Properties

Label 230.2.j.a.29.1
Level $230$
Weight $2$
Character 230.29
Analytic conductor $1.837$
Analytic rank $0$
Dimension $120$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [230,2,Mod(9,230)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(230, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([11, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("230.9");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 230 = 2 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 230.j (of order \(22\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.83655924649\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(12\) over \(\Q(\zeta_{22})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 29.1
Character \(\chi\) \(=\) 230.29
Dual form 230.2.j.a.119.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.909632 - 0.415415i) q^{2} +(-0.768680 + 2.61788i) q^{3} +(0.654861 + 0.755750i) q^{4} +(1.33202 + 1.79603i) q^{5} +(1.78672 - 2.06199i) q^{6} +(1.27046 + 0.182665i) q^{7} +(-0.281733 - 0.959493i) q^{8} +(-3.73869 - 2.40271i) q^{9} +O(q^{10})\) \(q+(-0.909632 - 0.415415i) q^{2} +(-0.768680 + 2.61788i) q^{3} +(0.654861 + 0.755750i) q^{4} +(1.33202 + 1.79603i) q^{5} +(1.78672 - 2.06199i) q^{6} +(1.27046 + 0.182665i) q^{7} +(-0.281733 - 0.959493i) q^{8} +(-3.73869 - 2.40271i) q^{9} +(-0.465548 - 2.18707i) q^{10} +(1.03946 + 2.27610i) q^{11} +(-2.48184 + 1.13342i) q^{12} +(-1.02038 + 0.146709i) q^{13} +(-1.07977 - 0.693928i) q^{14} +(-5.72570 + 2.10650i) q^{15} +(-0.142315 + 0.989821i) q^{16} +(-3.98282 - 3.45113i) q^{17} +(2.40271 + 3.73869i) q^{18} +(0.540257 + 0.623490i) q^{19} +(-0.485063 + 2.18282i) q^{20} +(-1.45478 + 3.18552i) q^{21} -2.50222i q^{22} +(-2.14681 + 4.28850i) q^{23} +2.72840 q^{24} +(-1.45145 + 4.78469i) q^{25} +(0.989116 + 0.290431i) q^{26} +(2.97791 - 2.58037i) q^{27} +(0.693928 + 1.07977i) q^{28} +(1.11568 - 1.28757i) q^{29} +(6.08335 + 0.462404i) q^{30} +(7.72564 - 2.26845i) q^{31} +(0.540641 - 0.841254i) q^{32} +(-6.75757 + 0.971592i) q^{33} +(2.18925 + 4.79378i) q^{34} +(1.36421 + 2.52511i) q^{35} +(-0.632474 - 4.39895i) q^{36} +(5.04755 - 7.85414i) q^{37} +(-0.232428 - 0.791577i) q^{38} +(0.400281 - 2.78401i) q^{39} +(1.34801 - 1.78406i) q^{40} +(-3.34958 + 2.15265i) q^{41} +(2.64662 - 2.29331i) q^{42} +(2.74268 - 9.34069i) q^{43} +(-1.03946 + 2.27610i) q^{44} +(-0.664663 - 9.91526i) q^{45} +(3.73431 - 3.00914i) q^{46} +10.1453i q^{47} +(-2.48184 - 1.13342i) q^{48} +(-5.13574 - 1.50799i) q^{49} +(3.30792 - 3.74935i) q^{50} +(12.0962 - 7.77374i) q^{51} +(-0.779083 - 0.675079i) q^{52} +(3.94642 + 0.567409i) q^{53} +(-3.78072 + 1.11012i) q^{54} +(-2.70336 + 4.89870i) q^{55} +(-0.182665 - 1.27046i) q^{56} +(-2.04751 + 0.935066i) q^{57} +(-1.54974 + 0.707741i) q^{58} +(1.11256 + 7.73803i) q^{59} +(-5.34152 - 2.94773i) q^{60} +(-3.40094 + 0.998606i) q^{61} +(-7.96983 - 1.14589i) q^{62} +(-4.31098 - 3.73549i) q^{63} +(-0.841254 + 0.540641i) q^{64} +(-1.62266 - 1.63722i) q^{65} +(6.55051 + 1.92340i) q^{66} +(13.0761 + 5.97166i) q^{67} -5.27002i q^{68} +(-9.57658 - 8.91658i) q^{69} +(-0.191962 - 2.86363i) q^{70} +(2.65819 - 5.82062i) q^{71} +(-1.25207 + 4.26417i) q^{72} +(12.6363 - 10.9494i) q^{73} +(-7.85414 + 5.04755i) q^{74} +(-11.4101 - 7.47764i) q^{75} +(-0.117409 + 0.816598i) q^{76} +(0.904831 + 3.08157i) q^{77} +(-1.52063 + 2.36614i) q^{78} +(1.01786 + 7.07936i) q^{79} +(-1.96732 + 1.06286i) q^{80} +(-1.07250 - 2.34844i) q^{81} +(3.94113 - 0.566649i) q^{82} +(2.41287 - 3.75450i) q^{83} +(-3.36013 + 0.986624i) q^{84} +(0.893151 - 11.7502i) q^{85} +(-6.37509 + 7.35725i) q^{86} +(2.51310 + 3.91046i) q^{87} +(1.89105 - 1.63860i) q^{88} +(6.62662 + 1.94575i) q^{89} +(-3.51435 + 9.29535i) q^{90} -1.32316 q^{91} +(-4.64689 + 1.18592i) q^{92} +21.9685i q^{93} +(4.21451 - 9.22849i) q^{94} +(-0.400175 + 1.80082i) q^{95} +(1.78672 + 2.06199i) q^{96} +(8.57591 + 13.3444i) q^{97} +(4.04519 + 3.50518i) q^{98} +(1.58259 - 11.0071i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120 q + 12 q^{4} - 4 q^{6} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 120 q + 12 q^{4} - 4 q^{6} + 8 q^{9} + 8 q^{11} - 6 q^{15} - 12 q^{16} - 16 q^{19} - 22 q^{20} + 4 q^{24} - 52 q^{25} - 4 q^{26} - 8 q^{29} - 44 q^{30} + 12 q^{31} + 16 q^{35} - 8 q^{36} - 36 q^{39} - 28 q^{41} - 8 q^{44} + 16 q^{45} - 4 q^{46} - 58 q^{49} + 12 q^{50} - 24 q^{51} - 6 q^{54} - 36 q^{55} + 22 q^{56} - 102 q^{59} - 38 q^{60} + 72 q^{61} + 12 q^{64} - 138 q^{65} + 80 q^{66} - 212 q^{69} - 108 q^{70} + 176 q^{71} - 88 q^{74} - 100 q^{75} + 16 q^{76} - 104 q^{79} - 22 q^{80} - 28 q^{81} - 22 q^{84} + 2 q^{85} + 62 q^{86} + 48 q^{89} + 24 q^{90} - 56 q^{91} + 24 q^{94} + 18 q^{95} - 4 q^{96} + 188 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/230\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(-1\) \(e\left(\frac{9}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.909632 0.415415i −0.643207 0.293743i
\(3\) −0.768680 + 2.61788i −0.443798 + 1.51144i 0.369300 + 0.929310i \(0.379597\pi\)
−0.813098 + 0.582126i \(0.802221\pi\)
\(4\) 0.654861 + 0.755750i 0.327430 + 0.377875i
\(5\) 1.33202 + 1.79603i 0.595697 + 0.803209i
\(6\) 1.78672 2.06199i 0.729427 0.841804i
\(7\) 1.27046 + 0.182665i 0.480190 + 0.0690410i 0.378160 0.925740i \(-0.376557\pi\)
0.102031 + 0.994781i \(0.467466\pi\)
\(8\) −0.281733 0.959493i −0.0996075 0.339232i
\(9\) −3.73869 2.40271i −1.24623 0.800904i
\(10\) −0.465548 2.18707i −0.147219 0.691611i
\(11\) 1.03946 + 2.27610i 0.313408 + 0.686269i 0.999135 0.0415907i \(-0.0132426\pi\)
−0.685726 + 0.727860i \(0.740515\pi\)
\(12\) −2.48184 + 1.13342i −0.716447 + 0.327190i
\(13\) −1.02038 + 0.146709i −0.283003 + 0.0406897i −0.282355 0.959310i \(-0.591115\pi\)
−0.000648289 1.00000i \(0.500206\pi\)
\(14\) −1.07977 0.693928i −0.288582 0.185460i
\(15\) −5.72570 + 2.10650i −1.47837 + 0.543895i
\(16\) −0.142315 + 0.989821i −0.0355787 + 0.247455i
\(17\) −3.98282 3.45113i −0.965975 0.837022i 0.0206904 0.999786i \(-0.493414\pi\)
−0.986665 + 0.162764i \(0.947959\pi\)
\(18\) 2.40271 + 3.73869i 0.566324 + 0.881218i
\(19\) 0.540257 + 0.623490i 0.123943 + 0.143038i 0.814330 0.580403i \(-0.197105\pi\)
−0.690386 + 0.723441i \(0.742559\pi\)
\(20\) −0.485063 + 2.18282i −0.108463 + 0.488094i
\(21\) −1.45478 + 3.18552i −0.317459 + 0.695137i
\(22\) 2.50222i 0.533474i
\(23\) −2.14681 + 4.28850i −0.447640 + 0.894214i
\(24\) 2.72840 0.556933
\(25\) −1.45145 + 4.78469i −0.290291 + 0.956938i
\(26\) 0.989116 + 0.290431i 0.193982 + 0.0569582i
\(27\) 2.97791 2.58037i 0.573098 0.496592i
\(28\) 0.693928 + 1.07977i 0.131140 + 0.204058i
\(29\) 1.11568 1.28757i 0.207177 0.239095i −0.642646 0.766163i \(-0.722163\pi\)
0.849823 + 0.527068i \(0.176709\pi\)
\(30\) 6.08335 + 0.462404i 1.11066 + 0.0844230i
\(31\) 7.72564 2.26845i 1.38757 0.407426i 0.499169 0.866504i \(-0.333639\pi\)
0.888396 + 0.459079i \(0.151820\pi\)
\(32\) 0.540641 0.841254i 0.0955727 0.148714i
\(33\) −6.75757 + 0.971592i −1.17634 + 0.169132i
\(34\) 2.18925 + 4.79378i 0.375452 + 0.822126i
\(35\) 1.36421 + 2.52511i 0.230594 + 0.426821i
\(36\) −0.632474 4.39895i −0.105412 0.733159i
\(37\) 5.04755 7.85414i 0.829812 1.29121i −0.124446 0.992226i \(-0.539715\pi\)
0.954258 0.298986i \(-0.0966483\pi\)
\(38\) −0.232428 0.791577i −0.0377048 0.128411i
\(39\) 0.400281 2.78401i 0.0640962 0.445799i
\(40\) 1.34801 1.78406i 0.213138 0.282085i
\(41\) −3.34958 + 2.15265i −0.523117 + 0.336187i −0.775404 0.631466i \(-0.782454\pi\)
0.252287 + 0.967652i \(0.418817\pi\)
\(42\) 2.64662 2.29331i 0.408383 0.353866i
\(43\) 2.74268 9.34069i 0.418254 1.42444i −0.433810 0.901004i \(-0.642831\pi\)
0.852064 0.523438i \(-0.175351\pi\)
\(44\) −1.03946 + 2.27610i −0.156704 + 0.343134i
\(45\) −0.664663 9.91526i −0.0990821 1.47808i
\(46\) 3.73431 3.00914i 0.550594 0.443673i
\(47\) 10.1453i 1.47984i 0.672693 + 0.739922i \(0.265138\pi\)
−0.672693 + 0.739922i \(0.734862\pi\)
\(48\) −2.48184 1.13342i −0.358223 0.163595i
\(49\) −5.13574 1.50799i −0.733677 0.215427i
\(50\) 3.30792 3.74935i 0.467811 0.530239i
\(51\) 12.0962 7.77374i 1.69380 1.08854i
\(52\) −0.779083 0.675079i −0.108039 0.0936166i
\(53\) 3.94642 + 0.567409i 0.542082 + 0.0779396i 0.407916 0.913019i \(-0.366255\pi\)
0.134166 + 0.990959i \(0.457165\pi\)
\(54\) −3.78072 + 1.11012i −0.514491 + 0.151068i
\(55\) −2.70336 + 4.89870i −0.364521 + 0.660541i
\(56\) −0.182665 1.27046i −0.0244097 0.169773i
\(57\) −2.04751 + 0.935066i −0.271199 + 0.123853i
\(58\) −1.54974 + 0.707741i −0.203490 + 0.0929310i
\(59\) 1.11256 + 7.73803i 0.144843 + 1.00741i 0.924495 + 0.381193i \(0.124487\pi\)
−0.779652 + 0.626213i \(0.784604\pi\)
\(60\) −5.34152 2.94773i −0.689587 0.380551i
\(61\) −3.40094 + 0.998606i −0.435446 + 0.127858i −0.492106 0.870535i \(-0.663773\pi\)
0.0566607 + 0.998393i \(0.481955\pi\)
\(62\) −7.96983 1.14589i −1.01217 0.145528i
\(63\) −4.31098 3.73549i −0.543133 0.470627i
\(64\) −0.841254 + 0.540641i −0.105157 + 0.0675801i
\(65\) −1.62266 1.63722i −0.201266 0.203072i
\(66\) 6.55051 + 1.92340i 0.806313 + 0.236755i
\(67\) 13.0761 + 5.97166i 1.59750 + 0.729555i 0.997515 0.0704553i \(-0.0224452\pi\)
0.599987 + 0.800010i \(0.295172\pi\)
\(68\) 5.27002i 0.639084i
\(69\) −9.57658 8.91658i −1.15289 1.07343i
\(70\) −0.191962 2.86363i −0.0229438 0.342269i
\(71\) 2.65819 5.82062i 0.315469 0.690781i −0.683773 0.729694i \(-0.739662\pi\)
0.999243 + 0.0389133i \(0.0123896\pi\)
\(72\) −1.25207 + 4.26417i −0.147558 + 0.502537i
\(73\) 12.6363 10.9494i 1.47896 1.28153i 0.604343 0.796724i \(-0.293436\pi\)
0.874621 0.484806i \(-0.161110\pi\)
\(74\) −7.85414 + 5.04755i −0.913025 + 0.586766i
\(75\) −11.4101 7.47764i −1.31752 0.863443i
\(76\) −0.117409 + 0.816598i −0.0134677 + 0.0936702i
\(77\) 0.904831 + 3.08157i 0.103115 + 0.351178i
\(78\) −1.52063 + 2.36614i −0.172177 + 0.267913i
\(79\) 1.01786 + 7.07936i 0.114518 + 0.796490i 0.963431 + 0.267957i \(0.0863486\pi\)
−0.848913 + 0.528533i \(0.822742\pi\)
\(80\) −1.96732 + 1.06286i −0.219953 + 0.118831i
\(81\) −1.07250 2.34844i −0.119166 0.260938i
\(82\) 3.94113 0.566649i 0.435225 0.0625759i
\(83\) 2.41287 3.75450i 0.264847 0.412110i −0.683204 0.730227i \(-0.739414\pi\)
0.948051 + 0.318117i \(0.103051\pi\)
\(84\) −3.36013 + 0.986624i −0.366620 + 0.107649i
\(85\) 0.893151 11.7502i 0.0968758 1.27449i
\(86\) −6.37509 + 7.35725i −0.687444 + 0.793352i
\(87\) 2.51310 + 3.91046i 0.269433 + 0.419245i
\(88\) 1.89105 1.63860i 0.201586 0.174676i
\(89\) 6.62662 + 1.94575i 0.702421 + 0.206249i 0.613391 0.789780i \(-0.289805\pi\)
0.0890300 + 0.996029i \(0.471623\pi\)
\(90\) −3.51435 + 9.29535i −0.370445 + 0.979816i
\(91\) −1.32316 −0.138705
\(92\) −4.64689 + 1.18592i −0.484472 + 0.123641i
\(93\) 21.9685i 2.27803i
\(94\) 4.21451 9.22849i 0.434694 0.951846i
\(95\) −0.400175 + 1.80082i −0.0410571 + 0.184760i
\(96\) 1.78672 + 2.06199i 0.182357 + 0.210451i
\(97\) 8.57591 + 13.3444i 0.870752 + 1.35492i 0.934132 + 0.356927i \(0.116175\pi\)
−0.0633809 + 0.997989i \(0.520188\pi\)
\(98\) 4.04519 + 3.50518i 0.408626 + 0.354076i
\(99\) 1.58259 11.0071i 0.159056 1.10626i
\(100\) −4.56653 + 2.03637i −0.456653 + 0.203637i
\(101\) 10.5636 + 6.78883i 1.05112 + 0.675514i 0.947713 0.319125i \(-0.103389\pi\)
0.103407 + 0.994639i \(0.467025\pi\)
\(102\) −14.2324 + 2.04631i −1.40922 + 0.202615i
\(103\) −5.37237 + 2.45348i −0.529356 + 0.241749i −0.662118 0.749399i \(-0.730342\pi\)
0.132763 + 0.991148i \(0.457615\pi\)
\(104\) 0.428241 + 0.937716i 0.0419924 + 0.0919506i
\(105\) −7.65908 + 1.63034i −0.747450 + 0.159105i
\(106\) −3.35408 2.15553i −0.325777 0.209364i
\(107\) 0.0366346 + 0.124766i 0.00354160 + 0.0120616i 0.961245 0.275696i \(-0.0889084\pi\)
−0.957703 + 0.287758i \(0.907090\pi\)
\(108\) 3.90023 + 0.560768i 0.375300 + 0.0539599i
\(109\) −3.33469 + 3.84844i −0.319405 + 0.368613i −0.892634 0.450782i \(-0.851145\pi\)
0.573229 + 0.819395i \(0.305691\pi\)
\(110\) 4.49406 3.33300i 0.428492 0.317789i
\(111\) 16.6813 + 19.2512i 1.58332 + 1.82724i
\(112\) −0.361612 + 1.23154i −0.0341691 + 0.116369i
\(113\) −13.7000 6.25659i −1.28879 0.588571i −0.351196 0.936302i \(-0.614225\pi\)
−0.937594 + 0.347731i \(0.886952\pi\)
\(114\) 2.25092 0.210818
\(115\) −10.5619 + 1.85662i −0.984899 + 0.173131i
\(116\) 1.70370 0.158184
\(117\) 4.16739 + 1.90318i 0.385275 + 0.175949i
\(118\) 2.20247 7.50094i 0.202754 0.690517i
\(119\) −4.42962 5.11206i −0.406063 0.468622i
\(120\) 3.63428 + 4.90030i 0.331763 + 0.447334i
\(121\) 3.10333 3.58143i 0.282121 0.325585i
\(122\) 3.50844 + 0.504437i 0.317639 + 0.0456696i
\(123\) −3.06062 10.4235i −0.275967 0.939857i
\(124\) 6.77360 + 4.35313i 0.608287 + 0.390922i
\(125\) −10.5268 + 3.76644i −0.941547 + 0.336881i
\(126\) 2.36963 + 5.18877i 0.211103 + 0.462252i
\(127\) −14.1820 + 6.47670i −1.25845 + 0.574715i −0.929217 0.369534i \(-0.879517\pi\)
−0.329232 + 0.944249i \(0.606790\pi\)
\(128\) 0.989821 0.142315i 0.0874887 0.0125790i
\(129\) 22.3446 + 14.3600i 1.96733 + 1.26433i
\(130\) 0.795899 + 2.16334i 0.0698049 + 0.189738i
\(131\) 1.62591 11.3084i 0.142056 0.988023i −0.786701 0.617334i \(-0.788213\pi\)
0.928757 0.370689i \(-0.120878\pi\)
\(132\) −5.15955 4.47077i −0.449081 0.389131i
\(133\) 0.572487 + 0.890808i 0.0496410 + 0.0772428i
\(134\) −9.41374 10.8640i −0.813223 0.938509i
\(135\) 8.60105 + 1.91131i 0.740261 + 0.164499i
\(136\) −2.18925 + 4.79378i −0.187726 + 0.411063i
\(137\) 7.19734i 0.614910i 0.951563 + 0.307455i \(0.0994774\pi\)
−0.951563 + 0.307455i \(0.900523\pi\)
\(138\) 5.00709 + 12.0891i 0.426231 + 1.02909i
\(139\) 10.1060 0.857182 0.428591 0.903499i \(-0.359010\pi\)
0.428591 + 0.903499i \(0.359010\pi\)
\(140\) −1.01498 + 2.68459i −0.0857816 + 0.226890i
\(141\) −26.5592 7.79849i −2.23669 0.656752i
\(142\) −4.83595 + 4.19037i −0.405824 + 0.351648i
\(143\) −1.39457 2.16999i −0.116620 0.181464i
\(144\) 2.91033 3.35869i 0.242527 0.279891i
\(145\) 3.79862 + 0.288739i 0.315459 + 0.0239784i
\(146\) −16.0429 + 4.71062i −1.32772 + 0.389854i
\(147\) 7.89548 12.2856i 0.651208 1.01330i
\(148\) 9.24120 1.32868i 0.759622 0.109217i
\(149\) −5.82013 12.7443i −0.476804 1.04405i −0.983330 0.181830i \(-0.941798\pi\)
0.506527 0.862224i \(-0.330929\pi\)
\(150\) 7.27264 + 11.5418i 0.593809 + 0.942385i
\(151\) −1.82735 12.7095i −0.148707 1.03428i −0.918339 0.395795i \(-0.870469\pi\)
0.769632 0.638488i \(-0.220440\pi\)
\(152\) 0.446026 0.694030i 0.0361775 0.0562933i
\(153\) 6.59845 + 22.4723i 0.533453 + 1.81677i
\(154\) 0.457068 3.17898i 0.0368316 0.256169i
\(155\) 14.3649 + 10.8539i 1.15382 + 0.871803i
\(156\) 2.36614 1.52063i 0.189443 0.121748i
\(157\) 9.49942 8.23130i 0.758136 0.656929i −0.187460 0.982272i \(-0.560025\pi\)
0.945596 + 0.325343i \(0.105480\pi\)
\(158\) 2.01500 6.86245i 0.160304 0.545947i
\(159\) −4.51894 + 9.89511i −0.358376 + 0.784733i
\(160\) 2.23106 0.149558i 0.176381 0.0118236i
\(161\) −3.51080 + 5.05624i −0.276690 + 0.398487i
\(162\) 2.58174i 0.202841i
\(163\) −8.89411 4.06181i −0.696641 0.318145i 0.0354316 0.999372i \(-0.488719\pi\)
−0.732072 + 0.681227i \(0.761447\pi\)
\(164\) −3.82037 1.12176i −0.298321 0.0875949i
\(165\) −10.7462 10.8426i −0.836592 0.844097i
\(166\) −3.75450 + 2.41287i −0.291406 + 0.187275i
\(167\) −13.7420 11.9075i −1.06339 0.921429i −0.0663062 0.997799i \(-0.521121\pi\)
−0.997080 + 0.0763704i \(0.975667\pi\)
\(168\) 3.46634 + 0.498385i 0.267434 + 0.0384512i
\(169\) −11.4538 + 3.36313i −0.881058 + 0.258702i
\(170\) −5.69366 + 10.3174i −0.436684 + 0.791305i
\(171\) −0.521788 3.62912i −0.0399021 0.277525i
\(172\) 8.85530 4.04408i 0.675210 0.308358i
\(173\) 4.26160 1.94621i 0.324004 0.147968i −0.246772 0.969074i \(-0.579370\pi\)
0.570776 + 0.821106i \(0.306643\pi\)
\(174\) −0.661533 4.60106i −0.0501507 0.348805i
\(175\) −2.71802 + 5.81365i −0.205463 + 0.439471i
\(176\) −2.40086 + 0.704956i −0.180972 + 0.0531380i
\(177\) −21.1125 3.03552i −1.58691 0.228163i
\(178\) −5.21949 4.52272i −0.391218 0.338992i
\(179\) −7.44686 + 4.78581i −0.556605 + 0.357708i −0.788502 0.615032i \(-0.789143\pi\)
0.231897 + 0.972740i \(0.425507\pi\)
\(180\) 7.05819 6.99543i 0.526086 0.521409i
\(181\) −19.9039 5.84430i −1.47944 0.434404i −0.560287 0.828298i \(-0.689309\pi\)
−0.919156 + 0.393895i \(0.871128\pi\)
\(182\) 1.20359 + 0.549659i 0.0892157 + 0.0407434i
\(183\) 9.67087i 0.714892i
\(184\) 4.71961 + 0.851638i 0.347934 + 0.0627836i
\(185\) 20.8297 1.39630i 1.53143 0.102658i
\(186\) 9.12606 19.9833i 0.669155 1.46525i
\(187\) 3.71513 12.6526i 0.271677 0.925248i
\(188\) −7.66731 + 6.64376i −0.559196 + 0.484546i
\(189\) 4.25467 2.73431i 0.309482 0.198892i
\(190\) 1.11210 1.47184i 0.0806801 0.106779i
\(191\) 2.32093 16.1424i 0.167937 1.16803i −0.715203 0.698917i \(-0.753666\pi\)
0.883140 0.469110i \(-0.155425\pi\)
\(192\) −0.768680 2.61788i −0.0554747 0.188930i
\(193\) 5.16166 8.03169i 0.371544 0.578134i −0.604258 0.796789i \(-0.706530\pi\)
0.975802 + 0.218655i \(0.0701668\pi\)
\(194\) −2.25747 15.7010i −0.162077 1.12727i
\(195\) 5.53335 2.98944i 0.396252 0.214078i
\(196\) −2.22353 4.86885i −0.158824 0.347775i
\(197\) 5.03127 0.723387i 0.358463 0.0515392i 0.0392691 0.999229i \(-0.487497\pi\)
0.319194 + 0.947689i \(0.396588\pi\)
\(198\) −6.01210 + 9.35501i −0.427261 + 0.664832i
\(199\) −0.513963 + 0.150913i −0.0364338 + 0.0106979i −0.299899 0.953971i \(-0.596953\pi\)
0.263465 + 0.964669i \(0.415135\pi\)
\(200\) 4.99980 + 0.0446559i 0.353539 + 0.00315765i
\(201\) −25.6845 + 29.6415i −1.81164 + 2.09075i
\(202\) −6.78883 10.5636i −0.477660 0.743254i
\(203\) 1.65263 1.43201i 0.115992 0.100508i
\(204\) 13.7963 + 4.05096i 0.965934 + 0.283624i
\(205\) −8.32792 3.14859i −0.581647 0.219907i
\(206\) 5.90610 0.411497
\(207\) 18.3303 10.8752i 1.27404 0.755879i
\(208\) 1.03087i 0.0714782i
\(209\) −0.857548 + 1.87777i −0.0593178 + 0.129888i
\(210\) 7.64421 + 1.69868i 0.527501 + 0.117220i
\(211\) 3.43509 + 3.96431i 0.236482 + 0.272914i 0.861569 0.507640i \(-0.169482\pi\)
−0.625087 + 0.780555i \(0.714937\pi\)
\(212\) 2.15553 + 3.35408i 0.148043 + 0.230359i
\(213\) 13.1944 + 11.4330i 0.904067 + 0.783379i
\(214\) 0.0185057 0.128710i 0.00126502 0.00879842i
\(215\) 20.4295 7.51605i 1.39328 0.512590i
\(216\) −3.31482 2.13031i −0.225545 0.144949i
\(217\) 10.2295 1.47078i 0.694425 0.0998432i
\(218\) 4.63204 2.11538i 0.313721 0.143272i
\(219\) 18.9510 + 41.4969i 1.28059 + 2.80410i
\(220\) −5.47252 + 1.16490i −0.368957 + 0.0785377i
\(221\) 4.57030 + 2.93715i 0.307432 + 0.197574i
\(222\) −7.17658 24.4412i −0.481660 1.64038i
\(223\) 5.24366 + 0.753925i 0.351142 + 0.0504866i 0.315629 0.948883i \(-0.397784\pi\)
0.0355127 + 0.999369i \(0.488694\pi\)
\(224\) 0.840533 0.970027i 0.0561605 0.0648126i
\(225\) 16.9228 14.4011i 1.12818 0.960071i
\(226\) 9.86290 + 11.3824i 0.656070 + 0.757146i
\(227\) −1.89321 + 6.44767i −0.125657 + 0.427947i −0.998158 0.0606642i \(-0.980678\pi\)
0.872502 + 0.488611i \(0.162496\pi\)
\(228\) −2.04751 0.935066i −0.135600 0.0619263i
\(229\) 11.2865 0.745830 0.372915 0.927866i \(-0.378358\pi\)
0.372915 + 0.927866i \(0.378358\pi\)
\(230\) 10.3787 + 2.69871i 0.684350 + 0.177948i
\(231\) −8.76273 −0.576545
\(232\) −1.54974 0.707741i −0.101745 0.0464655i
\(233\) 1.25006 4.25733i 0.0818945 0.278907i −0.908358 0.418194i \(-0.862663\pi\)
0.990252 + 0.139288i \(0.0444812\pi\)
\(234\) −3.00018 3.46239i −0.196128 0.226344i
\(235\) −18.2213 + 13.5137i −1.18862 + 0.881538i
\(236\) −5.11944 + 5.90815i −0.333247 + 0.384588i
\(237\) −19.3154 2.77713i −1.25467 0.180394i
\(238\) 1.90570 + 6.49023i 0.123528 + 0.420699i
\(239\) −15.2662 9.81100i −0.987489 0.634621i −0.0560155 0.998430i \(-0.517840\pi\)
−0.931473 + 0.363809i \(0.881476\pi\)
\(240\) −1.27020 5.96720i −0.0819913 0.385181i
\(241\) 7.55301 + 16.5388i 0.486532 + 1.06536i 0.980616 + 0.195942i \(0.0627764\pi\)
−0.494084 + 0.869414i \(0.664496\pi\)
\(242\) −4.31067 + 1.96862i −0.277100 + 0.126547i
\(243\) 18.6730 2.68478i 1.19788 0.172228i
\(244\) −2.98184 1.91631i −0.190893 0.122679i
\(245\) −4.13250 11.2326i −0.264016 0.717625i
\(246\) −1.54605 + 10.7530i −0.0985724 + 0.685586i
\(247\) −0.642739 0.556937i −0.0408965 0.0354370i
\(248\) −4.35313 6.77360i −0.276424 0.430124i
\(249\) 7.97412 + 9.20263i 0.505339 + 0.583193i
\(250\) 11.1402 + 0.946921i 0.704566 + 0.0598886i
\(251\) 3.33161 7.29521i 0.210289 0.460470i −0.774868 0.632123i \(-0.782184\pi\)
0.985157 + 0.171654i \(0.0549110\pi\)
\(252\) 5.70425i 0.359334i
\(253\) −11.9926 0.428628i −0.753965 0.0269476i
\(254\) 15.5909 0.978262
\(255\) 30.0742 + 11.3703i 1.88332 + 0.712038i
\(256\) −0.959493 0.281733i −0.0599683 0.0176083i
\(257\) 5.88681 5.10095i 0.367209 0.318189i −0.451637 0.892202i \(-0.649160\pi\)
0.818846 + 0.574013i \(0.194614\pi\)
\(258\) −14.3600 22.3446i −0.894015 1.39112i
\(259\) 7.84741 9.05639i 0.487614 0.562737i
\(260\) 0.174710 2.29847i 0.0108351 0.142545i
\(261\) −7.26485 + 2.13315i −0.449683 + 0.132039i
\(262\) −6.17668 + 9.61110i −0.381596 + 0.593775i
\(263\) 8.47255 1.21817i 0.522440 0.0751155i 0.123950 0.992288i \(-0.460444\pi\)
0.398490 + 0.917173i \(0.369535\pi\)
\(264\) 2.83606 + 6.21011i 0.174548 + 0.382206i
\(265\) 4.23762 + 7.84369i 0.260315 + 0.481834i
\(266\) −0.150698 1.04813i −0.00923988 0.0642648i
\(267\) −10.1875 + 15.8521i −0.623466 + 0.970131i
\(268\) 4.04995 + 13.7929i 0.247390 + 0.842534i
\(269\) 1.74040 12.1047i 0.106114 0.738039i −0.865404 0.501074i \(-0.832938\pi\)
0.971518 0.236965i \(-0.0761526\pi\)
\(270\) −7.02980 5.31159i −0.427820 0.323253i
\(271\) −25.9284 + 16.6632i −1.57504 + 1.01222i −0.597394 + 0.801948i \(0.703797\pi\)
−0.977644 + 0.210267i \(0.932567\pi\)
\(272\) 3.98282 3.45113i 0.241494 0.209255i
\(273\) 1.01708 3.46387i 0.0615568 0.209643i
\(274\) 2.98988 6.54693i 0.180625 0.395515i
\(275\) −12.3991 + 1.66984i −0.747697 + 0.100695i
\(276\) 0.467374 13.0766i 0.0281326 0.787120i
\(277\) 17.6756i 1.06202i −0.847365 0.531011i \(-0.821812\pi\)
0.847365 0.531011i \(-0.178188\pi\)
\(278\) −9.19276 4.19819i −0.551345 0.251791i
\(279\) −34.3342 10.0814i −2.05553 0.603559i
\(280\) 2.03848 2.02035i 0.121822 0.120739i
\(281\) 20.7971 13.3655i 1.24065 0.797316i 0.255133 0.966906i \(-0.417881\pi\)
0.985515 + 0.169590i \(0.0542442\pi\)
\(282\) 20.9195 + 18.1269i 1.24574 + 1.07944i
\(283\) −28.1706 4.05032i −1.67457 0.240767i −0.761381 0.648305i \(-0.775478\pi\)
−0.913188 + 0.407538i \(0.866387\pi\)
\(284\) 6.13968 1.80277i 0.364323 0.106975i
\(285\) −4.40673 2.43186i −0.261032 0.144051i
\(286\) 0.367097 + 2.55321i 0.0217069 + 0.150975i
\(287\) −4.64874 + 2.12301i −0.274406 + 0.125317i
\(288\) −4.04258 + 1.84618i −0.238211 + 0.108787i
\(289\) 1.53317 + 10.6635i 0.0901866 + 0.627262i
\(290\) −3.33540 1.84065i −0.195862 0.108087i
\(291\) −41.5262 + 12.1932i −2.43431 + 0.714777i
\(292\) 16.5500 + 2.37953i 0.968516 + 0.139252i
\(293\) 16.9987 + 14.7294i 0.993073 + 0.860502i 0.990223 0.139494i \(-0.0445475\pi\)
0.00284964 + 0.999996i \(0.499093\pi\)
\(294\) −12.2856 + 7.89548i −0.716511 + 0.460474i
\(295\) −12.4158 + 12.3054i −0.722875 + 0.716448i
\(296\) −8.95805 2.63032i −0.520676 0.152884i
\(297\) 8.96858 + 4.09581i 0.520410 + 0.237663i
\(298\) 14.0104i 0.811600i
\(299\) 1.56140 4.69086i 0.0902983 0.271279i
\(300\) −1.82079 13.5200i −0.105123 0.780576i
\(301\) 5.19069 11.3660i 0.299186 0.655127i
\(302\) −3.61749 + 12.3201i −0.208163 + 0.708940i
\(303\) −25.8924 + 22.4359i −1.48748 + 1.28891i
\(304\) −0.694030 + 0.446026i −0.0398054 + 0.0255814i
\(305\) −6.32364 4.77803i −0.362091 0.273589i
\(306\) 3.33315 23.1826i 0.190544 1.32526i
\(307\) 8.44127 + 28.7483i 0.481769 + 1.64075i 0.738487 + 0.674267i \(0.235540\pi\)
−0.256719 + 0.966486i \(0.582641\pi\)
\(308\) −1.73636 + 2.70183i −0.0989382 + 0.153951i
\(309\) −2.29329 15.9502i −0.130461 0.907375i
\(310\) −8.55791 15.8404i −0.486057 0.899675i
\(311\) 2.66200 + 5.82897i 0.150948 + 0.330531i 0.969967 0.243236i \(-0.0782089\pi\)
−0.819019 + 0.573767i \(0.805482\pi\)
\(312\) −2.78401 + 0.400281i −0.157614 + 0.0226614i
\(313\) −1.17207 + 1.82377i −0.0662491 + 0.103086i −0.872798 0.488082i \(-0.837697\pi\)
0.806548 + 0.591168i \(0.201333\pi\)
\(314\) −12.0604 + 3.54125i −0.680607 + 0.199844i
\(315\) 0.966743 12.7184i 0.0544698 0.716600i
\(316\) −4.68367 + 5.40524i −0.263477 + 0.304069i
\(317\) −4.76371 7.41248i −0.267557 0.416326i 0.681314 0.731991i \(-0.261409\pi\)
−0.948871 + 0.315665i \(0.897772\pi\)
\(318\) 8.22115 7.12367i 0.461019 0.399476i
\(319\) 4.09034 + 1.20103i 0.229015 + 0.0672448i
\(320\) −2.09157 0.790774i −0.116922 0.0442056i
\(321\) −0.354784 −0.0198021
\(322\) 5.29398 3.14087i 0.295022 0.175034i
\(323\) 4.34774i 0.241915i
\(324\) 1.07250 2.34844i 0.0595831 0.130469i
\(325\) 0.779080 5.09515i 0.0432156 0.282628i
\(326\) 6.40304 + 7.38950i 0.354631 + 0.409266i
\(327\) −7.51145 11.6880i −0.415384 0.646351i
\(328\) 3.00914 + 2.60743i 0.166152 + 0.143971i
\(329\) −1.85319 + 12.8892i −0.102170 + 0.710607i
\(330\) 5.27091 + 14.3269i 0.290154 + 0.788672i
\(331\) −0.696634 0.447699i −0.0382905 0.0246078i 0.521356 0.853340i \(-0.325427\pi\)
−0.559646 + 0.828732i \(0.689063\pi\)
\(332\) 4.41756 0.635149i 0.242445 0.0348583i
\(333\) −37.7424 + 17.2364i −2.06827 + 0.944549i
\(334\) 7.55359 + 16.5401i 0.413314 + 0.905031i
\(335\) 6.69234 + 31.4395i 0.365642 + 1.71772i
\(336\) −2.94606 1.89332i −0.160721 0.103289i
\(337\) 2.40619 + 8.19473i 0.131074 + 0.446395i 0.998709 0.0508063i \(-0.0161791\pi\)
−0.867635 + 0.497202i \(0.834361\pi\)
\(338\) 11.8158 + 1.69885i 0.642694 + 0.0924055i
\(339\) 26.9100 31.0558i 1.46155 1.68672i
\(340\) 9.46512 7.01976i 0.513318 0.380700i
\(341\) 13.1937 + 15.2263i 0.714478 + 0.824552i
\(342\) −1.03295 + 3.51792i −0.0558558 + 0.190227i
\(343\) −14.4221 6.58635i −0.778720 0.355629i
\(344\) −9.73503 −0.524878
\(345\) 3.25827 29.0769i 0.175419 1.56545i
\(346\) −4.68498 −0.251866
\(347\) 3.39729 + 1.55149i 0.182376 + 0.0832885i 0.504511 0.863406i \(-0.331673\pi\)
−0.322134 + 0.946694i \(0.604400\pi\)
\(348\) −1.30960 + 4.46008i −0.0702018 + 0.239085i
\(349\) −3.56479 4.11399i −0.190819 0.220217i 0.652276 0.757981i \(-0.273814\pi\)
−0.843095 + 0.537765i \(0.819269\pi\)
\(350\) 4.88747 4.15918i 0.261246 0.222317i
\(351\) −2.66004 + 3.06985i −0.141982 + 0.163856i
\(352\) 2.47675 + 0.356103i 0.132011 + 0.0189803i
\(353\) −5.00056 17.0304i −0.266153 0.906434i −0.978784 0.204895i \(-0.934315\pi\)
0.712631 0.701539i \(-0.247504\pi\)
\(354\) 17.9436 + 11.5316i 0.953691 + 0.612900i
\(355\) 13.9948 2.97899i 0.742766 0.158108i
\(356\) 2.86901 + 6.28227i 0.152057 + 0.332959i
\(357\) 16.7877 7.66671i 0.888502 0.405765i
\(358\) 8.76200 1.25979i 0.463086 0.0665817i
\(359\) −14.6196 9.39543i −0.771592 0.495872i 0.0946415 0.995511i \(-0.469830\pi\)
−0.866234 + 0.499639i \(0.833466\pi\)
\(360\) −9.32636 + 3.43119i −0.491543 + 0.180840i
\(361\) 2.60712 18.1329i 0.137217 0.954364i
\(362\) 15.6774 + 13.5845i 0.823985 + 0.713987i
\(363\) 6.99031 + 10.8771i 0.366896 + 0.570901i
\(364\) −0.866483 0.999975i −0.0454161 0.0524129i
\(365\) 36.4972 + 8.11035i 1.91035 + 0.424515i
\(366\) −4.01743 + 8.79694i −0.209994 + 0.459823i
\(367\) 26.4546i 1.38092i 0.723372 + 0.690458i \(0.242591\pi\)
−0.723372 + 0.690458i \(0.757409\pi\)
\(368\) −3.93932 2.73527i −0.205351 0.142586i
\(369\) 17.6952 0.921177
\(370\) −19.5274 7.38285i −1.01518 0.383816i
\(371\) 4.91014 + 1.44175i 0.254922 + 0.0748517i
\(372\) −16.6027 + 14.3863i −0.860811 + 0.745897i
\(373\) −6.35988 9.89617i −0.329302 0.512404i 0.636640 0.771161i \(-0.280324\pi\)
−0.965943 + 0.258757i \(0.916687\pi\)
\(374\) −8.63547 + 9.96587i −0.446530 + 0.515323i
\(375\) −1.76836 30.4532i −0.0913175 1.57260i
\(376\) 9.73435 2.85826i 0.502011 0.147404i
\(377\) −0.949526 + 1.47749i −0.0489031 + 0.0760947i
\(378\) −5.00606 + 0.719762i −0.257484 + 0.0370206i
\(379\) −0.218894 0.479311i −0.0112438 0.0246205i 0.903927 0.427687i \(-0.140672\pi\)
−0.915171 + 0.403067i \(0.867944\pi\)
\(380\) −1.62303 + 0.876853i −0.0832595 + 0.0449816i
\(381\) −6.05384 42.1054i −0.310148 2.15712i
\(382\) −8.81701 + 13.7195i −0.451118 + 0.701953i
\(383\) −0.866849 2.95222i −0.0442939 0.150851i 0.934377 0.356286i \(-0.115957\pi\)
−0.978671 + 0.205435i \(0.934139\pi\)
\(384\) −0.388292 + 2.70063i −0.0198150 + 0.137816i
\(385\) −4.32935 + 5.72982i −0.220644 + 0.292018i
\(386\) −8.03169 + 5.16166i −0.408802 + 0.262721i
\(387\) −32.6970 + 28.3321i −1.66208 + 1.44020i
\(388\) −4.46898 + 15.2199i −0.226878 + 0.772676i
\(389\) −8.17077 + 17.8915i −0.414275 + 0.907135i 0.581347 + 0.813656i \(0.302526\pi\)
−0.995621 + 0.0934789i \(0.970201\pi\)
\(390\) −6.27517 + 0.420652i −0.317756 + 0.0213005i
\(391\) 23.3505 9.67138i 1.18089 0.489103i
\(392\) 5.35255i 0.270345i
\(393\) 28.3544 + 12.9490i 1.43029 + 0.653192i
\(394\) −4.87711 1.43205i −0.245705 0.0721455i
\(395\) −11.3589 + 11.2579i −0.571530 + 0.566449i
\(396\) 9.35501 6.01210i 0.470107 0.302119i
\(397\) −20.5192 17.7800i −1.02983 0.892350i −0.0355698 0.999367i \(-0.511325\pi\)
−0.994257 + 0.107017i \(0.965870\pi\)
\(398\) 0.530208 + 0.0762325i 0.0265769 + 0.00382119i
\(399\) −2.77209 + 0.813960i −0.138778 + 0.0407490i
\(400\) −4.52943 2.11761i −0.226471 0.105881i
\(401\) 2.38450 + 16.5846i 0.119076 + 0.828195i 0.958577 + 0.284835i \(0.0919389\pi\)
−0.839500 + 0.543360i \(0.817152\pi\)
\(402\) 35.6769 16.2931i 1.77940 0.812626i
\(403\) −7.55029 + 3.44810i −0.376107 + 0.171762i
\(404\) 1.78705 + 12.4292i 0.0889090 + 0.618375i
\(405\) 2.78928 5.05440i 0.138601 0.251155i
\(406\) −2.09817 + 0.616077i −0.104130 + 0.0305754i
\(407\) 23.1235 + 3.32466i 1.14619 + 0.164797i
\(408\) −10.8667 9.41608i −0.537983 0.466165i
\(409\) 17.1243 11.0051i 0.846744 0.544170i −0.0438134 0.999040i \(-0.513951\pi\)
0.890558 + 0.454870i \(0.150314\pi\)
\(410\) 6.26738 + 6.32360i 0.309524 + 0.312300i
\(411\) −18.8418 5.53245i −0.929398 0.272896i
\(412\) −5.37237 2.45348i −0.264678 0.120874i
\(413\) 10.0341i 0.493747i
\(414\) −21.1915 + 2.27777i −1.04151 + 0.111946i
\(415\) 9.95719 0.667473i 0.488779 0.0327650i
\(416\) −0.428241 + 0.937716i −0.0209962 + 0.0459753i
\(417\) −7.76830 + 26.4564i −0.380415 + 1.29558i
\(418\) 1.56011 1.35184i 0.0763073 0.0661207i
\(419\) 15.4046 9.89992i 0.752562 0.483642i −0.107263 0.994231i \(-0.534209\pi\)
0.859825 + 0.510588i \(0.170572\pi\)
\(420\) −6.24776 4.72070i −0.304860 0.230347i
\(421\) −1.11885 + 7.78178i −0.0545295 + 0.379261i 0.944222 + 0.329309i \(0.106816\pi\)
−0.998752 + 0.0499517i \(0.984093\pi\)
\(422\) −1.47784 5.03305i −0.0719400 0.245005i
\(423\) 24.3762 37.9301i 1.18521 1.84423i
\(424\) −0.567409 3.94642i −0.0275558 0.191655i
\(425\) 22.2935 14.0474i 1.08139 0.681399i
\(426\) −7.25262 15.8810i −0.351390 0.769438i
\(427\) −4.50318 + 0.647460i −0.217924 + 0.0313328i
\(428\) −0.0703014 + 0.109391i −0.00339814 + 0.00528762i
\(429\) 6.75275 1.98279i 0.326026 0.0957299i
\(430\) −21.7056 1.64987i −1.04674 0.0795638i
\(431\) −14.5740 + 16.8193i −0.702006 + 0.810158i −0.989022 0.147768i \(-0.952791\pi\)
0.287016 + 0.957926i \(0.407337\pi\)
\(432\) 2.13031 + 3.31482i 0.102494 + 0.159484i
\(433\) −18.8350 + 16.3206i −0.905152 + 0.784319i −0.977032 0.213095i \(-0.931646\pi\)
0.0718794 + 0.997413i \(0.477100\pi\)
\(434\) −9.91608 2.91162i −0.475987 0.139762i
\(435\) −3.67581 + 9.72241i −0.176242 + 0.466154i
\(436\) −5.09221 −0.243873
\(437\) −3.83366 + 0.978378i −0.183389 + 0.0468022i
\(438\) 45.6195i 2.17978i
\(439\) −0.884648 + 1.93711i −0.0422219 + 0.0924531i −0.929568 0.368652i \(-0.879820\pi\)
0.887346 + 0.461105i \(0.152547\pi\)
\(440\) 5.46189 + 1.21373i 0.260386 + 0.0578624i
\(441\) 15.5777 + 17.9776i 0.741794 + 0.856076i
\(442\) −2.93715 4.57030i −0.139706 0.217387i
\(443\) 9.52095 + 8.24995i 0.452354 + 0.391967i 0.851023 0.525128i \(-0.175982\pi\)
−0.398669 + 0.917095i \(0.630528\pi\)
\(444\) −3.62519 + 25.2137i −0.172044 + 1.19659i
\(445\) 5.33215 + 14.4934i 0.252768 + 0.687053i
\(446\) −4.45661 2.86409i −0.211027 0.135619i
\(447\) 37.8369 5.44013i 1.78963 0.257309i
\(448\) −1.16754 + 0.533197i −0.0551610 + 0.0251912i
\(449\) −6.38566 13.9826i −0.301358 0.659882i 0.697006 0.717066i \(-0.254515\pi\)
−0.998364 + 0.0571837i \(0.981788\pi\)
\(450\) −21.3759 + 6.06970i −1.00767 + 0.286128i
\(451\) −8.38138 5.38639i −0.394664 0.253635i
\(452\) −4.24319 14.4510i −0.199583 0.679717i
\(453\) 34.6766 + 4.98574i 1.62925 + 0.234251i
\(454\) 4.40058 5.07854i 0.206530 0.238348i
\(455\) −1.76247 2.37643i −0.0826258 0.111409i
\(456\) 1.47404 + 1.70113i 0.0690282 + 0.0796628i
\(457\) −0.512479 + 1.74534i −0.0239728 + 0.0816438i −0.970611 0.240656i \(-0.922638\pi\)
0.946638 + 0.322299i \(0.104456\pi\)
\(458\) −10.2665 4.68856i −0.479723 0.219082i
\(459\) −20.7656 −0.969257
\(460\) −8.31969 6.76629i −0.387908 0.315480i
\(461\) 6.04815 0.281690 0.140845 0.990032i \(-0.455018\pi\)
0.140845 + 0.990032i \(0.455018\pi\)
\(462\) 7.97086 + 3.64017i 0.370838 + 0.169356i
\(463\) 9.21629 31.3878i 0.428317 1.45871i −0.409271 0.912413i \(-0.634217\pi\)
0.837589 0.546302i \(-0.183965\pi\)
\(464\) 1.11568 + 1.28757i 0.0517943 + 0.0597739i
\(465\) −39.4562 + 29.2625i −1.82974 + 1.35702i
\(466\) −2.90566 + 3.35331i −0.134602 + 0.155339i
\(467\) −30.0199 4.31621i −1.38915 0.199730i −0.593184 0.805067i \(-0.702130\pi\)
−0.795970 + 0.605336i \(0.793039\pi\)
\(468\) 1.29073 + 4.39582i 0.0596640 + 0.203197i
\(469\) 15.5219 + 9.97534i 0.716736 + 0.460618i
\(470\) 22.1885 4.72313i 1.02348 0.217862i
\(471\) 14.2466 + 31.1956i 0.656447 + 1.43742i
\(472\) 7.11114 3.24755i 0.327317 0.149481i
\(473\) 24.1112 3.46667i 1.10863 0.159398i
\(474\) 16.4162 + 10.5501i 0.754021 + 0.484580i
\(475\) −3.76736 + 1.68000i −0.172859 + 0.0770835i
\(476\) 0.962649 6.69537i 0.0441230 0.306882i
\(477\) −13.3911 11.6035i −0.613137 0.531286i
\(478\) 9.81100 + 15.2662i 0.448745 + 0.698260i
\(479\) −25.7751 29.7461i −1.17769 1.35913i −0.919525 0.393033i \(-0.871426\pi\)
−0.258170 0.966099i \(-0.583119\pi\)
\(480\) −1.32345 + 5.95562i −0.0604069 + 0.271836i
\(481\) −3.99815 + 8.75473i −0.182300 + 0.399181i
\(482\) 18.1818i 0.828160i
\(483\) −10.5380 13.0775i −0.479494 0.595047i
\(484\) 4.73891 0.215405
\(485\) −12.5436 + 33.1775i −0.569577 + 1.50651i
\(486\) −18.1009 5.31490i −0.821073 0.241089i
\(487\) 20.2402 17.5383i 0.917172 0.794734i −0.0619349 0.998080i \(-0.519727\pi\)
0.979107 + 0.203346i \(0.0651817\pi\)
\(488\) 1.91631 + 2.98184i 0.0867473 + 0.134981i
\(489\) 17.4701 20.1615i 0.790024 0.911736i
\(490\) −0.907138 + 11.9342i −0.0409803 + 0.539134i
\(491\) −12.5811 + 3.69414i −0.567777 + 0.166714i −0.553007 0.833177i \(-0.686520\pi\)
−0.0147699 + 0.999891i \(0.504702\pi\)
\(492\) 5.87329 9.13902i 0.264788 0.412019i
\(493\) −8.88713 + 1.27778i −0.400256 + 0.0575481i
\(494\) 0.353296 + 0.773611i 0.0158956 + 0.0348064i
\(495\) 21.8772 11.8193i 0.983307 0.531240i
\(496\) 1.14589 + 7.96983i 0.0514519 + 0.357856i
\(497\) 4.44036 6.90934i 0.199177 0.309926i
\(498\) −3.43061 11.6836i −0.153729 0.523553i
\(499\) −1.11596 + 7.76167i −0.0499572 + 0.347460i 0.949477 + 0.313836i \(0.101614\pi\)
−0.999435 + 0.0336244i \(0.989295\pi\)
\(500\) −9.74009 5.48914i −0.435590 0.245482i
\(501\) 41.7356 26.8218i 1.86461 1.19831i
\(502\) −6.06108 + 5.25195i −0.270519 + 0.234406i
\(503\) −4.20705 + 14.3279i −0.187583 + 0.638850i 0.810970 + 0.585087i \(0.198940\pi\)
−0.998554 + 0.0537629i \(0.982878\pi\)
\(504\) −2.36963 + 5.18877i −0.105552 + 0.231126i
\(505\) 1.87800 + 28.0154i 0.0835697 + 1.24667i
\(506\) 10.7307 + 5.37178i 0.477040 + 0.238805i
\(507\) 32.5698i 1.44647i
\(508\) −14.1820 6.47670i −0.629225 0.287357i
\(509\) −8.09490 2.37688i −0.358800 0.105353i 0.0973641 0.995249i \(-0.468959\pi\)
−0.456164 + 0.889896i \(0.650777\pi\)
\(510\) −22.6330 22.8361i −1.00221 1.01120i
\(511\) 18.0540 11.6026i 0.798663 0.513270i
\(512\) 0.755750 + 0.654861i 0.0333997 + 0.0289410i
\(513\) 3.21767 + 0.462631i 0.142064 + 0.0204257i
\(514\) −7.47384 + 2.19452i −0.329657 + 0.0967961i
\(515\) −11.5626 6.38087i −0.509510 0.281175i
\(516\) 3.78004 + 26.2907i 0.166407 + 1.15739i
\(517\) −23.0917 + 10.5456i −1.01557 + 0.463796i
\(518\) −10.9004 + 4.97805i −0.478937 + 0.218723i
\(519\) 1.81914 + 12.6524i 0.0798514 + 0.555379i
\(520\) −1.11374 + 2.01819i −0.0488408 + 0.0885034i
\(521\) 34.8812 10.2420i 1.52817 0.448712i 0.593682 0.804700i \(-0.297674\pi\)
0.934490 + 0.355988i \(0.115856\pi\)
\(522\) 7.49449 + 1.07754i 0.328025 + 0.0471628i
\(523\) 11.2685 + 9.76418i 0.492736 + 0.426958i 0.865455 0.500986i \(-0.167029\pi\)
−0.372720 + 0.927944i \(0.621575\pi\)
\(524\) 9.61110 6.17668i 0.419863 0.269829i
\(525\) −13.1302 11.5843i −0.573048 0.505580i
\(526\) −8.21295 2.41154i −0.358102 0.105148i
\(527\) −38.5985 17.6273i −1.68138 0.767859i
\(528\) 6.82706i 0.297110i
\(529\) −13.7824 18.4132i −0.599236 0.800572i
\(530\) −0.596286 8.89524i −0.0259010 0.386384i
\(531\) 14.4327 31.6033i 0.626327 1.37147i
\(532\) −0.298328 + 1.01601i −0.0129342 + 0.0440497i
\(533\) 3.10204 2.68793i 0.134364 0.116427i
\(534\) 15.8521 10.1875i 0.685986 0.440857i
\(535\) −0.175286 + 0.231988i −0.00757827 + 0.0100297i
\(536\) 2.04580 14.2289i 0.0883651 0.614593i
\(537\) −6.80444 23.1738i −0.293633 1.00002i
\(538\) −6.61162 + 10.2879i −0.285047 + 0.443542i
\(539\) −1.90606 13.2569i −0.0820997 0.571016i
\(540\) 4.18802 + 7.75188i 0.180224 + 0.333588i
\(541\) −15.8763 34.7642i −0.682575 1.49463i −0.859891 0.510477i \(-0.829469\pi\)
0.177316 0.984154i \(-0.443258\pi\)
\(542\) 30.5074 4.38631i 1.31041 0.188408i
\(543\) 30.5994 47.6136i 1.31315 2.04330i
\(544\) −5.05655 + 1.48474i −0.216798 + 0.0636575i
\(545\) −11.3538 0.863016i −0.486342 0.0369676i
\(546\) −2.36412 + 2.72834i −0.101175 + 0.116762i
\(547\) −8.28852 12.8972i −0.354392 0.551444i 0.617590 0.786500i \(-0.288109\pi\)
−0.971982 + 0.235056i \(0.924473\pi\)
\(548\) −5.43939 + 4.71326i −0.232359 + 0.201340i
\(549\) 15.1144 + 4.43799i 0.645068 + 0.189409i
\(550\) 11.9723 + 3.63185i 0.510502 + 0.154863i
\(551\) 1.40554 0.0598781
\(552\) −5.85736 + 11.7008i −0.249306 + 0.498017i
\(553\) 9.18000i 0.390374i
\(554\) −7.34270 + 16.0783i −0.311961 + 0.683100i
\(555\) −12.3560 + 55.6031i −0.524484 + 2.36022i
\(556\) 6.61804 + 7.63762i 0.280667 + 0.323907i
\(557\) −4.05660 6.31220i −0.171884 0.267456i 0.744615 0.667494i \(-0.232633\pi\)
−0.916498 + 0.400038i \(0.868997\pi\)
\(558\) 27.0435 + 23.4333i 1.14484 + 0.992012i
\(559\) −1.42821 + 9.93344i −0.0604070 + 0.420140i
\(560\) −2.69355 + 0.990964i −0.113823 + 0.0418759i
\(561\) 30.2672 + 19.4516i 1.27788 + 0.821246i
\(562\) −24.4699 + 3.51824i −1.03220 + 0.148408i
\(563\) 8.69523 3.97098i 0.366460 0.167357i −0.223670 0.974665i \(-0.571804\pi\)
0.590130 + 0.807308i \(0.299076\pi\)
\(564\) −11.4989 25.1791i −0.484191 1.06023i
\(565\) −7.01166 32.9396i −0.294983 1.38578i
\(566\) 23.9423 + 15.3868i 1.00637 + 0.646755i
\(567\) −0.933590 3.17951i −0.0392071 0.133527i
\(568\) −6.33375 0.910655i −0.265758 0.0382102i
\(569\) −22.0675 + 25.4672i −0.925117 + 1.06764i 0.0724108 + 0.997375i \(0.476931\pi\)
−0.997528 + 0.0702675i \(0.977615\pi\)
\(570\) 2.99827 + 4.04272i 0.125584 + 0.169331i
\(571\) 16.9259 + 19.5336i 0.708328 + 0.817454i 0.989852 0.142100i \(-0.0453855\pi\)
−0.281525 + 0.959554i \(0.590840\pi\)
\(572\) 0.726721 2.47498i 0.0303857 0.103484i
\(573\) 40.4750 + 18.4843i 1.69087 + 0.772194i
\(574\) 5.11057 0.213311
\(575\) −17.4032 16.4964i −0.725762 0.687946i
\(576\) 4.44419 0.185175
\(577\) −39.1801 17.8929i −1.63109 0.744893i −0.631551 0.775334i \(-0.717581\pi\)
−0.999537 + 0.0304413i \(0.990309\pi\)
\(578\) 3.03513 10.3367i 0.126245 0.429951i
\(579\) 17.0584 + 19.6864i 0.708922 + 0.818140i
\(580\) 2.26936 + 3.05989i 0.0942299 + 0.127055i
\(581\) 3.75128 4.32921i 0.155629 0.179606i
\(582\) 42.8388 + 6.15928i 1.77572 + 0.255311i
\(583\) 2.81066 + 9.57222i 0.116406 + 0.396441i
\(584\) −14.0659 9.03962i −0.582052 0.374062i
\(585\) 2.13286 + 10.0198i 0.0881831 + 0.414269i
\(586\) −9.34370 20.4599i −0.385985 0.845189i
\(587\) 36.7829 16.7982i 1.51819 0.693335i 0.530205 0.847869i \(-0.322115\pi\)
0.987987 + 0.154534i \(0.0493876\pi\)
\(588\) 14.4553 2.07836i 0.596126 0.0857099i
\(589\) 5.58818 + 3.59131i 0.230257 + 0.147977i
\(590\) 16.4057 6.03568i 0.675410 0.248485i
\(591\) −1.97369 + 13.7273i −0.0811868 + 0.564667i
\(592\) 7.05585 + 6.11393i 0.289994 + 0.251281i
\(593\) 7.43652 + 11.5715i 0.305381 + 0.475183i 0.959696 0.281039i \(-0.0906792\pi\)
−0.654315 + 0.756222i \(0.727043\pi\)
\(594\) −6.45664 7.45137i −0.264919 0.305733i
\(595\) 3.28107 14.7651i 0.134511 0.605310i
\(596\) 5.82013 12.7443i 0.238402 0.522027i
\(597\) 1.46150i 0.0598152i
\(598\) −3.36895 + 3.61832i −0.137767 + 0.147964i
\(599\) −12.9013 −0.527132 −0.263566 0.964641i \(-0.584899\pi\)
−0.263566 + 0.964641i \(0.584899\pi\)
\(600\) −3.96015 + 13.0546i −0.161673 + 0.532951i
\(601\) 14.6759 + 4.30923i 0.598642 + 0.175777i 0.566994 0.823722i \(-0.308106\pi\)
0.0316482 + 0.999499i \(0.489924\pi\)
\(602\) −9.44324 + 8.18261i −0.384878 + 0.333498i
\(603\) −34.5394 53.7443i −1.40655 2.18864i
\(604\) 8.40852 9.70395i 0.342138 0.394848i
\(605\) 10.5661 + 0.803140i 0.429571 + 0.0326523i
\(606\) 32.8728 9.65232i 1.33537 0.392099i
\(607\) −16.6331 + 25.8816i −0.675116 + 1.05050i 0.319571 + 0.947562i \(0.396461\pi\)
−0.994688 + 0.102939i \(0.967175\pi\)
\(608\) 0.816598 0.117409i 0.0331174 0.00476157i
\(609\) 2.47850 + 5.42716i 0.100434 + 0.219920i
\(610\) 3.76732 + 6.97318i 0.152534 + 0.282336i
\(611\) −1.48840 10.3521i −0.0602144 0.418800i
\(612\) −12.6623 + 19.7030i −0.511844 + 0.796445i
\(613\) 4.97950 + 16.9586i 0.201120 + 0.684952i 0.996851 + 0.0793012i \(0.0252689\pi\)
−0.795731 + 0.605651i \(0.792913\pi\)
\(614\) 4.26404 29.6570i 0.172083 1.19686i
\(615\) 14.6442 19.3813i 0.590509 0.781529i
\(616\) 2.70183 1.73636i 0.108860 0.0699599i
\(617\) −8.31028 + 7.20090i −0.334559 + 0.289897i −0.805897 0.592055i \(-0.798317\pi\)
0.471338 + 0.881953i \(0.343771\pi\)
\(618\) −4.53990 + 15.4615i −0.182622 + 0.621952i
\(619\) −8.16958 + 17.8889i −0.328363 + 0.719015i −0.999756 0.0220866i \(-0.992969\pi\)
0.671393 + 0.741102i \(0.265696\pi\)
\(620\) 1.20421 + 17.9640i 0.0483621 + 0.721453i
\(621\) 4.67292 + 18.3103i 0.187518 + 0.734767i
\(622\) 6.40806i 0.256940i
\(623\) 8.06347 + 3.68246i 0.323056 + 0.147535i
\(624\) 2.69871 + 0.792413i 0.108035 + 0.0317219i
\(625\) −20.7866 13.8895i −0.831463 0.555581i
\(626\) 1.82377 1.17207i 0.0728926 0.0468452i
\(627\) −4.25660 3.68837i −0.169992 0.147299i
\(628\) 12.4416 + 1.78883i 0.496474 + 0.0713821i
\(629\) −47.2091 + 13.8618i −1.88235 + 0.552708i
\(630\) −6.16279 + 11.1675i −0.245532 + 0.444922i
\(631\) −1.39279 9.68707i −0.0554461 0.385636i −0.998582 0.0532297i \(-0.983048\pi\)
0.943136 0.332407i \(-0.107861\pi\)
\(632\) 6.50583 2.97111i 0.258788 0.118185i
\(633\) −13.0186 + 5.94539i −0.517443 + 0.236308i
\(634\) 1.25397 + 8.72155i 0.0498015 + 0.346377i
\(635\) −30.5231 16.8442i −1.21127 0.668443i
\(636\) −10.4375 + 3.06473i −0.413874 + 0.121524i
\(637\) 5.46164 + 0.785266i 0.216398 + 0.0311134i
\(638\) −3.22177 2.79168i −0.127551 0.110524i
\(639\) −23.9234 + 15.3747i −0.946396 + 0.608212i
\(640\) 1.57406 + 1.58818i 0.0622203 + 0.0627785i
\(641\) 15.0604 + 4.42214i 0.594851 + 0.174664i 0.565281 0.824899i \(-0.308768\pi\)
0.0295706 + 0.999563i \(0.490586\pi\)
\(642\) 0.322723 + 0.147382i 0.0127368 + 0.00581672i
\(643\) 23.5890i 0.930261i 0.885242 + 0.465130i \(0.153993\pi\)
−0.885242 + 0.465130i \(0.846007\pi\)
\(644\) −6.12034 + 0.657843i −0.241175 + 0.0259226i
\(645\) 3.97242 + 59.2594i 0.156414 + 2.33334i
\(646\) −1.80612 + 3.95484i −0.0710607 + 0.155601i
\(647\) 4.90636 16.7095i 0.192889 0.656920i −0.805077 0.593171i \(-0.797876\pi\)
0.997966 0.0637494i \(-0.0203058\pi\)
\(648\) −1.95115 + 1.69068i −0.0766485 + 0.0664163i
\(649\) −16.4560 + 10.5757i −0.645956 + 0.415131i
\(650\) −2.82528 + 4.31107i −0.110817 + 0.169094i
\(651\) −4.01289 + 27.9102i −0.157277 + 1.09389i
\(652\) −2.75470 9.38164i −0.107882 0.367413i
\(653\) −15.8004 + 24.5860i −0.618319 + 0.962123i 0.380976 + 0.924585i \(0.375588\pi\)
−0.999295 + 0.0375381i \(0.988048\pi\)
\(654\) 1.97727 + 13.7522i 0.0773173 + 0.537753i
\(655\) 22.4761 12.1429i 0.878212 0.474461i
\(656\) −1.65404 3.62184i −0.0645794 0.141409i
\(657\) −73.5514 + 10.5751i −2.86951 + 0.412574i
\(658\) 7.04011 10.9546i 0.274452 0.427056i
\(659\) 9.55859 2.80665i 0.372350 0.109332i −0.0902033 0.995923i \(-0.528752\pi\)
0.462553 + 0.886592i \(0.346934\pi\)
\(660\) 1.15703 15.2219i 0.0450375 0.592510i
\(661\) −4.29992 + 4.96237i −0.167248 + 0.193014i −0.833186 0.552993i \(-0.813486\pi\)
0.665939 + 0.746007i \(0.268031\pi\)
\(662\) 0.447699 + 0.696634i 0.0174003 + 0.0270754i
\(663\) −11.2022 + 9.70679i −0.435059 + 0.376980i
\(664\) −4.28220 1.25737i −0.166182 0.0487953i
\(665\) −0.837355 + 2.21478i −0.0324712 + 0.0858854i
\(666\) 41.4920 1.60778
\(667\) 3.12657 + 7.54877i 0.121061 + 0.292290i
\(668\) 18.1832i 0.703530i
\(669\) −6.00439 + 13.1478i −0.232143 + 0.508323i
\(670\) 6.97286 31.3784i 0.269385 1.21226i
\(671\) −5.80806 6.70285i −0.224218 0.258761i
\(672\) 1.89332 + 2.94606i 0.0730363 + 0.113647i
\(673\) −0.128416 0.111273i −0.00495006 0.00428925i 0.652382 0.757890i \(-0.273770\pi\)
−0.657332 + 0.753601i \(0.728315\pi\)
\(674\) 1.21547 8.45376i 0.0468180 0.325627i
\(675\) 8.02399 + 17.9937i 0.308843 + 0.692576i
\(676\) −10.0423 6.45379i −0.386242 0.248223i
\(677\) 22.7942 3.27731i 0.876051 0.125957i 0.310404 0.950605i \(-0.399536\pi\)
0.565647 + 0.824648i \(0.308627\pi\)
\(678\) −37.3792 + 17.0705i −1.43554 + 0.655589i
\(679\) 8.45784 + 18.5201i 0.324582 + 0.710735i
\(680\) −11.5259 + 2.45345i −0.441998 + 0.0940855i
\(681\) −15.4240 9.91240i −0.591049 0.379844i
\(682\) −5.67616 19.3312i −0.217351 0.740230i
\(683\) −28.6657 4.12150i −1.09686 0.157705i −0.429958 0.902849i \(-0.641472\pi\)
−0.666904 + 0.745144i \(0.732381\pi\)
\(684\) 2.40100 2.77091i 0.0918047 0.105948i
\(685\) −12.9266 + 9.58699i −0.493902 + 0.366300i
\(686\) 10.3827 + 11.9823i 0.396414 + 0.457487i
\(687\) −8.67568 + 29.5466i −0.330998 + 1.12727i
\(688\) 8.85530 + 4.04408i 0.337605 + 0.154179i
\(689\) −4.11009 −0.156582
\(690\) −15.0428 + 25.0957i −0.572670 + 0.955378i
\(691\) −31.4009 −1.19454 −0.597272 0.802038i \(-0.703749\pi\)
−0.597272 + 0.802038i \(0.703749\pi\)
\(692\) 4.26160 + 1.94621i 0.162002 + 0.0739838i
\(693\) 4.02124 13.6951i 0.152754 0.520234i
\(694\) −2.44577 2.82257i −0.0928403 0.107143i
\(695\) 13.4614 + 18.1507i 0.510621 + 0.688497i
\(696\) 3.04404 3.51301i 0.115384 0.133160i
\(697\) 20.7698 + 2.98625i 0.786713 + 0.113112i
\(698\) 1.53363 + 5.22308i 0.0580489 + 0.197696i
\(699\) 10.1843 + 6.54505i 0.385206 + 0.247557i
\(700\) −6.17359 + 1.75299i −0.233340 + 0.0662569i
\(701\) −9.54358 20.8975i −0.360456 0.789289i −0.999793 0.0203618i \(-0.993518\pi\)
0.639337 0.768927i \(-0.279209\pi\)
\(702\) 3.69491 1.68741i 0.139456 0.0636872i
\(703\) 7.62395 1.09616i 0.287543 0.0413424i
\(704\) −2.10500 1.35280i −0.0793351 0.0509856i
\(705\) −21.3710 58.0889i −0.804880 2.18776i
\(706\) −2.52599 + 17.5687i −0.0950670 + 0.661206i
\(707\) 12.1806 + 10.5546i 0.458100 + 0.396946i
\(708\) −11.5316 17.9436i −0.433386 0.674361i
\(709\) −26.4117 30.4807i −0.991913 1.14473i −0.989471 0.144731i \(-0.953768\pi\)
−0.00244186 0.999997i \(-0.500777\pi\)
\(710\) −13.9676 3.10386i −0.524195 0.116486i
\(711\) 13.2042 28.9132i 0.495196 1.08433i
\(712\) 6.90638i 0.258828i
\(713\) −6.85721 + 38.0013i −0.256805 + 1.42316i
\(714\) −18.4555 −0.690681
\(715\) 2.03978 5.39515i 0.0762833 0.201767i
\(716\) −8.49353 2.49393i −0.317418 0.0932024i
\(717\) 37.4189 32.4237i 1.39743 1.21088i
\(718\) 9.39543 + 14.6196i 0.350635 + 0.545598i
\(719\) −5.20115 + 6.00245i −0.193970 + 0.223854i −0.844401 0.535712i \(-0.820043\pi\)
0.650430 + 0.759566i \(0.274589\pi\)
\(720\) 9.90893 + 0.753191i 0.369284 + 0.0280698i
\(721\) −7.27358 + 2.13571i −0.270882 + 0.0795382i
\(722\) −9.90421 + 15.4112i −0.368596 + 0.573547i
\(723\) −49.1025 + 7.05987i −1.82614 + 0.262559i
\(724\) −8.61743 18.8695i −0.320264 0.701281i
\(725\) 4.54125 + 7.20705i 0.168658 + 0.267663i
\(726\) −1.84008 12.7981i −0.0682919 0.474981i
\(727\) −8.95902 + 13.9405i −0.332272 + 0.517025i −0.966685 0.255969i \(-0.917605\pi\)
0.634413 + 0.772994i \(0.281242\pi\)
\(728\) 0.372776 + 1.26956i 0.0138160 + 0.0470530i
\(729\) −6.22289 + 43.2812i −0.230478 + 1.60301i
\(730\) −29.8299 22.5389i −1.10405 0.834203i
\(731\) −43.1595 + 27.7369i −1.59631 + 1.02589i
\(732\) 7.30876 6.33308i 0.270140 0.234077i
\(733\) −4.19248 + 14.2783i −0.154853 + 0.527380i −0.999974 0.00719467i \(-0.997710\pi\)
0.845121 + 0.534574i \(0.179528\pi\)
\(734\) 10.9896 24.0639i 0.405634 0.888215i
\(735\) 32.5823 2.18413i 1.20181 0.0805628i
\(736\) 2.44706 + 4.12455i 0.0901999 + 0.152033i
\(737\) 35.9698i 1.32496i
\(738\) −16.0962 7.35087i −0.592508 0.270589i
\(739\) 45.9414 + 13.4896i 1.68998 + 0.496223i 0.978459 0.206441i \(-0.0661882\pi\)
0.711522 + 0.702664i \(0.248006\pi\)
\(740\) 14.6958 + 14.8277i 0.540229 + 0.545075i
\(741\) 1.95206 1.25451i 0.0717106 0.0460856i
\(742\) −3.86750 3.35120i −0.141980 0.123027i
\(743\) −6.21778 0.893982i −0.228108 0.0327970i 0.0273127 0.999627i \(-0.491305\pi\)
−0.255421 + 0.966830i \(0.582214\pi\)
\(744\) 21.0787 6.18925i 0.772781 0.226909i
\(745\) 15.1366 27.4288i 0.554564 1.00491i
\(746\) 1.67413 + 11.6439i 0.0612944 + 0.426312i
\(747\) −18.0420 + 8.23948i −0.660121 + 0.301467i
\(748\) 11.9951 5.47797i 0.438583 0.200294i
\(749\) 0.0237526 + 0.165203i 0.000867900 + 0.00603638i
\(750\) −11.0422 + 28.4358i −0.403203 + 1.03833i
\(751\) −13.7749 + 4.04468i −0.502654 + 0.147593i −0.523223 0.852196i \(-0.675271\pi\)
0.0205686 + 0.999788i \(0.493452\pi\)
\(752\) −10.0420 1.44383i −0.366195 0.0526510i
\(753\) 16.5371 + 14.3295i 0.602644 + 0.522194i
\(754\) 1.47749 0.949526i 0.0538070 0.0345797i
\(755\) 20.3926 20.2112i 0.742161 0.735562i
\(756\) 4.85267 + 1.42487i 0.176490 + 0.0518221i
\(757\) 25.9541 + 11.8528i 0.943318 + 0.430799i 0.826867 0.562398i \(-0.190121\pi\)
0.116451 + 0.993196i \(0.462848\pi\)
\(758\) 0.526928i 0.0191389i
\(759\) 10.3405 31.0656i 0.375338 1.12761i
\(760\) 1.84061 0.123384i 0.0667661 0.00447562i
\(761\) 22.6426 49.5805i 0.820795 1.79729i 0.269446 0.963015i \(-0.413159\pi\)
0.551349 0.834275i \(-0.314113\pi\)
\(762\) −11.9844 + 40.8152i −0.434150 + 1.47858i
\(763\) −4.93958 + 4.28017i −0.178825 + 0.154953i
\(764\) 13.7195 8.81701i 0.496355 0.318988i
\(765\) −31.5716 + 41.7845i −1.14147 + 1.51072i
\(766\) −0.437881 + 3.04553i −0.0158213 + 0.110040i
\(767\) −2.27047 7.73252i −0.0819820 0.279205i
\(768\) 1.47509 2.29528i 0.0532276 0.0828238i
\(769\) 3.75398 + 26.1095i