0.687186 + 4.77948i 0.0773145 + 0.537734i 0.991263 + 0.131903i $$0.0421087\pi$$
−0.913948 + 0.405831i $$0.866982\pi$$
$$80$$ −1.08231 1.95668i −0.121006 0.218763i
$$81$$ 3.67785 + 8.05337i 0.408650 + 0.894819i
$$82$$ 1.58981 0.228580i 0.175565 0.0252424i
$$83$$ −6.83669 + 10.6381i −0.750425 + 1.16768i 0.230458 + 0.973082i $$0.425978\pi$$
−0.980882 + 0.194601i $$0.937659\pi$$
$$84$$ −0.0344123 + 0.0101044i −0.00375469 + 0.00110248i
$$85$$ 17.1339 + 1.13161i 1.85843 + 0.122741i
$$86$$ −5.31428 + 6.13300i −0.573053 + 0.661339i
$$87$$ −0.161914 0.251942i −0.0173590 0.0270111i
$$88$$ −3.76716 + 3.26427i −0.401581 + 0.347972i
$$89$$ −5.36601 1.57560i −0.568796 0.167014i −0.0153257 0.999883i $$-0.504879\pi$$
−0.553470 + 0.832869i $$0.686697\pi$$
$$90$$ −6.26369 2.29742i −0.660250 0.242170i
$$91$$ 1.04886 0.109951
$$92$$ 2.95541 3.77698i 0.308122 0.393777i
$$93$$ 0.424512i 0.0440199i
$$94$$ −2.48681 + 5.44534i −0.256494 + 0.561644i
$$95$$ 9.13328 + 1.93475i 0.937055 + 0.198501i
$$96$$ −0.0836423 0.0965284i −0.00853671 0.00985188i
$$97$$ −2.46614 3.83739i −0.250398 0.389628i 0.693186 0.720758i $$-0.256206\pi$$
−0.943585 + 0.331131i $$0.892570\pi$$
$$98$$ −5.23066 4.53239i −0.528376 0.457841i
$$99$$ −2.11660 + 14.7213i −0.212727 + 1.47955i
$$100$$ 4.52525 2.12653i 0.452525 0.212653i
$$101$$ 1.61923 + 1.04062i 0.161119 + 0.103545i 0.618716 0.785615i $$-0.287653\pi$$
−0.457596 + 0.889160i $$0.651290\pi$$
$$102$$ 0.970844 0.139586i 0.0961279 0.0138211i
$$103$$ −13.7653 + 6.28640i −1.35633 + 0.619417i −0.955025 0.296525i $$-0.904172\pi$$
−0.401310 + 0.915943i $$0.631445\pi$$
$$104$$ 1.55169 + 3.39773i 0.152156 + 0.333175i
$$105$$ −0.0174739 0.0782701i −0.00170528 0.00763838i
$$106$$ 8.97087 + 5.76523i 0.871328 + 0.559968i
$$107$$ −2.00341 6.82299i −0.193677 0.659603i −0.997870 0.0652348i $$-0.979220\pi$$
0.804193 0.594368i $$-0.202598\pi$$
$$108$$ −0.756489 0.108767i −0.0727932 0.0104661i
$$109$$ 6.96543 8.03854i 0.667167 0.769952i −0.316763 0.948505i $$-0.602596\pi$$
0.983930 + 0.178553i $$0.0571415\pi$$
$$110$$ −6.72812 8.88634i −0.641501 0.847280i
$$111$$ 0.705469 + 0.814154i 0.0669601 + 0.0772761i
$$112$$ −0.0791102 + 0.269425i −0.00747521 + 0.0254582i
$$113$$ −11.3093 5.16480i −1.06389 0.485864i −0.194969 0.980809i $$-0.562461\pi$$
−0.868924 + 0.494946i $$0.835188\pi$$
$$114$$ 0.533274 0.0499457
$$115$$ 7.99171 + 7.15070i 0.745231 + 0.666806i
$$116$$ −2.34475 −0.217705
$$117$$ 10.1378 + 4.62976i 0.937237 + 0.428022i
$$118$$ 2.89175 9.84840i 0.266207 0.906619i
$$119$$ −1.41208 1.62963i −0.129445 0.149388i
$$120$$ 0.227700 0.172399i 0.0207861 0.0157378i
$$121$$ −9.06782 + 10.4648i −0.824347 + 0.951347i
$$122$$ 10.7380 + 1.54389i 0.972170 + 0.139777i
$$123$$ 0.0577966 + 0.196837i 0.00521134 + 0.0177482i
$$124$$ 2.79602 + 1.79689i 0.251090 + 0.161366i
$$125$$ 4.07788 + 10.4101i 0.364737 + 0.931111i
$$126$$ 0.348041 + 0.762104i 0.0310060 + 0.0678936i
$$127$$ −16.4027 + 7.49084i −1.45550 + 0.664705i −0.976972 0.213368i $$-0.931557\pi$$
−0.478528 + 0.878072i $$0.658830\pi$$
$$128$$ −0.989821 + 0.142315i −0.0874887 + 0.0125790i
$$129$$ −0.871965 0.560378i −0.0767722 0.0493385i
$$130$$ −7.80971 + 2.96145i −0.684956 + 0.259737i
$$131$$ −0.239081 + 1.66284i −0.0208886 + 0.145283i −0.997597 0.0692895i $$-0.977927\pi$$
0.976708 + 0.214573i $$0.0688359\pi$$
$$132$$ −0.481162 0.416929i −0.0418798 0.0362890i
$$133$$ −0.633838 0.986271i −0.0549607 0.0855205i
$$134$$ −5.97747 6.89837i −0.516375 0.595929i
$$135$$ 0.354158 1.67186i 0.0304811 0.143890i
$$136$$ 3.19005 6.98524i 0.273545 0.598980i
$$137$$ 0.809274i 0.0691410i 0.999402 + 0.0345705i $$0.0110063\pi$$
−0.999402 + 0.0345705i $$0.988994\pi$$
$$138$$ 0.531227 + 0.304983i 0.0452210 + 0.0259619i
$$139$$ 14.9861 1.27111 0.635554 0.772057i $$-0.280772\pi$$
0.635554 + 0.772057i $$0.280772\pi$$
$$140$$ −0.589484 0.216214i −0.0498205 0.0182734i
$$141$$ −0.733632 0.215414i −0.0617830 0.0181411i
$$142$$ −2.85966 + 2.47791i −0.239977 + 0.207941i
$$143$$ 10.0663 + 15.6634i 0.841784 + 1.30984i
$$144$$ −1.95390 + 2.25492i −0.162825 + 0.187910i
$$145$$ 0.345525 5.23163i 0.0286943 0.434463i
$$146$$ 9.77718 2.87084i 0.809166 0.237592i
$$147$$ 0.477930 0.743673i 0.0394190 0.0613372i
$$148$$ 8.34850 1.20033i 0.686243 0.0986668i
$$149$$ 4.53178 + 9.92321i 0.371258 + 0.812941i 0.999393 + 0.0348367i $$0.0110911\pi$$
−0.628135 + 0.778104i $$0.716182\pi$$
$$150$$ 0.351103 + 0.533451i 0.0286675 + 0.0435561i
$$151$$ −1.99528 13.8775i −0.162374 1.12933i −0.894143 0.447781i $$-0.852214\pi$$
0.731770 0.681552i $$-0.238695\pi$$
$$152$$ 2.25727 3.51237i 0.183088 0.284891i
$$153$$ −6.45514 21.9842i −0.521868 1.77732i
$$154$$ −0.199197 + 1.38544i −0.0160517 + 0.111642i
$$155$$ −4.42126 + 5.97371i −0.355124 + 0.479820i
$$156$$ −0.401354 + 0.257934i −0.0321340 + 0.0206513i
$$157$$ −2.38154 + 2.06362i −0.190068 + 0.164695i −0.744696 0.667403i $$-0.767406\pi$$
0.554629 + 0.832098i $$0.312860\pi$$
$$158$$ −1.36038 + 4.63304i −0.108226 + 0.368585i
$$159$$ −0.565805 + 1.23894i −0.0448713 + 0.0982543i
$$160$$ −0.171673 2.22947i −0.0135719 0.176255i
$$161$$ −0.0673495 1.34498i −0.00530788 0.105999i
$$162$$ 8.85344i 0.695592i
$$163$$ 10.4484 + 4.77165i 0.818386 + 0.373744i 0.780203 0.625527i $$-0.215116\pi$$
0.0381828 + 0.999271i $$0.487843\pi$$
$$164$$ 1.54110 + 0.452507i 0.120339 + 0.0353348i
$$165$$ 1.00116 1.01213i 0.0779402 0.0787945i
$$166$$ −10.6381 + 6.83669i −0.825677 + 0.530630i
$$167$$ 10.4103 + 9.02060i 0.805575 + 0.698035i 0.956890 0.290451i $$-0.0938052\pi$$
−0.151315 + 0.988486i $$0.548351\pi$$
$$168$$ −0.0355001 0.00510414i −0.00273889 0.000393793i
$$169$$ 0.913765 0.268306i 0.0702896 0.0206389i
$$170$$ 15.1154 + 8.14702i 1.15930 + 0.624848i
$$171$$ −1.77287 12.3306i −0.135575 0.942944i
$$172$$ −7.38178 + 3.37114i −0.562855 + 0.257047i
$$173$$ −5.24943 + 2.39734i −0.399107 + 0.182266i −0.604849 0.796340i $$-0.706767\pi$$
0.205742 + 0.978606i $$0.434039\pi$$
$$174$$ −0.0426211 0.296436i −0.00323110 0.0224728i
$$175$$ 0.569285 1.28340i 0.0430339 0.0970159i
$$176$$ −4.78276 + 1.40434i −0.360514 + 0.105856i
$$177$$ 1.29765 + 0.186574i 0.0975374 + 0.0140238i
$$178$$ −4.22656 3.66234i −0.316794 0.274504i
$$179$$ −6.13268 + 3.94123i −0.458378 + 0.294582i −0.749379 0.662141i $$-0.769648\pi$$
0.291001 + 0.956723i $$0.406012\pi$$
$$180$$ −4.74326 4.69184i −0.353542 0.349709i
$$181$$ −6.47102 1.90006i −0.480987 0.141231i 0.0322457 0.999480i $$-0.489734\pi$$
−0.513233 + 0.858249i $$0.671552\pi$$
$$182$$ 0.954080 + 0.435714i 0.0707211 + 0.0322972i
$$183$$ 1.38561i 0.102427i
$$184$$ 4.25735 2.20794i 0.313856 0.162772i
$$185$$ 1.44795 + 18.8041i 0.106455 + 1.38251i
$$186$$ −0.176349 + 0.386150i −0.0129305 + 0.0283139i
$$187$$ 10.7842 36.7277i 0.788621 2.68580i
$$188$$ −4.52416 + 3.92020i −0.329958 + 0.285910i
$$189$$ −0.180538 + 0.116025i −0.0131322 + 0.00843955i
$$190$$ 7.50420 + 5.55401i 0.544412 + 0.402930i
$$191$$ −1.27458 + 8.86490i −0.0922254 + 0.641442i 0.890309 + 0.455358i $$0.150489\pi$$
−0.982534 + 0.186084i $$0.940420\pi$$
$$192$$ −0.0359844 0.122552i −0.00259695 0.00884440i
$$193$$ −1.38166 + 2.14990i −0.0994540 + 0.154753i −0.887415 0.460972i $$-0.847501\pi$$
0.787960 + 0.615726i $$0.211137\pi$$
$$194$$ −0.649171 4.51508i −0.0466077 0.324164i
$$195$$ −0.516361 0.933513i −0.0369774 0.0668503i
$$196$$ −2.87515 6.29570i −0.205368 0.449693i
$$197$$ −6.50936 + 0.935904i −0.463773 + 0.0666804i −0.370241 0.928936i $$-0.620725\pi$$
−0.0935319 + 0.995616i $$0.529816\pi$$
$$198$$ −8.04079 + 12.5117i −0.571434 + 0.889168i
$$199$$ 8.55843 2.51298i 0.606691 0.178140i 0.0360633 0.999350i $$-0.488518\pi$$
0.570627 + 0.821209i $$0.306700\pi$$
$$200$$ 4.99970 0.0545014i 0.353532 0.00385383i
$$201$$ 0.763475 0.881097i 0.0538514 0.0621478i
$$202$$ 1.04062 + 1.61923i 0.0732175 + 0.113929i
$$203$$ −0.497589 + 0.431163i −0.0349239 + 0.0302617i
$$204$$ 0.941097 + 0.276331i 0.0658900 + 0.0193470i
$$205$$ −1.23673 + 3.37182i −0.0863772 + 0.235498i
$$206$$ −15.1328 −1.05435
$$207$$ 5.28588 13.2972i 0.367394 0.924216i
$$208$$ 3.73528i 0.258995i
$$209$$ 8.64555 18.9311i 0.598025 1.30949i
$$210$$ 0.0166197 0.0784559i 0.00114687 0.00541397i
$$211$$ −9.02200 10.4119i −0.621100 0.716788i 0.354815 0.934936i $$-0.384544\pi$$
−0.975916 + 0.218149i $$0.929998\pi$$
$$212$$ 5.76523 + 8.97087i 0.395957 + 0.616122i
$$213$$ −0.365251 0.316492i −0.0250266 0.0216856i
$$214$$ 1.01201 7.03865i 0.0691793 0.481152i
$$215$$ −6.43394 16.9670i −0.438791 1.15714i
$$216$$ −0.642943 0.413195i −0.0437468 0.0281143i
$$217$$ 0.923774 0.132819i 0.0627098 0.00901631i
$$218$$ 9.67531 4.41856i 0.655294 0.299263i
$$219$$ 0.540669 + 1.18390i 0.0365350 + 0.0800005i
$$220$$ −2.42859 10.8783i −0.163736 0.733412i
$$221$$ −24.1305 15.5077i −1.62319 1.04316i
$$222$$ 0.303505 + 1.03364i 0.0203699 + 0.0693736i
$$223$$ −0.341892 0.0491567i −0.0228948 0.00329177i 0.130858 0.991401i $$-0.458227\pi$$
−0.153753 + 0.988109i $$0.549136\pi$$
$$224$$ −0.183884 + 0.212214i −0.0122863 + 0.0141791i
$$225$$ 11.1674 9.89181i 0.744496 0.659454i
$$226$$ −8.14180 9.39614i −0.541584 0.625022i
$$227$$ −2.18901 + 7.45510i −0.145290 + 0.494812i −0.999692 0.0247995i $$-0.992105\pi$$
0.854402 + 0.519612i $$0.173923\pi$$
$$228$$ 0.485083 + 0.221530i 0.0321254 + 0.0146712i
$$229$$ −7.14024 −0.471841 −0.235920 0.971772i $$-0.575810\pi$$
−0.235920 + 0.971772i $$0.575810\pi$$
$$230$$ 4.29901 + 9.82438i 0.283468 + 0.647801i
$$231$$ −0.178776 −0.0117626
$$232$$ −2.13286 0.974046i −0.140029 0.0639493i
$$233$$ 2.52146 8.58730i 0.165186 0.562573i −0.834743 0.550640i $$-0.814384\pi$$
0.999929 0.0119323i $$-0.00379827\pi$$
$$234$$ 7.29837 + 8.42276i 0.477109 + 0.550613i
$$235$$ −8.08010 10.6720i −0.527088 0.696165i
$$236$$ 6.72160 7.75714i 0.437539 0.504947i
$$237$$ −0.610461 0.0877711i −0.0396537 0.00570134i
$$238$$ −0.607503 2.06896i −0.0393786 0.134111i
$$239$$ −16.1199 10.3596i −1.04271 0.670107i −0.0970521 0.995279i $$-0.530941\pi$$
−0.945655 + 0.325172i $$0.894578\pi$$
$$240$$ 0.278741 0.0622293i 0.0179926 0.00401688i
$$241$$ −6.46276 14.1515i −0.416303 0.911576i −0.995354 0.0962849i $$-0.969304\pi$$
0.579051 0.815291i $$-0.303423\pi$$
$$242$$ −12.5956 + 5.75223i −0.809677 + 0.369767i
$$243$$ −3.38877 + 0.487231i −0.217389 + 0.0312559i
$$244$$ 9.12624 + 5.86508i 0.584248 + 0.375473i
$$245$$ 14.4707 5.48732i 0.924499 0.350572i
$$246$$ −0.0291954 + 0.203059i −0.00186143 + 0.0129466i
$$247$$ −11.7862 10.2128i −0.749940 0.649827i
$$248$$ 1.79689 + 2.79602i 0.114103 + 0.177547i
$$249$$ −1.05770 1.22065i −0.0670291 0.0773557i
$$250$$ −0.615157 + 11.1634i −0.0389059 + 0.706036i
$$251$$ −8.44330 + 18.4883i −0.532937 + 1.16697i 0.431369 + 0.902176i $$0.358031\pi$$
−0.964305 + 0.264793i $$0.914697\pi$$
$$252$$ 0.837816i 0.0527774i
$$253$$ 19.4392 13.9140i 1.22213 0.874764i
$$254$$ −18.0322 −1.13144
$$255$$ −0.755233 + 2.05906i −0.0472945 + 0.128944i
$$256$$ −0.959493 0.281733i −0.0599683 0.0176083i
$$257$$ −11.5971 + 10.0489i −0.723405 + 0.626834i −0.936692 0.350155i $$-0.886129\pi$$
0.213286 + 0.976990i $$0.431583\pi$$
$$258$$ −0.560378 0.871965i −0.0348876 0.0542862i
$$259$$ 1.55094 1.78989i 0.0963710 0.111218i
$$260$$ −8.33419 0.550435i −0.516865 0.0341365i
$$261$$ −6.71262 + 1.97100i −0.415501 + 0.122002i
$$262$$ −0.908245 + 1.41326i −0.0561116 + 0.0873113i
$$263$$ 14.7581 2.12189i 0.910024 0.130842i 0.328625 0.944460i $$-0.393415\pi$$
0.581399 + 0.813619i $$0.302506\pi$$
$$264$$ −0.264482 0.579134i −0.0162777 0.0356432i
$$265$$ −20.8654 + 11.5415i −1.28175 + 0.708986i
$$266$$ −0.166847 1.16045i −0.0102301 0.0711517i
$$267$$ 0.386185 0.600916i 0.0236341 0.0367754i
$$268$$ −2.57161 8.75811i −0.157086 0.534987i
$$269$$ −1.18916 + 8.27078i −0.0725043 + 0.504279i 0.920917 + 0.389759i $$0.127442\pi$$
−0.993421 + 0.114519i $$0.963467\pi$$
$$270$$ 1.01667 1.37365i 0.0618724 0.0835977i
$$271$$ 1.99805 1.28407i 0.121373 0.0780015i −0.478546 0.878063i $$-0.658836\pi$$
0.599919 + 0.800061i $$0.295200\pi$$
$$272$$ 5.80355 5.02880i 0.351892 0.304916i
$$273$$ −0.0377427 + 0.128540i −0.00228429 + 0.00777959i
$$274$$ −0.336185 + 0.736142i −0.0203097 + 0.0444720i
$$275$$ 24.6295 3.81566i 1.48522 0.230093i
$$276$$ 0.356526 + 0.498102i 0.0214604 + 0.0299822i
$$277$$ 9.82954i 0.590600i 0.955405 + 0.295300i $$0.0954196\pi$$
−0.955405 + 0.295300i $$0.904580\pi$$
$$278$$ 13.6319 + 6.22546i 0.817585 + 0.373379i
$$279$$ 9.51499 + 2.79385i 0.569647 + 0.167264i
$$280$$ −0.446395 0.441556i −0.0266772 0.0263880i
$$281$$ 14.1872 9.11754i 0.846336 0.543907i −0.0440942 0.999027i $$-0.514040\pi$$
0.890430 + 0.455120i $$0.150404\pi$$
$$282$$ −0.577849 0.500709i −0.0344104 0.0298168i
$$283$$ 3.63199 + 0.522201i 0.215899 + 0.0310416i 0.249416 0.968397i $$-0.419762\pi$$
−0.0335164 + 0.999438i $$0.510671\pi$$
$$284$$ −3.63060 + 1.06604i −0.215436 + 0.0632578i
$$285$$ −0.565762 + 1.04968i −0.0335128 + 0.0621775i
$$286$$ 2.64978 + 18.4296i 0.156685 + 1.08977i
$$287$$ 0.410251 0.187355i 0.0242163 0.0110592i
$$288$$ −2.71406 + 1.23947i −0.159927 + 0.0730364i
$$289$$ 5.97296 + 41.5429i 0.351351 + 2.44370i
$$290$$ 2.48760 4.61532i 0.146077 0.271021i
$$291$$ 0.559020 0.164143i 0.0327703 0.00962224i
$$292$$ 10.0862 + 1.45018i 0.590252 + 0.0848654i
$$293$$ −12.8772 11.1581i −0.752293 0.651866i 0.191842 0.981426i $$-0.438554\pi$$
−0.944134 + 0.329560i $$0.893099\pi$$
$$294$$ 0.743673 0.477930i 0.0433719 0.0278734i
$$295$$ 16.3173 + 16.1404i 0.950030 + 0.939730i
$$296$$ 8.09270 + 2.37623i 0.470379 + 0.138116i
$$297$$ −3.46536 1.58258i −0.201080 0.0918303i
$$298$$ 10.9090i 0.631943i
$$299$$ −5.90020 16.9142i −0.341217 0.978176i
$$300$$ 0.0977710 + 0.631098i 0.00564481 + 0.0364365i
$$301$$ −0.946614 + 2.07279i −0.0545619 + 0.119474i
$$302$$ 3.94994 13.4523i 0.227294 0.774091i
$$303$$ −0.185796 + 0.160993i −0.0106737 + 0.00924882i
$$304$$ 3.51237 2.25727i 0.201448 0.129463i
$$305$$ −14.4311 + 19.4983i −0.826320 + 1.11647i
$$306$$ 3.26076 22.6791i 0.186405 1.29648i
$$307$$ 0.588388 + 2.00387i 0.0335811 + 0.114367i 0.974578 0.224048i $$-0.0719274\pi$$
−0.940997 + 0.338415i $$0.890109\pi$$
$$308$$ −0.756730 + 1.17749i −0.0431187 + 0.0670940i
$$309$$ −0.275072 1.91317i −0.0156483 0.108836i
$$310$$ −6.50329 + 3.59722i −0.369362 + 0.204308i
$$311$$ −5.77456 12.6445i −0.327445 0.717005i 0.672284 0.740294i $$-0.265313\pi$$
−0.999729 + 0.0232890i $$0.992586\pi$$
$$312$$ −0.472234 + 0.0678970i −0.0267350 + 0.00384391i
$$313$$ −5.59660 + 8.70847i −0.316338 + 0.492232i −0.962616 0.270870i $$-0.912689\pi$$
0.646277 + 0.763103i $$0.276325\pi$$
$$314$$ −3.02358 + 0.887804i −0.170631 + 0.0501017i
$$315$$ −1.86934 0.123461i −0.105325 0.00695626i
$$316$$ −3.16208 + 3.64924i −0.177881 + 0.205286i
$$317$$ 0.919290 + 1.43044i 0.0516325 + 0.0803417i 0.866110 0.499853i $$-0.166613\pi$$
−0.814478 + 0.580195i $$0.802976\pi$$
$$318$$ −1.02935 + 0.891936i −0.0577230 + 0.0500173i
$$319$$ −11.2144 3.29284i −0.627885 0.184364i
$$320$$ 0.769995 2.09931i 0.0430441 0.117355i
$$321$$ 0.908259 0.0506941
$$322$$ 0.497461 1.25141i 0.0277224 0.0697386i
$$323$$ 32.0619i 1.78397i
$$324$$ −3.67785 + 8.05337i −0.204325 + 0.447410i
$$325$$ 2.45627 18.5142i 0.136249 1.02698i
$$326$$ 7.52203 + 8.68088i 0.416607 + 0.480790i
$$327$$ 0.734488 + 1.14289i 0.0406173 + 0.0632017i
$$328$$ 1.21385 + 1.05181i 0.0670238 + 0.0580764i
$$329$$ −0.239224 + 1.66384i −0.0131889 + 0.0917306i
$$330$$ 1.33114 0.504772i 0.0732770 0.0277868i
$$331$$ −1.82523 1.17300i −0.100324 0.0644741i 0.489517 0.871994i $$-0.337173\pi$$
−0.589841 + 0.807520i $$0.700809\pi$$
$$332$$ −12.5168 + 1.79965i −0.686950 + 0.0987685i
$$333$$ 22.8913 10.4541i 1.25444 0.572882i
$$334$$ 5.72228 + 12.5300i 0.313109 + 0.685613i
$$335$$ 19.9201 4.44720i 1.08835 0.242976i
$$336$$ −0.0301717 0.0193902i −0.00164600 0.00105782i
$$337$$ 4.43691 + 15.1107i 0.241694 + 0.823134i 0.987588 + 0.157069i $$0.0502046\pi$$
−0.745894 + 0.666065i $$0.767977\pi$$
$$338$$ 0.942648 + 0.135532i 0.0512733 + 0.00737199i
$$339$$ 1.03991 1.20012i 0.0564804 0.0651818i
$$340$$ 10.3651 + 13.6900i 0.562126 + 0.742443i
$$341$$ 10.8492 + 12.5207i 0.587518 + 0.678032i
$$342$$ 3.50965 11.9528i 0.189780 0.646332i
$$343$$ −3.55579 1.62388i −0.191995 0.0876811i
$$344$$ −8.11512 −0.437538
$$345$$ −1.16391 + 0.722083i −0.0626626 + 0.0388757i
$$346$$ −5.77094 −0.310248
$$347$$ 7.23170 + 3.30261i 0.388218 + 0.177293i 0.599956 0.800033i $$-0.295185\pi$$
−0.211738 + 0.977327i $$0.567912\pi$$
$$348$$ 0.0843745 0.287353i 0.00452295 0.0154037i
$$349$$ 8.39969 + 9.69375i 0.449625 + 0.518895i 0.934632 0.355615i $$-0.115729\pi$$
−0.485008 + 0.874510i $$0.661183\pi$$
$$350$$ 1.05098 0.930932i 0.0561774 0.0497604i
$$351$$ −1.86947 + 2.15748i −0.0997849 + 0.115158i
$$352$$ −4.93393 0.709393i −0.262980 0.0378108i
$$353$$ −2.41739 8.23286i −0.128665 0.438191i 0.869811 0.493385i $$-0.164241\pi$$
−0.998476 + 0.0551937i $$0.982422\pi$$
$$354$$ 1.10288 + 0.708777i 0.0586174 + 0.0376711i
$$355$$ −1.84355 8.25770i −0.0978453 0.438273i
$$356$$ −2.32323 5.08716i −0.123131 0.269619i
$$357$$ 0.250527 0.114412i 0.0132593 0.00605531i
$$358$$ −7.21573 + 1.03747i −0.381363 + 0.0548318i
$$359$$ 23.6966 + 15.2289i 1.25066 + 0.803749i 0.986977 0.160861i $$-0.0514271\pi$$
0.263681 + 0.964610i $$0.415063\pi$$
$$360$$ −2.36556 6.23827i −0.124676 0.328786i
$$361$$ 0.223148 1.55203i 0.0117447 0.0816858i
$$362$$ −5.09693 4.41652i −0.267889 0.232127i
$$363$$ −0.956180 1.48785i −0.0501864 0.0780916i
$$364$$ 0.686860 + 0.792678i 0.0360012 + 0.0415476i
$$365$$ −4.72197 + 22.2908i −0.247159 + 1.16675i
$$366$$ −0.575605 + 1.26040i −0.0300873 + 0.0658821i
$$367$$ 7.72825i 0.403411i −0.979446 0.201706i $$-0.935352\pi$$
0.979446 0.201706i $$-0.0646484\pi$$
$$368$$ 4.78983 0.239849i 0.249687 0.0125030i
$$369$$ 4.79227 0.249476
$$370$$ −6.49441 + 17.7063i −0.337628 + 0.920508i
$$371$$ 2.87306 + 0.843607i 0.149162 + 0.0437979i
$$372$$ −0.320825 + 0.277996i −0.0166340 + 0.0144134i
$$373$$ 10.5439 + 16.4067i 0.545944 + 0.849505i 0.999121 0.0419151i $$-0.0133459\pi$$
−0.453177 + 0.891420i $$0.649710\pi$$
$$374$$ 25.0669 28.9288i 1.29618 1.49587i
$$375$$ −1.42252 + 0.125148i −0.0734585 + 0.00646262i
$$376$$ −5.74383 + 1.68654i −0.296215 + 0.0869767i
$$377$$ −4.73511 + 7.36797i −0.243870 + 0.379470i
$$378$$ −0.212421 + 0.0305416i −0.0109258 + 0.00157089i
$$379$$ 10.7155 + 23.4636i 0.550417 + 1.20525i 0.956587 + 0.291448i $$0.0941371\pi$$
−0.406169 + 0.913798i $$0.633136\pi$$
$$380$$ 4.51884 + 8.16946i 0.231812 + 0.419085i
$$381$$ −0.327775 2.27972i −0.0167924 0.116794i
$$382$$ −4.84201 + 7.53432i −0.247739 + 0.385489i
$$383$$ −6.97756 23.7634i −0.356537 1.21425i −0.921252 0.388966i $$-0.872832\pi$$
0.564715 0.825286i $$-0.308986\pi$$
$$384$$ 0.0181772 0.126425i 0.000927602 0.00645161i
$$385$$ −2.51572 1.86194i −0.128213 0.0948931i
$$386$$ −2.14990 + 1.38166i −0.109427 + 0.0703246i
$$387$$ −18.2990 + 15.8561i −0.930188 + 0.806012i
$$388$$ 1.28513 4.37674i 0.0652424 0.222195i
$$389$$ 15.0325 32.9167i 0.762180 1.66894i 0.0190271 0.999819i $$-0.493943\pi$$
0.743153 0.669122i $$-0.233330\pi$$
$$390$$ −0.0819035 1.06366i −0.00414734 0.0538604i
$$391$$ −18.3364 + 31.9388i −0.927312 + 1.61521i
$$392$$ 6.92115i 0.349571i
$$393$$ −0.195181 0.0891361i −0.00984557 0.00449632i
$$394$$ −6.30991 1.85276i −0.317889 0.0933405i
$$395$$ −7.67624 7.59301i −0.386233 0.382046i
$$396$$ −12.5117 + 8.04079i −0.628737 + 0.404065i
$$397$$ 3.78090 + 3.27617i 0.189758 + 0.164426i 0.744559 0.667557i $$-0.232660\pi$$
−0.554801 + 0.831983i $$0.687205\pi$$
$$398$$ 8.82895 + 1.26941i 0.442555 + 0.0636298i
$$399$$ 0.143677 0.0421874i 0.00719286 0.00211201i
$$400$$ 4.57053 + 2.02738i 0.228527 + 0.101369i
$$401$$ 0.918153 + 6.38589i 0.0458504 + 0.318896i 0.999820 + 0.0189919i $$0.00604568\pi$$
−0.953969 + 0.299904i $$0.903045\pi$$
$$402$$ 1.06050 0.484315i 0.0528930 0.0241554i
$$403$$ 11.2928 5.15726i 0.562536 0.256901i
$$404$$ 0.273925 + 1.90519i 0.0136283 + 0.0947868i
$$405$$ −17.4268 9.39280i −0.865943 0.466732i
$$406$$ −0.631734 + 0.185494i −0.0313525 + 0.00920591i
$$407$$ 41.6145 + 5.98327i 2.06276 + 0.296580i
$$408$$ 0.741260 + 0.642306i 0.0366978 + 0.0317989i
$$409$$ −10.3948 + 6.68035i −0.513991 + 0.330322i −0.771791 0.635876i $$-0.780639\pi$$
0.257800 + 0.966198i $$0.417003\pi$$
$$410$$ −2.52568 + 2.55336i −0.124734 + 0.126101i
$$411$$ −0.0991778 0.0291212i −0.00489208 0.00143644i
$$412$$ −13.7653 6.28640i −0.678167 0.309709i
$$413$$ 2.88217i 0.141822i
$$414$$ 10.3320 9.89969i 0.507792 0.486543i
$$415$$ −2.17090 28.1928i −0.106565 1.38393i
$$416$$ −1.55169 + 3.39773i −0.0760780 + 0.166588i
$$417$$ −0.539267 + 1.83657i −0.0264080 + 0.0899374i
$$418$$ 15.7285 13.6288i 0.769307 0.666609i
$$419$$ −14.1760 + 9.11038i −0.692544 + 0.445071i −0.838989 0.544148i $$-0.816853\pi$$
0.146445 + 0.989219i $$0.453217\pi$$
$$420$$ 0.0477096 0.0644619i 0.00232799 0.00314542i
$$421$$ −2.79809 + 19.4611i −0.136371 + 0.948478i 0.800632 + 0.599156i $$0.204497\pi$$
−0.937003 + 0.349322i $$0.886412\pi$$
$$422$$ −3.88142 13.2189i −0.188945 0.643486i
$$423$$ −9.65654 + 15.0259i −0.469517 + 0.730583i
$$424$$ 1.51760 + 10.5552i 0.0737012 + 0.512603i
$$425$$ −32.0726 + 21.1093i −1.55575 + 1.02395i
$$426$$ −0.200768 0.439621i −0.00972726 0.0212997i
$$427$$ 3.01521 0.433522i 0.145916 0.0209796i
$$428$$ 3.84451 5.98218i 0.185832 0.289160i
$$429$$ −2.28181 + 0.669999i −0.110167 + 0.0323478i
$$430$$ 1.19585 18.1065i 0.0576691 0.873174i
$$431$$ 16.5280 19.0744i 0.796127 0.918780i −0.202035 0.979378i $$-0.564756\pi$$
0.998162 + 0.0605987i $$0.0193010\pi$$
$$432$$ −0.413195 0.642943i −0.0198798 0.0309336i
$$433$$ −15.8328 + 13.7192i −0.760877 + 0.659304i −0.946276 0.323360i $$-0.895188\pi$$
0.185399 + 0.982663i $$0.440642\pi$$
$$434$$ 0.895469 + 0.262933i 0.0429839 + 0.0126212i
$$435$$ 0.628711 + 0.230602i 0.0301444 + 0.0110565i
$$436$$ 10.6365 0.509396
$$437$$ −12.3393 + 15.7695i −0.590269 + 0.754358i
$$438$$ 1.30151i 0.0621888i
$$439$$ 2.96603 6.49469i 0.141561 0.309975i −0.825551 0.564328i $$-0.809135\pi$$
0.967111 + 0.254353i $$0.0818626\pi$$
$$440$$ 2.30987 10.9041i 0.110119 0.519832i
$$441$$ −13.5232 15.6066i −0.643963 0.743173i
$$442$$ −15.5077 24.1305i −0.737627 1.14777i
$$443$$ −26.6438 23.0870i −1.26588 1.09689i −0.990780 0.135479i $$-0.956743\pi$$
−0.275103 0.961415i $$-0.588712\pi$$
$$444$$ −0.153313 + 1.06632i −0.00727591 + 0.0506051i
$$445$$ 11.6929 4.43395i 0.554295 0.210190i
$$446$$ −0.290576 0.186742i −0.0137591 0.00884247i
$$447$$ −1.37918 + 0.198296i −0.0652329 + 0.00937907i
$$448$$ −0.255424 + 0.116648i −0.0120676 + 0.00551110i
$$449$$ −14.0161 30.6909i −0.661460 1.44839i −0.881156 0.472826i $$-0.843234\pi$$
0.219696 0.975568i $$-0.429493\pi$$
$$450$$ 14.2675 4.35879i 0.672575 0.205475i
$$451$$ 6.73521 + 4.32846i 0.317149 + 0.203819i
$$452$$ −3.50274 11.9292i −0.164755 0.561105i
$$453$$ 1.77251 + 0.254848i 0.0832796 + 0.0119738i
$$454$$ −5.08816 + 5.87205i −0.238799 + 0.275589i
$$455$$ −1.86985 + 1.41572i −0.0876597 + 0.0663698i
$$456$$ 0.349220 + 0.403022i 0.0163537 + 0.0188732i
$$457$$ −1.02884 + 3.50389i −0.0481269 + 0.163905i −0.980050 0.198750i $$-0.936312\pi$$
0.931923 + 0.362656i $$0.118130\pi$$
$$458$$ −6.49499 2.96616i −0.303491 0.138600i
$$459$$ 5.86897 0.273940
$$460$$ −0.170680 + 10.7224i −0.00795798 + 0.499937i
$$461$$ 28.5065 1.32768 0.663839 0.747875i $$-0.268926\pi$$
0.663839 + 0.747875i $$0.268926\pi$$
$$462$$ −0.162620 0.0742662i −0.00756578 0.00345518i
$$463$$ −8.58203 + 29.2277i −0.398841 + 1.35833i 0.478344 + 0.878173i $$0.341237\pi$$
−0.877184 + 0.480154i $$0.840581\pi$$
$$464$$ −1.53549 1.77205i −0.0712832 0.0822652i
$$465$$ −0.572991 0.756793i −0.0265718 0.0350954i
$$466$$ 5.86089 6.76383i 0.271501 0.313328i
$$467$$ 35.9205 + 5.16459i 1.66220 + 0.238989i 0.908397 0.418109i $$-0.137307\pi$$
0.753805 + 0.657098i $$0.228216\pi$$
$$468$$ 3.13988 + 10.6935i 0.145141 + 0.494306i
$$469$$ −2.15621 1.38571i −0.0995645 0.0639862i
$$470$$ −2.91660 13.0642i −0.134533 0.602607i
$$471$$ −0.167201 0.366120i −0.00770422 0.0168699i
$$472$$ 9.33662 4.26389i 0.429753 0.196262i
$$473$$ −40.0395 + 5.75681i −1.84102 + 0.264698i
$$474$$ −0.518834 0.333434i −0.0238308 0.0153151i
$$475$$ −18.8937 + 8.87861i −0.866901 + 0.407378i
$$476$$ 0.306875 2.13436i 0.0140656 0.0978283i
$$477$$ 24.0458 + 20.8358i 1.10098 + 0.954005i
$$478$$ −10.3596 16.1199i −0.473837 0.737305i
$$479$$ −16.1276 18.6122i −0.736889 0.850415i 0.256340 0.966587i $$-0.417483\pi$$
−0.993229 + 0.116172i $$0.962938\pi$$
$$480$$ 0.279402 + 0.0591873i 0.0127529 + 0.00270152i
$$481$$ 13.0875 28.6577i 0.596740 1.30668i
$$482$$ 15.5574i 0.708618i
$$483$$ 0.167253 + 0.0401445i 0.00761027 + 0.00182664i
$$484$$ −13.8469 −0.629406
$$485$$ 9.57603 + 3.51234i 0.434825 + 0.159487i
$$486$$ −3.28493 0.964543i −0.149008 0.0437526i
$$487$$ 23.0853 20.0035i 1.04610 0.906447i 0.0503631 0.998731i $$-0.483962\pi$$
0.995733 + 0.0922838i $$0.0294167\pi$$
$$488$$ 5.86508 + 9.12624i 0.265500 + 0.413126i
$$489$$ −0.960754 + 1.10877i −0.0434468 + 0.0501403i
$$490$$ 15.4425 + 1.01991i 0.697622 + 0.0460747i
$$491$$ −1.21049 + 0.355433i −0.0546289 + 0.0160405i −0.308933 0.951084i $$-0.599972\pi$$
0.254304 + 0.967124i $$0.418154\pi$$
$$492$$ −0.110911 + 0.172581i −0.00500024 + 0.00778053i
$$493$$ 17.8226 2.56250i 0.802687 0.115409i
$$494$$ −6.47857 14.1861i −0.291485 0.638263i
$$495$$ −16.0969 29.1011i −0.723503 1.30800i
$$496$$ 0.473003 + 3.28980i 0.0212384 + 0.147717i
$$497$$ −0.574434 + 0.893837i −0.0257669 + 0.0400941i
$$498$$ −0.455042 1.54973i −0.0203909 0.0694451i
$$499$$ 0.500048 3.47791i 0.0223852 0.155693i −0.975563 0.219720i $$-0.929486\pi$$
0.997948 + 0.0640277i $$0.0203946\pi$$
$$500$$ −5.19701 + 9.89904i −0.232417 + 0.442699i
$$501$$ −1.48010 + 0.951201i −0.0661259 + 0.0424965i
$$502$$ −15.3606 + 13.3100i −0.685577 + 0.594056i
$$503$$ 2.11631 7.20748i 0.0943615 0.321366i −0.898762 0.438437i $$-0.855532\pi$$
0.993124 + 0.117071i $$0.0373505\pi$$
$$504$$ −0.348041 + 0.762104i −0.0155030 + 0.0339468i
$$505$$ −4.29124 + 0.330433i −0.190958 + 0.0147041i
$$506$$ 23.4626 4.58127i 1.04304 0.203662i
$$507$$ 0.121638i 0.00540214i
$$508$$ −16.4027 7.49084i −0.727750 0.332352i
$$509$$ −32.3869 9.50966i −1.43552 0.421508i −0.530797 0.847499i $$-0.678107\pi$$
−0.904727 + 0.425991i $$0.859926\pi$$
$$510$$ −1.54235 + 1.55925i −0.0682964 + 0.0690449i
$$511$$ 2.40710 1.54695i 0.106484 0.0684330i
$$512$$ −0.755750 0.654861i −0.0333997 0.0289410i
$$513$$ 3.15847 + 0.454119i 0.139450 + 0.0200498i
$$514$$ −14.7235 + 4.32322i −0.649427 + 0.190689i
$$515$$ 16.0547 29.7868i 0.707456 1.31257i
$$516$$ −0.147510 1.02596i −0.00649378 0.0451652i
$$517$$ −27.1432 + 12.3959i −1.19376 + 0.545171i
$$518$$ 2.15433 0.983851i 0.0946560 0.0432279i
$$519$$ −0.104900 0.729593i −0.00460458 0.0320256i
$$520$$ −7.35239 3.96284i −0.322424 0.173782i
$$521$$ −35.8966 + 10.5402i −1.57266 + 0.461774i −0.947774 0.318944i $$-0.896672\pi$$
−0.624884 + 0.780718i $$0.714854\pi$$
$$522$$ −6.92480 0.995636i −0.303090 0.0435778i
$$523$$ −16.7895 14.5482i −0.734156 0.636150i 0.205348 0.978689i $$-0.434167\pi$$
−0.939503 + 0.342540i $$0.888713\pi$$
$$524$$ −1.41326 + 0.908245i −0.0617384 + 0.0396769i
$$525$$ 0.136797 + 0.115949i 0.00597032 + 0.00506043i
$$526$$ 14.3059 + 4.20059i 0.623767 + 0.183155i
$$527$$ −23.2164 10.6026i −1.01132 0.461855i
$$528$$ 0.636669i 0.0277074i
$$529$$ −21.3106 + 8.65204i −0.926548 + 0.376176i
$$530$$ −23.7744 + 1.83067i −1.03269 + 0.0795191i
$$531$$ 12.7221 27.8575i 0.552093 1.20891i
$$532$$ 0.330298 1.12489i 0.0143202 0.0487703i
$$533$$ 4.53408 3.92881i 0.196393 0.170175i
$$534$$ 0.600916 0.386185i 0.0260042 0.0167119i
$$535$$ 12.7810 + 9.45945i 0.552569 + 0.408968i
$$536$$ 1.29903 9.03495i 0.0561095 0.390250i
$$537$$ −0.262324 0.893392i −0.0113201 0.0385527i
$$538$$ −4.51751 + 7.02938i −0.194763 + 0.303058i
$$539$$ −4.90981 34.1485i −0.211481 1.47088i
$$540$$ 1.49543 0.827178i 0.0643530 0.0355961i
$$541$$ 7.77132 + 17.0168i 0.334115 + 0.731610i 0.999894 0.0145386i $$-0.00462794\pi$$
−0.665779 + 0.746149i $$0.731901\pi$$
$$542$$ 2.35091 0.338010i 0.100980 0.0145188i
$$543$$ 0.465711 0.724661i 0.0199856 0.0310982i
$$544$$ 7.36814 2.16348i 0.315906 0.0927584i
$$545$$ −1.56740 + 23.7322i −0.0671403 + 1.01658i
$$546$$ −0.0877294 + 0.101245i −0.00375447 + 0.00433289i
$$547$$ 10.4448 + 16.2524i 0.446587 + 0.694903i 0.989443 0.144923i $$-0.0462935\pi$$
−0.542856 + 0.839826i $$0.682657\pi$$
$$548$$ −0.611609 + 0.529962i −0.0261266 + 0.0226389i
$$549$$ 31.0570 + 9.11917i 1.32548 + 0.389197i
$$550$$ 23.9889 + 6.76064i 1.02289 + 0.288274i
$$551$$ 9.78974 0.417057
$$552$$ 0.117389 + 0.601196i 0.00499640 + 0.0255886i
$$553$$ 1.35587i 0.0576577i
$$554$$ −4.08334 + 8.94126i −0.173484 + 0.379878i
$$555$$ −2.35658 0.499206i −0.100031 0.0211901i
$$556$$ 9.81383 + 11.3258i 0.416199 + 0.480319i
$$557$$ −0.377707 0.587724i −0.0160040 0.0249027i 0.833159 0.553033i $$-0.186530\pi$$
−0.849163 + 0.528130i $$0.822893\pi$$
$$558$$ 7.49453 + 6.49405i 0.317269 + 0.274915i
$$559$$ −4.31389 + 30.0038i −0.182458 + 1.26902i
$$560$$ −0.222627 0.587093i −0.00940769 0.0248092i
$$561$$ 4.11298 + 2.64325i 0.173650 + 0.111598i
$$562$$ 16.6927 2.40004i 0.704138 0.101240i
$$563$$ 42.9535 19.6162i 1.81027 0.826724i 0.863886 0.503687i $$-0.168023\pi$$
0.946386 0.323037i $$-0.104704\pi$$
$$564$$ −0.317628 0.695508i −0.0133746 0.0292862i
$$565$$ 27.1328 6.05744i 1.14149 0.254838i
$$566$$ 3.08684 + 1.98379i 0.129750 + 0.0833850i
$$567$$ 0.700398 + 2.38534i 0.0294139 + 0.100175i
$$568$$ −3.74536 0.538501i −0.157152 0.0225950i
$$569$$ 9.95551 11.4893i 0.417357 0.481655i −0.507673 0.861550i $$-0.669494\pi$$
0.925030 + 0.379894i $$0.124040\pi$$
$$570$$ −0.950687 + 0.719793i −0.0398199 + 0.0301488i
$$571$$ 24.3482 + 28.0993i 1.01894 + 1.17592i 0.984297 + 0.176518i $$0.0564833\pi$$
0.0346409 + 0.999400i $$0.488971\pi$$
$$572$$ −5.24562 + 17.8650i −0.219331 + 0.746971i
$$573$$ −1.04054 0.475200i −0.0434693 0.0198517i
$$574$$ 0.451007 0.0188247
$$575$$ −23.8988 1.96089i −0.996651 0.0817748i
$$576$$ −2.98369 −0.124320
$$577$$ −2.45018 1.11896i −0.102002 0.0465829i 0.363760 0.931493i $$-0.381493\pi$$
−0.465763 + 0.884910i $$0.654220\pi$$
$$578$$ −11.8243 + 40.2700i −0.491827 + 1.67501i
$$579$$ −0.213756 0.246687i −0.00888339 0.0102520i
$$580$$ 4.18007 3.16486i 0.173568 0.131414i
$$581$$ −2.32531 + 2.68356i −0.0964703 + 0.111333i
$$582$$ 0.576690 + 0.0829155i 0.0239046 + 0.00343696i
$$583$$ 14.9755 + 51.0018i 0.620221 + 2.11228i
$$584$$ 8.57233 + 5.50910i 0.354726 + 0.227968i
$$585$$ −24.3220 + 5.42993i −1.00559 + 0.224500i
$$586$$ −7.07824 15.4992i −0.292399 0.640265i
$$587$$ −2.43392 + 1.11153i −0.100458 + 0.0458778i −0.465010 0.885305i $$-0.653949\pi$$
0.364552 + 0.931183i $$0.381222\pi$$
$$588$$ 0.875008 0.125807i 0.0360847 0.00518820i
$$589$$ −11.6738 7.50232i −0.481012 0.309128i
$$590$$ 8.13777 + 21.4603i 0.335027 + 0.883505i
$$591$$ 0.119539 0.831410i 0.00491716 0.0341996i
$$592$$ 6.37426 + 5.52333i 0.261980 + 0.227007i
$$593$$ −6.82295 10.6167i −0.280185 0.435976i 0.672428 0.740163i $$-0.265252\pi$$
−0.952612 + 0.304187i $$0.901615\pi$$
$$594$$ −2.49477 2.87912i −0.102362 0.118132i
$$595$$ 4.71698 + 0.999223i 0.193377 + 0.0409641i
$$596$$ −4.53178 + 9.92321i −0.185629 + 0.406470i
$$597$$ 1.13928i 0.0466275i
$$598$$ 1.65942 17.8368i 0.0678588 0.729400i
$$599$$ 16.1949 0.661704 0.330852 0.943683i $$-0.392664\pi$$
0.330852 + 0.943683i $$0.392664\pi$$
$$600$$ −0.173232 + 0.614683i −0.00707217 + 0.0250943i
$$601$$ 40.2708 + 11.8246i 1.64268 + 0.482334i 0.966982 0.254845i $$-0.0820243\pi$$
0.675698 + 0.737179i $$0.263843\pi$$
$$602$$ −1.72214 + 1.49224i −0.0701892 + 0.0608193i
$$603$$ −14.7242 22.9112i −0.599614 0.933018i
$$604$$ 9.18127 10.5957i 0.373580 0.431135i
$$605$$ 2.04050 30.8954i 0.0829580 1.25608i
$$606$$ −0.235885 + 0.0692621i −0.00958218 + 0.00281358i
$$607$$ −0.896532 + 1.39503i −0.0363891 + 0.0566225i −0.858972 0.512023i $$-0.828896\pi$$
0.822582 + 0.568646i $$0.192533\pi$$
$$608$$ 4.13267 0.594188i 0.167602 0.0240975i
$$609$$ −0.0349343 0.0764954i −0.00141561 0.00309975i
$$610$$ −21.2268 + 11.7414i −0.859449 + 0.475394i
$$611$$ 3.18224 + 22.1330i 0.128740 + 0.895405i
$$612$$ 12.3873 19.2751i 0.500728 0.779148i
$$613$$ −7.58275 25.8245i −0.306264 1.04304i −0.958516 0.285039i $$-0.907994\pi$$
0.652252 0.758003i $$-0.273825\pi$$
$$614$$ −0.297219 + 2.06721i −0.0119948 + 0.0834257i
$$615$$ −0.368719 0.272897i −0.0148682 0.0110043i
$$616$$ −1.17749 + 0.756730i −0.0474426 + 0.0304895i
$$617$$ 26.1497 22.6589i 1.05275 0.912211i 0.0564697 0.998404i $$-0.482016\pi$$
0.996278 + 0.0861928i $$0.0274701\pi$$
$$618$$ 0.544545 1.85455i 0.0219048 0.0746009i
$$619$$ −12.1489 + 26.6024i −0.488305 + 1.06924i 0.491791 + 0.870713i $$0.336343\pi$$
−0.980096 + 0.198525i $$0.936385\pi$$
$$620$$ −7.40994 + 0.570578i −0.297590 + 0.0229150i
$$621$$ 2.88663 + 2.25872i 0.115836 + 0.0906394i
$$622$$ 13.9007i 0.557367i
$$623$$ −1.42847 0.652360i −0.0572304 0.0261362i
$$624$$ −0.457765 0.134412i −0.0183253 0.00538078i
$$625$$ −21.3210 13.0543i −0.852839 0.522174i
$$626$$ −8.70847 + 5.59660i −0.348061 + 0.223685i
$$627$$ 2.00893 + 1.74075i 0.0802290 + 0.0695188i
$$628$$ −3.11916 0.448467i −0.124468 0.0178958i
$$629$$ −62.1455 + 18.2476i −2.47790 + 0.727578i
$$630$$ −1.64912 0.888857i −0.0657027 0.0354129i
$$631$$ −2.97986 20.7254i −0.118626 0.825063i −0.959071 0.283166i $$-0.908615\pi$$
0.840445 0.541897i $$-0.182294\pi$$
$$632$$ −4.39228 + 2.00589i −0.174715 + 0.0797899i
$$633$$ 1.60065 0.730993i 0.0636202 0.0290544i
$$634$$ 0.241988 + 1.68306i 0.00961057 + 0.0668430i
$$635$$ 19.1307 35.4939i 0.759180 1.40853i
$$636$$ −1.30685 + 0.383726i −0.0518200 + 0.0152157i
$$637$$ −25.5893 3.67919i −1.01389 0.145775i
$$638$$ −8.83307 7.65390i −0.349705 0.303021i
$$639$$ −9.49765 + 6.10377i −0.375721 + 0.241461i
$$640$$ 1.57250 1.58973i 0.0621584 0.0628397i
$$641$$ 7.35104 + 2.15846i 0.290349 + 0.0852540i 0.423663 0.905820i $$-0.360744\pi$$
−0.133315 + 0.991074i $$0.542562\pi$$
$$642$$ 0.826181 + 0.377304i 0.0326068 + 0.0148910i
$$643$$ 39.1290i 1.54310i 0.636170 + 0.771549i $$0.280518\pi$$
−0.636170 + 0.771549i $$0.719482\pi$$
$$644$$ 0.972363 0.931673i 0.0383165 0.0367131i
$$645$$ 2.31086 0.177940i 0.0909900 0.00700639i
$$646$$ −13.3190 + 29.1645i −0.524029 + 1.14746i
$$647$$ −6.68277 + 22.7594i −0.262727 + 0.894766i 0.717445 + 0.696616i $$0.245312\pi$$
−0.980172 + 0.198150i $$0.936507\pi$$
$$648$$ −6.69099 + 5.79777i −0.262847 + 0.227758i
$$649$$ 43.0415 27.6611i 1.68953 1.08579i
$$650$$ 9.92537 15.8207i 0.389305 0.620540i
$$651$$ −0.0169643 + 0.117989i −0.000664883 + 0.00462436i
$$652$$ 3.23611 + 11.0212i 0.126736 + 0.431622i
$$653$$ 12.9480 20.1475i 0.506695 0.788433i −0.489822 0.871823i $$-0.662938\pi$$
0.996517 + 0.0833895i $$0.0265746\pi$$
$$654$$ 0.193342 + 1.34472i 0.00756027 + 0.0525828i
$$655$$ −1.81822 3.28711i −0.0710439 0.128438i
$$656$$ 0.667222 + 1.46101i 0.0260506 + 0.0570429i
$$657$$ 30.0941 4.32688i 1.17408 0.168808i
$$658$$ −0.908791 + 1.41411i −0.0354284 + 0.0551276i
$$659$$ 25.4360 7.46869i 0.990847 0.290939i 0.254152 0.967164i $$-0.418204\pi$$
0.736695 + 0.676225i $$0.236385\pi$$
$$660$$ 1.42054 + 0.0938200i 0.0552944 + 0.00365194i
$$661$$ −1.73503 + 2.00233i −0.0674849 + 0.0778817i −0.788488 0.615050i $$-0.789136\pi$$
0.721003 + 0.692932i $$0.243681\pi$$
$$662$$ −1.17300 1.82523i −0.0455901 0.0709395i
$$663$$ 2.76882 2.39919i 0.107532 0.0931770i
$$664$$ −12.1333 3.56266i −0.470863 0.138258i
$$665$$ 2.46119 + 0.902729i 0.0954410 + 0.0350063i
$$666$$ 25.1655 0.975142
$$667$$ 9.75215 + 5.59881i 0.377605 + 0.216787i
$$668$$ 13.7748i 0.532965i
$$669$$ 0.0183270 0.0401305i 0.000708563 0.00155154i
$$670$$ 19.9674 + 4.22980i 0.771408 + 0.163411i
$$671$$ 35.4120 + 40.8676i 1.36707 + 1.57768i
$$672$$ −0.0193902 0.0301717i −0.000747991 0.00116390i
$$673$$ −18.7465 16.2439i −0.722623 0.626156i 0.213862 0.976864i $$-0.431396\pi$$
−0.936485 + 0.350708i $$0.885941\pi$$
$$674$$ −2.24127 + 15.5884i −0.0863305 + 0.600442i
$$675$$ 1.62524 + 3.45850i 0.0625554 + 0.133118i
$$676$$ 0.801161 + 0.514875i 0.0308139 + 0.0198029i
$$677$$ −14.8204 + 2.13086i −0.569595 + 0.0818954i −0.421094 0.907017i $$-0.638354\pi$$
−0.148501 + 0.988912i $$0.547445\pi$$
$$678$$ 1.44449 0.659676i 0.0554752 0.0253347i
$$679$$ −0.532092 1.16512i −0.0204198 0.0447131i
$$680$$ 3.74140 + 16.7586i 0.143476 + 0.642665i
$$681$$ −0.834864 0.536534i −0.0319920 0.0205600i
$$682$$ 4.66753 + 15.8961i 0.178729 + 0.608694i
$$683$$ −21.5081 3.09240i −0.822986 0.118327i −0.282059 0.959397i $$-0.591017\pi$$
−0.540927 + 0.841070i $$0.681926\pi$$
$$684$$ 8.15785 9.41466i 0.311923 0.359979i
$$685$$ −1.09233 1.44272i −0.0417357 0.0551236i
$$686$$ −2.55988 2.95426i −0.0977367 0.112794i
$$687$$ 0.256937 0.875048i 0.00980277 0.0333852i
$$688$$ −7.38178 3.37114i −0.281428 0.128524i
$$689$$ 39.8319 1.51747
$$690$$ −1.35869 + 0.173326i −0.0517245 + 0.00659840i
$$691$$ −44.9009 −1.70811 −0.854056 0.520181i $$-0.825865\pi$$
−0.854056 + 0.520181i $$0.825865\pi$$
$$692$$ −5.24943 2.39734i −0.199553 0.0911330i
$$693$$ −1.17658 + 4.00707i −0.0446946 + 0.152216i
$$694$$ 5.20623 + 6.00831i 0.197626 + 0.228072i
$$695$$ −26.7163 + 20.2277i −1.01341 + 0.767281i
$$696$$ 0.196121 0.226335i 0.00743393 0.00857922i
$$697$$ −12.2085 1.75531i −0.462428 0.0664871i
$$698$$ 3.61369 + 12.3071i 0.136780 + 0.465831i
$$699$$ 0.961654 + 0.618017i 0.0363731 + 0.0233756i
$$700$$ 1.34273 0.410212i 0.0507505 0.0155045i
$$701$$ 17.1355 + 37.5215i 0.647198 + 1.41717i 0.893985 + 0.448096i $$0.147898\pi$$
−0.246788 + 0.969070i $$0.579375\pi$$
$$702$$ −2.59678 + 1.18591i −0.0980091 + 0.0447593i
$$703$$ −34.8564 + 5.01159i −1.31463 + 0.189016i
$$704$$ −4.19337 2.69492i −0.158044 0.101568i
$$705$$ 1.59863 0.606203i 0.0602079 0.0228309i
$$706$$ 1.22112 8.49310i 0.0459576 0.319642i
$$707$$ 0.408465 + 0.353937i 0.0153619 + 0.0133112i
$$708$$ 0.708777 + 1.10288i 0.0266375 + 0.0414487i
$$709$$ 15.1105 + 17.4385i 0.567488 + 0.654916i 0.964867 0.262738i $$-0.0846256\pi$$
−0.397379 + 0.917655i $$0.630080\pi$$
$$710$$ 1.75343 8.27731i 0.0658049 0.310642i
$$711$$ −5.98494 + 13.1052i −0.224453 + 0.491483i
$$712$$ 5.59255i 0.209590i
$$713$$ −7.33839 14.1499i −0.274825 0.529916i
$$714$$ 0.275415 0.0103072
$$715$$ −39.0874 14.3367i −1.46179 0.536161i
$$716$$ −6.99464 2.05381i −0.261402 0.0767545i
$$717$$ 1.84965 1.60273i 0.0690764 0.0598550i
$$718$$ 15.2289 + 23.6966i 0.568336 + 0.884349i
$$719$$ −20.6369 + 23.8163i −0.769628 + 0.888198i −0.996315 0.0857693i $$-0.972665\pi$$
0.226687 + 0.973968i $$0.427211\pi$$
$$720$$ 0.439679 6.65722i 0.0163859 0.248100i
$$721$$ −4.07715 + 1.19716i −0.151841 + 0.0445846i
$$722$$ 0.847720 1.31908i 0.0315489 0.0490910i
$$723$$ 1.96684 0.282789i 0.0731477 0.0105170i
$$724$$ −2.80165 6.13475i −0.104122 0.227996i
$$725$$ 6.44548 + 9.79299i 0.239379 + 0.363702i
$$726$$ −0.251699 1.75060i −0.00934142 0.0649710i
$$727$$ 5.62176 8.74764i 0.208500 0.324432i −0.721216 0.692710i $$-0.756416\pi$$
0.929715 + 0.368279i $$0.120053\pi$$
$$728$$ 0.295499 + 1.00638i 0.0109519 + 0.0372988i
$$729$$ −3.71770 + 25.8571i −0.137692 + 0.957672i
$$730$$ −13.5552 + 18.3148i −0.501700 + 0.677862i
$$731$$ 52.4249 33.6915i 1.93901 1.24612i
$$732$$ −1.04718 + 0.907384i −0.0387048 + 0.0335379i
$$733$$ 10.6777 36.3650i 0.394391 1.34317i −0.488077 0.872801i $$-0.662301\pi$$
0.882468 0.470373i $$-0.155880\pi$$
$$734$$ 3.21043 7.02986i 0.118499 0.259477i
$$735$$ 0.151760 + 1.97086i 0.00559775 + 0.0726964i
$$736$$ 4.45662 + 1.77159i 0.164273 + 0.0653018i
$$737$$ 45.4993i 1.67599i
$$738$$ 4.35920 + 1.99078i 0.160464 + 0.0732816i
$$739$$ −46.3361 13.6055i −1.70450 0.500487i −0.722824 0.691032i $$-0.757156\pi$$
−0.981678 + 0.190545i $$0.938974\pi$$
$$740$$ −13.2630 + 13.4084i −0.487558 + 0.492901i
$$741$$ 1.67572 1.07692i 0.0615591 0.0395616i
$$742$$ 2.26298 + 1.96088i 0.0830767 + 0.0719863i
$$743$$ −14.8177 2.13047i −0.543609 0.0781592i −0.134961 0.990851i $$-0.543091\pi$$
−0.408649 + 0.912692i $$0.634000\pi$$
$$744$$ −0.407317 + 0.119599i −0.0149329 + 0.00438471i
$$745$$ −21.4729 11.5736i −0.786707 0.424025i
$$746$$ 2.77552 + 19.3041i 0.101619 + 0.706775i
$$747$$ −34.3207 + 15.6737i −1.25573 + 0.573472i
$$748$$ 34.8191 15.9014i 1.27311 0.581412i
$$749$$ −0.284170 1.97645i −0.0103833 0.0722178i
$$750$$ −1.34596 0.477097i −0.0491474 0.0174211i
$$751$$ 19.9134 5.84711i 0.726651 0.213364i 0.102573 0.994726i $$-0.467293\pi$$
0.624079 + 0.781361i $$0.285474\pi$$
$$752$$ −5.92538 0.851942i −0.216077 0.0310671i
$$753$$ −1.96194 1.70003i −0.0714970 0.0619525i
$$754$$ −7.36797 + 4.73511i −0.268326 + 0.172442i
$$755$$ 22.2883 + 22.0467i 0.811156 + 0.802362i
$$756$$ −0.205913 0.0604614i −0.00748897 0.00219896i
$$757$$ 20.9559 + 9.57022i 0.761654 + 0.347836i 0.758083 0.652158i $$-0.226136\pi$$
0.00357061 + 0.999994i $$0.498863\pi$$
$$758$$ 25.7946i 0.936904i
$$759$$ 1.00567 + 2.88299i 0.0365036 + 0.104646i
$$760$$ 0.716763 + 9.30840i 0.0259997 + 0.337651i
$$761$$ −1.72489 + 3.77698i −0.0625271 + 0.136915i −0.938316 0.345779i $$-0.887615\pi$$
0.875789 + 0.482695i $$0.160342\pi$$
$$762$$ 0.648877 2.20987i 0.0235063 0.0800552i
$$763$$ 2.25721 1.95589i 0.0817166 0.0708078i
$$764$$ −7.53432 + 4.84201i −0.272582 + 0.175178i
$$765$$ 41.1813 + 30.4791i 1.48891 + 1.10197i
$$766$$ 3.52465 24.5145i 0.127351 0.885745i
$$767$$ −10.8015 36.7866i −0.390020 1.32829i
$$768$$ 0.0690535 0.107449i 0.00249175 0.00387725i
$$769$$ 1.75312 + 12.1932i 0.0632190 + 0.439698i 0.996707 + 0.0810887i $$0.0258397\pi$$
−0.933488 + 0.358609i $$0.883251\pi$$
$$770$$ −1.51490 2.73875i −0.0545934 0.0986976i
$$771$$ −0.814197 1.78284i −0.0293226 0.0642075i
$$772$$