# Properties

 Label 230.2.j.a.219.4 Level $230$ Weight $2$ Character 230.219 Analytic conductor $1.837$ Analytic rank $0$ Dimension $120$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$230 = 2 \cdot 5 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 230.j (of order $$22$$, degree $$10$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$1.83655924649$$ Analytic rank: $$0$$ Dimension: $$120$$ Relative dimension: $$12$$ over $$\Q(\zeta_{22})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

## Embedding invariants

 Embedding label 219.4 Character $$\chi$$ $$=$$ 230.219 Dual form 230.2.j.a.209.4

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.540641 - 0.841254i) q^{2} +(0.665993 + 0.0957553i) q^{3} +(-0.415415 + 0.909632i) q^{4} +(-0.171396 - 2.22949i) q^{5} +(-0.279508 - 0.612038i) q^{6} +(1.62329 - 1.40659i) q^{7} +(0.989821 - 0.142315i) q^{8} +(-2.44410 - 0.717653i) q^{9} +O(q^{10})$$ $$q+(-0.540641 - 0.841254i) q^{2} +(0.665993 + 0.0957553i) q^{3} +(-0.415415 + 0.909632i) q^{4} +(-0.171396 - 2.22949i) q^{5} +(-0.279508 - 0.612038i) q^{6} +(1.62329 - 1.40659i) q^{7} +(0.989821 - 0.142315i) q^{8} +(-2.44410 - 0.717653i) q^{9} +(-1.78290 + 1.34954i) q^{10} +(3.00982 + 1.93430i) q^{11} +(-0.363766 + 0.566030i) q^{12} +(-3.40020 - 2.94629i) q^{13} +(-2.06092 - 0.605141i) q^{14} +(0.0993370 - 1.50124i) q^{15} +(-0.654861 - 0.755750i) q^{16} +(5.12683 - 2.34135i) q^{17} +(0.717653 + 2.44410i) q^{18} +(2.28599 - 5.00562i) q^{19} +(2.09922 + 0.770256i) q^{20} +(1.21579 - 0.781342i) q^{21} -3.57778i q^{22} +(-2.94656 + 3.78388i) q^{23} +0.672842 q^{24} +(-4.94125 + 0.764251i) q^{25} +(-0.640289 + 4.45331i) q^{26} +(-3.39515 - 1.55051i) q^{27} +(0.605141 + 2.06092i) q^{28} +(3.52252 + 7.71324i) q^{29} +(-1.31663 + 0.728062i) q^{30} +(-0.681945 - 4.74303i) q^{31} +(-0.281733 + 0.959493i) q^{32} +(1.81930 + 1.57643i) q^{33} +(-4.74144 - 3.04714i) q^{34} +(-3.41421 - 3.37803i) q^{35} +(1.66812 - 1.92511i) q^{36} +(-2.34825 + 7.99739i) q^{37} +(-5.44690 + 0.783146i) q^{38} +(-1.98238 - 2.28779i) q^{39} +(-0.486941 - 2.18240i) q^{40} +(9.99296 - 2.93420i) q^{41} +(-1.31461 - 0.600364i) q^{42} +(3.35224 + 0.481980i) q^{43} +(-3.00982 + 1.93430i) q^{44} +(-1.18109 + 5.57210i) q^{45} +(4.77624 + 0.433085i) q^{46} +10.7053i q^{47} +(-0.363766 - 0.566030i) q^{48} +(-0.339622 + 2.36212i) q^{49} +(3.31437 + 3.74366i) q^{50} +(3.63863 - 1.06840i) q^{51} +(4.09253 - 1.86900i) q^{52} +(-4.00429 + 3.46974i) q^{53} +(0.531182 + 3.69445i) q^{54} +(3.79662 - 7.04190i) q^{55} +(1.40659 - 1.62329i) q^{56} +(2.00177 - 3.11481i) q^{57} +(4.58437 - 7.13343i) q^{58} +(1.25908 - 1.45305i) q^{59} +(1.32431 + 0.713996i) q^{60} +(0.973399 + 6.77014i) q^{61} +(-3.62141 + 3.13797i) q^{62} +(-4.97694 + 2.27289i) q^{63} +(0.959493 - 0.281733i) q^{64} +(-5.98594 + 8.08568i) q^{65} +(0.342592 - 2.38278i) q^{66} +(-0.464748 - 0.723162i) q^{67} +5.63616i q^{68} +(-2.32472 + 2.23789i) q^{69} +(-0.995922 + 4.69852i) q^{70} +(7.34689 - 4.72156i) q^{71} +(-2.52136 - 0.362516i) q^{72} +(5.78187 + 2.64049i) q^{73} +(7.99739 - 2.34825i) q^{74} +(-3.36402 + 0.0358349i) q^{75} +(3.60364 + 4.15882i) q^{76} +(7.60660 - 1.09366i) q^{77} +(-0.852857 + 2.90456i) q^{78} +(-9.61636 + 11.0979i) q^{79} +(-1.57270 + 1.58954i) q^{80} +(4.31606 + 2.77376i) q^{81} +(-7.87101 - 6.82027i) q^{82} +(1.86485 - 6.35109i) q^{83} +(0.205675 + 1.43050i) q^{84} +(-6.09873 - 11.0289i) q^{85} +(-1.40689 - 3.08066i) q^{86} +(1.60739 + 5.47427i) q^{87} +(3.25447 + 1.48626i) q^{88} +(-0.622136 + 4.32705i) q^{89} +(5.32610 - 2.01891i) q^{90} -9.66375 q^{91} +(-2.21789 - 4.25217i) q^{92} -3.22413i q^{93} +(9.00583 - 5.78770i) q^{94} +(-11.5518 - 4.23865i) q^{95} +(-0.279508 + 0.612038i) q^{96} +(-1.51710 - 5.16676i) q^{97} +(2.17076 - 0.991351i) q^{98} +(-5.96816 - 6.88762i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$120 q + 12 q^{4} - 4 q^{6} + 8 q^{9}+O(q^{10})$$ 120 * q + 12 * q^4 - 4 * q^6 + 8 * q^9 $$120 q + 12 q^{4} - 4 q^{6} + 8 q^{9} + 8 q^{11} - 6 q^{15} - 12 q^{16} - 16 q^{19} - 22 q^{20} + 4 q^{24} - 52 q^{25} - 4 q^{26} - 8 q^{29} - 44 q^{30} + 12 q^{31} + 16 q^{35} - 8 q^{36} - 36 q^{39} - 28 q^{41} - 8 q^{44} + 16 q^{45} - 4 q^{46} - 58 q^{49} + 12 q^{50} - 24 q^{51} - 6 q^{54} - 36 q^{55} + 22 q^{56} - 102 q^{59} - 38 q^{60} + 72 q^{61} + 12 q^{64} - 138 q^{65} + 80 q^{66} - 212 q^{69} - 108 q^{70} + 176 q^{71} - 88 q^{74} - 100 q^{75} + 16 q^{76} - 104 q^{79} - 22 q^{80} - 28 q^{81} - 22 q^{84} + 2 q^{85} + 62 q^{86} + 48 q^{89} + 24 q^{90} - 56 q^{91} + 24 q^{94} + 18 q^{95} - 4 q^{96} + 188 q^{99}+O(q^{100})$$ 120 * q + 12 * q^4 - 4 * q^6 + 8 * q^9 + 8 * q^11 - 6 * q^15 - 12 * q^16 - 16 * q^19 - 22 * q^20 + 4 * q^24 - 52 * q^25 - 4 * q^26 - 8 * q^29 - 44 * q^30 + 12 * q^31 + 16 * q^35 - 8 * q^36 - 36 * q^39 - 28 * q^41 - 8 * q^44 + 16 * q^45 - 4 * q^46 - 58 * q^49 + 12 * q^50 - 24 * q^51 - 6 * q^54 - 36 * q^55 + 22 * q^56 - 102 * q^59 - 38 * q^60 + 72 * q^61 + 12 * q^64 - 138 * q^65 + 80 * q^66 - 212 * q^69 - 108 * q^70 + 176 * q^71 - 88 * q^74 - 100 * q^75 + 16 * q^76 - 104 * q^79 - 22 * q^80 - 28 * q^81 - 22 * q^84 + 2 * q^85 + 62 * q^86 + 48 * q^89 + 24 * q^90 - 56 * q^91 + 24 * q^94 + 18 * q^95 - 4 * q^96 + 188 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/230\mathbb{Z}\right)^\times$$.

 $$n$$ $$47$$ $$51$$ $$\chi(n)$$ $$-1$$ $$e\left(\frac{10}{11}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.540641 0.841254i −0.382291 0.594856i
$$3$$ 0.665993 + 0.0957553i 0.384511 + 0.0552844i 0.331860 0.943329i $$-0.392324\pi$$
0.0526511 + 0.998613i $$0.483233\pi$$
$$4$$ −0.415415 + 0.909632i −0.207708 + 0.454816i
$$5$$ −0.171396 2.22949i −0.0766506 0.997058i
$$6$$ −0.279508 0.612038i −0.114109 0.249864i
$$7$$ 1.62329 1.40659i 0.613548 0.531642i −0.291709 0.956507i $$-0.594224\pi$$
0.905257 + 0.424865i $$0.139678\pi$$
$$8$$ 0.989821 0.142315i 0.349955 0.0503159i
$$9$$ −2.44410 0.717653i −0.814700 0.239218i
$$10$$ −1.78290 + 1.34954i −0.563803 + 0.426762i
$$11$$ 3.00982 + 1.93430i 0.907496 + 0.583212i 0.909004 0.416787i $$-0.136844\pi$$
−0.00150867 + 0.999999i $$0.500480\pi$$
$$12$$ −0.363766 + 0.566030i −0.105010 + 0.163399i
$$13$$ −3.40020 2.94629i −0.943045 0.817153i 0.0402468 0.999190i $$-0.487186\pi$$
−0.983292 + 0.182037i $$0.941731\pi$$
$$14$$ −2.06092 0.605141i −0.550804 0.161731i
$$15$$ 0.0993370 1.50124i 0.0256487 0.387618i
$$16$$ −0.654861 0.755750i −0.163715 0.188937i
$$17$$ 5.12683 2.34135i 1.24344 0.567860i 0.318482 0.947929i $$-0.396827\pi$$
0.924958 + 0.380069i $$0.124100\pi$$
$$18$$ 0.717653 + 2.44410i 0.169152 + 0.576080i
$$19$$ 2.28599 5.00562i 0.524442 1.14837i −0.443288 0.896379i $$-0.646188\pi$$
0.967730 0.251989i $$-0.0810848\pi$$
$$20$$ 2.09922 + 0.770256i 0.469399 + 0.172235i
$$21$$ 1.21579 0.781342i 0.265308 0.170503i
$$22$$ 3.57778i 0.762786i
$$23$$ −2.94656 + 3.78388i −0.614401 + 0.788994i
$$24$$ 0.672842 0.137343
$$25$$ −4.94125 + 0.764251i −0.988249 + 0.152850i
$$26$$ −0.640289 + 4.45331i −0.125571 + 0.873366i
$$27$$ −3.39515 1.55051i −0.653397 0.298396i
$$28$$ 0.605141 + 2.06092i 0.114361 + 0.389477i
$$29$$ 3.52252 + 7.71324i 0.654115 + 1.43231i 0.887905 + 0.460026i $$0.152160\pi$$
−0.233790 + 0.972287i $$0.575113\pi$$
$$30$$ −1.31663 + 0.728062i −0.240382 + 0.132925i
$$31$$ −0.681945 4.74303i −0.122481 0.851874i −0.954730 0.297472i $$-0.903856\pi$$
0.832249 0.554401i $$-0.187053\pi$$
$$32$$ −0.281733 + 0.959493i −0.0498038 + 0.169616i
$$33$$ 1.81930 + 1.57643i 0.316700 + 0.274422i
$$34$$ −4.74144 3.04714i −0.813151 0.522580i
$$35$$ −3.41421 3.37803i −0.577107 0.570992i
$$36$$ 1.66812 1.92511i 0.278019 0.320851i
$$37$$ −2.34825 + 7.99739i −0.386049 + 1.31476i 0.505886 + 0.862600i $$0.331165\pi$$
−0.891936 + 0.452163i $$0.850653\pi$$
$$38$$ −5.44690 + 0.783146i −0.883604 + 0.127043i
$$39$$ −1.98238 2.28779i −0.317436 0.366340i
$$40$$ −0.486941 2.18240i −0.0769921 0.345068i
$$41$$ 9.99296 2.93420i 1.56064 0.458245i 0.616380 0.787449i $$-0.288599\pi$$
0.944259 + 0.329204i $$0.106780\pi$$
$$42$$ −1.31461 0.600364i −0.202849 0.0926381i
$$43$$ 3.35224 + 0.481980i 0.511212 + 0.0735012i 0.393094 0.919498i $$-0.371405\pi$$
0.118118 + 0.993000i $$0.462314\pi$$
$$44$$ −3.00982 + 1.93430i −0.453748 + 0.291606i
$$45$$ −1.18109 + 5.57210i −0.176067 + 0.830640i
$$46$$ 4.77624 + 0.433085i 0.704218 + 0.0638549i
$$47$$ 10.7053i 1.56152i 0.624830 + 0.780761i $$0.285168\pi$$
−0.624830 + 0.780761i $$0.714832\pi$$
$$48$$ −0.363766 0.566030i −0.0525050 0.0816994i
$$49$$ −0.339622 + 2.36212i −0.0485174 + 0.337446i
$$50$$ 3.31437 + 3.74366i 0.468722 + 0.529433i
$$51$$ 3.63863 1.06840i 0.509510 0.149606i
$$52$$ 4.09253 1.86900i 0.567532 0.259183i
$$53$$ −4.00429 + 3.46974i −0.550031 + 0.476605i −0.884978 0.465632i $$-0.845827\pi$$
0.334947 + 0.942237i $$0.391282\pi$$
$$54$$ 0.531182 + 3.69445i 0.0722847 + 0.502751i
$$55$$ 3.79662 7.04190i 0.511936 0.949529i
$$56$$ 1.40659 1.62329i 0.187964 0.216922i
$$57$$ 2.00177 3.11481i 0.265141 0.412567i
$$58$$ 4.58437 7.13343i 0.601958 0.936665i
$$59$$ 1.25908 1.45305i 0.163918 0.189171i −0.667848 0.744297i $$-0.732785\pi$$
0.831766 + 0.555126i $$0.187330\pi$$
$$60$$ 1.32431 + 0.713996i 0.170967 + 0.0921765i
$$61$$ 0.973399 + 6.77014i 0.124631 + 0.866828i 0.952203 + 0.305467i $$0.0988127\pi$$
−0.827572 + 0.561360i $$0.810278\pi$$
$$62$$ −3.62141 + 3.13797i −0.459919 + 0.398522i
$$63$$ −4.97694 + 2.27289i −0.627036 + 0.286358i
$$64$$ 0.959493 0.281733i 0.119937 0.0352166i
$$65$$ −5.98594 + 8.08568i −0.742464 + 1.00291i
$$66$$ 0.342592 2.38278i 0.0421701 0.293300i
$$67$$ −0.464748 0.723162i −0.0567780 0.0883483i 0.811704 0.584069i $$-0.198540\pi$$
−0.868482 + 0.495721i $$0.834904\pi$$
$$68$$ 5.63616i 0.683485i
$$69$$ −2.32472 + 2.23789i −0.279863 + 0.269410i
$$70$$ −0.995922 + 4.69852i −0.119035 + 0.561581i
$$71$$ 7.34689 4.72156i 0.871916 0.560346i −0.0264224 0.999651i $$-0.508411\pi$$
0.898338 + 0.439305i $$0.144775\pi$$
$$72$$ −2.52136 0.362516i −0.297145 0.0427230i
$$73$$ 5.78187 + 2.64049i 0.676717 + 0.309046i 0.723965 0.689837i $$-0.242318\pi$$
−0.0472479 + 0.998883i $$0.515045\pi$$
$$74$$ 7.99739 2.34825i 0.929678 0.272978i
$$75$$ −3.36402 + 0.0358349i −0.388443 + 0.00413786i
$$76$$ 3.60364 + 4.15882i 0.413366 + 0.477050i
$$77$$ 7.60660 1.09366i 0.866852 0.124634i
$$78$$ −0.852857 + 2.90456i −0.0965670 + 0.328877i
$$79$$ −9.61636 + 11.0979i −1.08192 + 1.24861i −0.115049 + 0.993360i $$0.536703\pi$$
−0.966876 + 0.255248i $$0.917843\pi$$
$$80$$ −1.57270 + 1.58954i −0.175833 + 0.177716i
$$81$$ 4.31606 + 2.77376i 0.479562 + 0.308196i
$$82$$ −7.87101 6.82027i −0.869208 0.753173i
$$83$$ 1.86485 6.35109i 0.204694 0.697123i −0.791595 0.611047i $$-0.790749\pi$$
0.996289 0.0860767i $$-0.0274330\pi$$
$$84$$ 0.205675 + 1.43050i 0.0224410 + 0.156081i
$$85$$ −6.09873 11.0289i −0.661500 1.19625i
$$86$$ −1.40689 3.08066i −0.151709 0.332196i
$$87$$ 1.60739 + 5.47427i 0.172330 + 0.586903i
$$88$$ 3.25447 + 1.48626i 0.346927 + 0.158436i
$$89$$ −0.622136 + 4.32705i −0.0659463 + 0.458667i 0.929915 + 0.367776i $$0.119881\pi$$
−0.995861 + 0.0908909i $$0.971029\pi$$
$$90$$ 5.32610 2.01891i 0.561420 0.212812i
$$91$$ −9.66375 −1.01304
$$92$$ −2.21789 4.25217i −0.231231 0.443319i
$$93$$ 3.22413i 0.334326i
$$94$$ 9.00583 5.78770i 0.928881 0.596955i
$$95$$ −11.5518 4.23865i −1.18519 0.434876i
$$96$$ −0.279508 + 0.612038i −0.0285272 + 0.0624659i
$$97$$ −1.51710 5.16676i −0.154038 0.524605i 0.845924 0.533303i $$-0.179049\pi$$
−0.999962 + 0.00869816i $$0.997231\pi$$
$$98$$ 2.17076 0.991351i 0.219279 0.100142i
$$99$$ −5.96816 6.88762i −0.599822 0.692232i
$$100$$ 1.35748 4.81220i 0.135748 0.481220i
$$101$$ −12.2869 3.60777i −1.22260 0.358987i −0.394146 0.919048i $$-0.628959\pi$$
−0.828451 + 0.560061i $$0.810778\pi$$
$$102$$ −2.86599 2.48339i −0.283775 0.245892i
$$103$$ 7.70414 11.9879i 0.759112 1.18120i −0.219526 0.975607i $$-0.570451\pi$$
0.978637 0.205594i $$-0.0659126\pi$$
$$104$$ −3.78489 2.43240i −0.371139 0.238516i
$$105$$ −1.95038 2.57668i −0.190337 0.251458i
$$106$$ 5.08381 + 1.49274i 0.493783 + 0.144988i
$$107$$ −3.89393 + 0.559862i −0.376440 + 0.0541239i −0.327938 0.944699i $$-0.606354\pi$$
−0.0485019 + 0.998823i $$0.515445\pi$$
$$108$$ 2.82079 2.44423i 0.271431 0.235196i
$$109$$ −4.07802 8.92962i −0.390604 0.855303i −0.998137 0.0610086i $$-0.980568\pi$$
0.607534 0.794294i $$-0.292159\pi$$
$$110$$ −7.97663 + 0.613217i −0.760542 + 0.0584680i
$$111$$ −2.32971 + 5.10135i −0.221126 + 0.484199i
$$112$$ −2.12606 0.305682i −0.200894 0.0288842i
$$113$$ −2.59243 4.03389i −0.243875 0.379477i 0.697640 0.716449i $$-0.254234\pi$$
−0.941515 + 0.336972i $$0.890597\pi$$
$$114$$ −3.70259 −0.346779
$$115$$ 8.94115 + 5.92079i 0.833767 + 0.552116i
$$116$$ −8.47952 −0.787304
$$117$$ 6.19601 + 9.64119i 0.572822 + 0.891328i
$$118$$ −1.90309 0.273624i −0.175194 0.0251891i
$$119$$ 5.02904 11.0121i 0.461011 1.00947i
$$120$$ −0.115322 1.50009i −0.0105274 0.136939i
$$121$$ 0.747967 + 1.63782i 0.0679970 + 0.148893i
$$122$$ 5.16914 4.47909i 0.467992 0.405518i
$$123$$ 6.93621 0.997276i 0.625417 0.0899214i
$$124$$ 4.59770 + 1.35001i 0.412886 + 0.121234i
$$125$$ 2.55080 + 10.8855i 0.228150 + 0.973626i
$$126$$ 4.60282 + 2.95805i 0.410052 + 0.263524i
$$127$$ 1.14551 1.78245i 0.101648 0.158167i −0.786704 0.617330i $$-0.788214\pi$$
0.888352 + 0.459163i $$0.151851\pi$$
$$128$$ −0.755750 0.654861i −0.0667995 0.0578821i
$$129$$ 2.18642 + 0.641990i 0.192503 + 0.0565241i
$$130$$ 10.0384 + 0.664239i 0.880422 + 0.0582576i
$$131$$ −4.29884 4.96113i −0.375591 0.433456i 0.536212 0.844084i $$-0.319855\pi$$
−0.911803 + 0.410628i $$0.865309\pi$$
$$132$$ −2.18974 + 1.00002i −0.190592 + 0.0870406i
$$133$$ −3.33004 11.3411i −0.288751 0.983395i
$$134$$ −0.357101 + 0.781941i −0.0308488 + 0.0675494i
$$135$$ −2.87494 + 7.83520i −0.247435 + 0.674347i
$$136$$ 4.74144 3.04714i 0.406575 0.261290i
$$137$$ 6.32163i 0.540093i 0.962847 + 0.270047i $$0.0870391\pi$$
−0.962847 + 0.270047i $$0.912961\pi$$
$$138$$ 3.13947 + 0.745782i 0.267249 + 0.0634852i
$$139$$ −11.5195 −0.977069 −0.488534 0.872545i $$-0.662468\pi$$
−0.488534 + 0.872545i $$0.662468\pi$$
$$140$$ 4.49108 1.70239i 0.379566 0.143878i
$$141$$ −1.02509 + 7.12962i −0.0863277 + 0.600423i
$$142$$ −7.94406 3.62793i −0.666651 0.304449i
$$143$$ −4.53500 15.4448i −0.379236 1.29156i
$$144$$ 1.05818 + 2.31709i 0.0881817 + 0.193091i
$$145$$ 16.5928 9.17544i 1.37796 0.761979i
$$146$$ −0.904592 6.29158i −0.0748646 0.520695i
$$147$$ −0.452371 + 1.54063i −0.0373109 + 0.127069i
$$148$$ −6.29918 5.45827i −0.517790 0.448667i
$$149$$ 11.1553 + 7.16911i 0.913882 + 0.587316i 0.910876 0.412679i $$-0.135407\pi$$
0.00300539 + 0.999995i $$0.499043\pi$$
$$150$$ 1.84887 + 2.81062i 0.150960 + 0.229486i
$$151$$ 11.3340 13.0801i 0.922344 1.06444i −0.0753891 0.997154i $$-0.524020\pi$$
0.997734 0.0672881i $$-0.0214346\pi$$
$$152$$ 1.55035 5.28000i 0.125750 0.428265i
$$153$$ −14.2108 + 2.04320i −1.14887 + 0.165183i
$$154$$ −5.03248 5.80780i −0.405529 0.468006i
$$155$$ −10.4577 + 2.33333i −0.839979 + 0.187417i
$$156$$ 2.90456 0.852857i 0.232551 0.0682832i
$$157$$ 2.37044 + 1.08254i 0.189182 + 0.0863965i 0.507754 0.861502i $$-0.330476\pi$$
−0.318572 + 0.947899i $$0.603203\pi$$
$$158$$ 14.5351 + 2.08983i 1.15635 + 0.166258i
$$159$$ −2.99907 + 1.92739i −0.237842 + 0.152852i
$$160$$ 2.18747 + 0.463667i 0.172934 + 0.0366561i
$$161$$ 0.539242 + 10.2870i 0.0424982 + 0.810727i
$$162$$ 5.13051i 0.403091i
$$163$$ 0.103171 + 0.160537i 0.00808097 + 0.0125742i 0.845271 0.534339i $$-0.179439\pi$$
−0.837190 + 0.546913i $$0.815803\pi$$
$$164$$ −1.48219 + 10.3088i −0.115739 + 0.804984i
$$165$$ 3.20282 4.32631i 0.249339 0.336803i
$$166$$ −6.35109 + 1.86485i −0.492941 + 0.144740i
$$167$$ −3.82072 + 1.74487i −0.295657 + 0.135022i −0.557721 0.830029i $$-0.688324\pi$$
0.262064 + 0.965050i $$0.415597\pi$$
$$168$$ 1.09222 0.946414i 0.0842666 0.0730174i
$$169$$ 1.03064 + 7.16823i 0.0792797 + 0.551403i
$$170$$ −5.98090 + 11.0933i −0.458714 + 0.850814i
$$171$$ −9.17950 + 10.5937i −0.701974 + 0.810121i
$$172$$ −1.83100 + 2.84909i −0.139612 + 0.217241i
$$173$$ −6.93676 + 10.7938i −0.527392 + 0.820638i −0.998098 0.0616525i $$-0.980363\pi$$
0.470706 + 0.882290i $$0.343999\pi$$
$$174$$ 3.73622 4.31183i 0.283242 0.326879i
$$175$$ −6.94611 + 8.19093i −0.525077 + 0.619176i
$$176$$ −0.509172 3.54137i −0.0383803 0.266941i
$$177$$ 0.977674 0.847159i 0.0734865 0.0636764i
$$178$$ 3.97650 1.81601i 0.298051 0.136115i
$$179$$ 18.1063 5.31648i 1.35332 0.397372i 0.476920 0.878947i $$-0.341753\pi$$
0.876405 + 0.481575i $$0.159935\pi$$
$$180$$ −4.57792 3.38909i −0.341218 0.252608i
$$181$$ −0.448621 + 3.12022i −0.0333457 + 0.231924i −0.999678 0.0253726i $$-0.991923\pi$$
0.966332 + 0.257297i $$0.0828319\pi$$
$$182$$ 5.22462 + 8.12966i 0.387274 + 0.602611i
$$183$$ 4.60207i 0.340195i
$$184$$ −2.37807 + 4.16471i −0.175314 + 0.307026i
$$185$$ 18.2326 + 3.86467i 1.34049 + 0.284136i
$$186$$ −2.71231 + 1.74309i −0.198876 + 0.127810i
$$187$$ 19.9597 + 2.86977i 1.45960 + 0.209859i
$$188$$ −9.73784 4.44712i −0.710205 0.324340i
$$189$$ −7.69227 + 2.25865i −0.559530 + 0.164293i
$$190$$ 2.67959 + 12.0096i 0.194398 + 0.871266i
$$191$$ 0.0925216 + 0.106776i 0.00669462 + 0.00772601i 0.759087 0.650989i $$-0.225646\pi$$
−0.752392 + 0.658715i $$0.771100\pi$$
$$192$$ 0.665993 0.0957553i 0.0480639 0.00691055i
$$193$$ −4.15927 + 14.1652i −0.299391 + 1.01963i 0.663148 + 0.748489i $$0.269220\pi$$
−0.962539 + 0.271144i $$0.912598\pi$$
$$194$$ −3.52635 + 4.06962i −0.253177 + 0.292182i
$$195$$ −4.76084 + 4.81182i −0.340931 + 0.344582i
$$196$$ −2.00758 1.29019i −0.143398 0.0921565i
$$197$$ −1.53751 1.33226i −0.109543 0.0949194i 0.598367 0.801222i $$-0.295816\pi$$
−0.707910 + 0.706303i $$0.750362\pi$$
$$198$$ −2.56761 + 8.74446i −0.182472 + 0.621442i
$$199$$ −1.74376 12.1281i −0.123612 0.859740i −0.953410 0.301677i $$-0.902454\pi$$
0.829798 0.558063i $$-0.188455\pi$$
$$200$$ −4.78219 + 1.45968i −0.338152 + 0.103215i
$$201$$ −0.240272 0.526123i −0.0169475 0.0371098i
$$202$$ 3.60777 + 12.2869i 0.253842 + 0.864507i
$$203$$ 16.5675 + 7.56611i 1.16281 + 0.531037i
$$204$$ −0.539693 + 3.75365i −0.0377860 + 0.262808i
$$205$$ −8.25452 21.7763i −0.576521 1.52092i
$$206$$ −14.2500 −0.992846
$$207$$ 9.91721 7.13358i 0.689294 0.495818i
$$208$$ 4.49911i 0.311957i
$$209$$ 16.5628 10.6443i 1.14567 0.736278i
$$210$$ −1.11319 + 3.03382i −0.0768171 + 0.209353i
$$211$$ 0.488377 1.06940i 0.0336212 0.0736202i −0.892076 0.451885i $$-0.850752\pi$$
0.925698 + 0.378265i $$0.123479\pi$$
$$212$$ −1.49274 5.08381i −0.102522 0.349158i
$$213$$ 5.34509 2.44102i 0.366240 0.167256i
$$214$$ 2.57620 + 2.97310i 0.176106 + 0.203237i
$$215$$ 0.500008 7.55640i 0.0341003 0.515342i
$$216$$ −3.58125 1.05155i −0.243673 0.0715490i
$$217$$ −7.77851 6.74012i −0.528040 0.457549i
$$218$$ −5.30733 + 8.25837i −0.359458 + 0.559327i
$$219$$ 3.59784 + 2.31219i 0.243120 + 0.156244i
$$220$$ 4.82836 + 6.37884i 0.325528 + 0.430061i
$$221$$ −24.3305 7.14409i −1.63665 0.480563i
$$222$$ 5.55106 0.798122i 0.372563 0.0535665i
$$223$$ 4.77158 4.13460i 0.319529 0.276873i −0.480296 0.877106i $$-0.659471\pi$$
0.799825 + 0.600233i $$0.204925\pi$$
$$224$$ 0.892281 + 1.95382i 0.0596180 + 0.130545i
$$225$$ 12.6254 + 1.67819i 0.841692 + 0.111880i
$$226$$ −1.99196 + 4.36178i −0.132503 + 0.290141i
$$227$$ −14.0217 2.01602i −0.930653 0.133808i −0.339718 0.940527i $$-0.610332\pi$$
−0.590934 + 0.806720i $$0.701241\pi$$
$$228$$ 2.00177 + 3.11481i 0.132570 + 0.206284i
$$229$$ −19.7975 −1.30826 −0.654129 0.756383i $$-0.726964\pi$$
−0.654129 + 0.756383i $$0.726964\pi$$
$$230$$ 0.146932 10.7228i 0.00968839 0.707040i
$$231$$ 5.17066 0.340205
$$232$$ 4.58437 + 7.13343i 0.300979 + 0.468332i
$$233$$ −3.18877 0.458476i −0.208903 0.0300358i 0.0370686 0.999313i $$-0.488198\pi$$
−0.245972 + 0.969277i $$0.579107\pi$$
$$234$$ 4.76086 10.4248i 0.311227 0.681493i
$$235$$ 23.8672 1.83484i 1.55693 0.119692i
$$236$$ 0.798703 + 1.74892i 0.0519912 + 0.113845i
$$237$$ −7.46711 + 6.47029i −0.485041 + 0.420290i
$$238$$ −11.9828 + 1.72287i −0.776732 + 0.111677i
$$239$$ 24.3595 + 7.15258i 1.57568 + 0.462662i 0.948649 0.316331i $$-0.102451\pi$$
0.627033 + 0.778993i $$0.284269\pi$$
$$240$$ −1.19961 + 0.908027i −0.0774345 + 0.0586129i
$$241$$ 7.58766 + 4.87629i 0.488764 + 0.314110i 0.761708 0.647920i $$-0.224361\pi$$
−0.272944 + 0.962030i $$0.587997\pi$$
$$242$$ 0.973439 1.51470i 0.0625751 0.0973687i
$$243$$ 11.0712 + 9.59328i 0.710220 + 0.615409i
$$244$$ −6.56270 1.92698i −0.420134 0.123362i
$$245$$ 5.32453 + 0.352325i 0.340172 + 0.0225092i
$$246$$ −4.58896 5.29594i −0.292581 0.337657i
$$247$$ −22.5208 + 10.2849i −1.43297 + 0.654414i
$$248$$ −1.35001 4.59770i −0.0857256 0.291955i
$$249$$ 1.85013 4.05122i 0.117247 0.256735i
$$250$$ 7.77837 8.03100i 0.491948 0.507925i
$$251$$ −10.3132 + 6.62787i −0.650961 + 0.418347i −0.824017 0.566565i $$-0.808272\pi$$
0.173056 + 0.984912i $$0.444636\pi$$
$$252$$ 5.47138i 0.344665i
$$253$$ −16.1878 + 5.68929i −1.01772 + 0.357683i
$$254$$ −2.11881 −0.132946
$$255$$ −3.00563 7.92917i −0.188220 0.496544i
$$256$$ −0.142315 + 0.989821i −0.00889468 + 0.0618638i
$$257$$ 22.2902 + 10.1796i 1.39043 + 0.634986i 0.963108 0.269115i $$-0.0867312\pi$$
0.427318 + 0.904101i $$0.359458\pi$$
$$258$$ −0.641990 2.18642i −0.0399686 0.136120i
$$259$$ 7.43718 + 16.2851i 0.462124 + 1.01191i
$$260$$ −4.86835 8.80391i −0.301922 0.545996i
$$261$$ −3.07396 21.3799i −0.190274 1.32338i
$$262$$ −1.84944 + 6.29860i −0.114259 + 0.389129i
$$263$$ 12.8796 + 11.1602i 0.794191 + 0.688170i 0.954274 0.298933i $$-0.0966309\pi$$
−0.160083 + 0.987103i $$0.551176\pi$$
$$264$$ 2.02513 + 1.30147i 0.124638 + 0.0801002i
$$265$$ 8.42206 + 8.33282i 0.517363 + 0.511881i
$$266$$ −7.74036 + 8.93285i −0.474592 + 0.547708i
$$267$$ −0.828676 + 2.82221i −0.0507142 + 0.172717i
$$268$$ 0.850874 0.122337i 0.0519754 0.00747294i
$$269$$ −18.8639 21.7701i −1.15015 1.32735i −0.936594 0.350416i $$-0.886040\pi$$
−0.213558 0.976930i $$-0.568505\pi$$
$$270$$ 8.14570 1.81748i 0.495732 0.110608i
$$271$$ −30.8450 + 9.05690i −1.87370 + 0.550168i −0.876004 + 0.482303i $$0.839800\pi$$
−0.997695 + 0.0678644i $$0.978381\pi$$
$$272$$ −5.12683 2.34135i −0.310860 0.141965i
$$273$$ −6.43599 0.925356i −0.389524 0.0560051i
$$274$$ 5.31809 3.41773i 0.321278 0.206473i
$$275$$ −16.3506 7.25757i −0.985976 0.437648i
$$276$$ −1.06993 3.04429i −0.0644025 0.183245i
$$277$$ 5.64509i 0.339180i 0.985515 + 0.169590i $$0.0542444\pi$$
−0.985515 + 0.169590i $$0.945756\pi$$
$$278$$ 6.22790 + 9.69079i 0.373524 + 0.581215i
$$279$$ −1.73711 + 12.0819i −0.103998 + 0.723322i
$$280$$ −3.86020 2.85776i −0.230691 0.170784i
$$281$$ 10.5515 3.09821i 0.629451 0.184824i 0.0485803 0.998819i $$-0.484530\pi$$
0.580871 + 0.813996i $$0.302712\pi$$
$$282$$ 6.55202 2.99221i 0.390167 0.178183i
$$283$$ −3.92812 + 3.40373i −0.233502 + 0.202331i −0.763751 0.645512i $$-0.776644\pi$$
0.530248 + 0.847843i $$0.322099\pi$$
$$284$$ 1.24287 + 8.64438i 0.0737510 + 0.512949i
$$285$$ −7.28754 3.92906i −0.431677 0.232737i
$$286$$ −10.5412 + 12.1652i −0.623313 + 0.719341i
$$287$$ 12.0943 18.8191i 0.713904 1.11086i
$$288$$ 1.37717 2.14291i 0.0811503 0.126272i
$$289$$ 9.66989 11.1597i 0.568817 0.656450i
$$290$$ −16.6896 8.99817i −0.980049 0.528391i
$$291$$ −0.515631 3.58630i −0.0302268 0.210232i
$$292$$ −4.80375 + 4.16247i −0.281118 + 0.243590i
$$293$$ −9.44334 + 4.31263i −0.551686 + 0.251947i −0.671697 0.740826i $$-0.734434\pi$$
0.120011 + 0.992773i $$0.461707\pi$$
$$294$$ 1.54063 0.452371i 0.0898516 0.0263828i
$$295$$ −3.45536 2.55805i −0.201179 0.148936i
$$296$$ −1.18620 + 8.25018i −0.0689463 + 0.479532i
$$297$$ −7.21965 11.2340i −0.418926 0.651862i
$$298$$ 13.2604i 0.768154i
$$299$$ 21.1673 4.18452i 1.22414 0.241997i
$$300$$ 1.36487 3.07490i 0.0788006 0.177530i
$$301$$ 6.11963 3.93285i 0.352729 0.226685i
$$302$$ −17.1313 2.46310i −0.985794 0.141736i
$$303$$ −7.83756 3.57929i −0.450256 0.205625i
$$304$$ −5.28000 + 1.55035i −0.302829 + 0.0889186i
$$305$$ 14.9271 3.33056i 0.854724 0.190707i
$$306$$ 9.40178 + 10.8502i 0.537464 + 0.620266i
$$307$$ 0.941037 0.135301i 0.0537078 0.00772202i −0.115409 0.993318i $$-0.536818\pi$$
0.169116 + 0.985596i $$0.445909\pi$$
$$308$$ −2.16506 + 7.37353i −0.123366 + 0.420146i
$$309$$ 6.27881 7.24613i 0.357189 0.412218i
$$310$$ 7.61676 + 7.53605i 0.432603 + 0.428019i
$$311$$ −3.48282 2.23827i −0.197492 0.126921i 0.438157 0.898898i $$-0.355631\pi$$
−0.635650 + 0.771978i $$0.719268\pi$$
$$312$$ −2.28779 1.98238i −0.129521 0.112230i
$$313$$ −2.67304 + 9.10353i −0.151089 + 0.514562i −0.999900 0.0141343i $$-0.995501\pi$$
0.848811 + 0.528696i $$0.177319\pi$$
$$314$$ −0.370863 2.57941i −0.0209290 0.145565i
$$315$$ 5.92042 + 10.7065i 0.333578 + 0.603242i
$$316$$ −6.10020 13.3576i −0.343163 0.751422i
$$317$$ −4.00899 13.6534i −0.225167 0.766850i −0.992136 0.125165i $$-0.960054\pi$$
0.766969 0.641685i $$-0.221764\pi$$
$$318$$ 3.24284 + 1.48096i 0.181850 + 0.0830480i
$$319$$ −4.31753 + 30.0291i −0.241735 + 1.68131i
$$320$$ −0.792573 2.09089i −0.0443062 0.116884i
$$321$$ −2.64694 −0.147738
$$322$$ 8.36242 6.01520i 0.466019 0.335214i
$$323$$ 31.0153i 1.72574i
$$324$$ −4.31606 + 2.77376i −0.239781 + 0.154098i
$$325$$ 19.0529 + 11.9597i 1.05687 + 0.663406i
$$326$$ 0.0792739 0.173586i 0.00439058 0.00961402i
$$327$$ −1.86087 6.33756i −0.102907 0.350468i
$$328$$ 9.47367 4.32648i 0.523096 0.238890i
$$329$$ 15.0579 + 17.3778i 0.830171 + 0.958068i
$$330$$ −5.37110 0.355406i −0.295669 0.0195645i
$$331$$ −8.51959 2.50158i −0.468279 0.137499i 0.0390760 0.999236i $$-0.487559\pi$$
−0.507355 + 0.861737i $$0.669377\pi$$
$$332$$ 5.00247 + 4.33467i 0.274546 + 0.237896i
$$333$$ 11.4787 17.8612i 0.629029 0.978788i
$$334$$ 3.53351 + 2.27085i 0.193345 + 0.124255i
$$335$$ −1.53263 + 1.16010i −0.0837363 + 0.0633829i
$$336$$ −1.38667 0.407164i −0.0756492 0.0222126i
$$337$$ 13.2132 1.89977i 0.719769 0.103487i 0.227310 0.973823i $$-0.427007\pi$$
0.492459 + 0.870335i $$0.336098\pi$$
$$338$$ 5.47310 4.74247i 0.297697 0.257956i
$$339$$ −1.34027 2.93478i −0.0727935 0.159396i
$$340$$ 12.5658 0.966015i 0.681474 0.0523895i
$$341$$ 7.12189 15.5948i 0.385672 0.844504i
$$342$$ 13.8748 + 1.99490i 0.750263 + 0.107872i
$$343$$ 10.9000 + 16.9608i 0.588547 + 0.915796i
$$344$$ 3.38671 0.182599
$$345$$ 5.38780 + 4.79937i 0.290069 + 0.258389i
$$346$$ 12.8306 0.689778
$$347$$ −11.7438 18.2737i −0.630441 0.980985i −0.998686 0.0512563i $$-0.983677\pi$$
0.368245 0.929729i $$-0.379959\pi$$
$$348$$ −5.64730 0.811959i −0.302727 0.0435256i
$$349$$ 1.38811 3.03954i 0.0743040 0.162703i −0.868835 0.495102i $$-0.835131\pi$$
0.943139 + 0.332399i $$0.107858\pi$$
$$350$$ 10.6460 + 1.41509i 0.569053 + 0.0756398i
$$351$$ 6.97592 + 15.2751i 0.372347 + 0.815326i
$$352$$ −2.70391 + 2.34295i −0.144119 + 0.124880i
$$353$$ −18.8209 + 2.70604i −1.00174 + 0.144028i −0.623618 0.781729i $$-0.714338\pi$$
−0.378118 + 0.925757i $$0.623429\pi$$
$$354$$ −1.24125 0.364463i −0.0659715 0.0193710i
$$355$$ −11.7859 15.5706i −0.625531 0.826400i
$$356$$ −3.67758 2.36344i −0.194911 0.125262i
$$357$$ 4.40377 6.85240i 0.233072 0.362668i
$$358$$ −14.2615 12.3576i −0.753743 0.653122i
$$359$$ −2.06521 0.606402i −0.108998 0.0320047i 0.226779 0.973946i $$-0.427181\pi$$
−0.335777 + 0.941942i $$0.608999\pi$$
$$360$$ −0.376076 + 5.68347i −0.0198210 + 0.299545i
$$361$$ −7.38816 8.52639i −0.388850 0.448757i
$$362$$ 2.86744 1.30952i 0.150709 0.0688267i
$$363$$ 0.341311 + 1.16240i 0.0179142 + 0.0610100i
$$364$$ 4.01447 8.79046i 0.210415 0.460745i
$$365$$ 4.89596 13.3432i 0.256266 0.698415i
$$366$$ 3.87151 2.48807i 0.202367 0.130053i
$$367$$ 11.6141i 0.606252i 0.952951 + 0.303126i $$0.0980303\pi$$
−0.952951 + 0.303126i $$0.901970\pi$$
$$368$$ 4.78926 0.251052i 0.249657 0.0130870i
$$369$$ −26.5296 −1.38107
$$370$$ −6.60611 17.4276i −0.343435 0.906019i
$$371$$ −1.61964 + 11.2648i −0.0840873 + 0.584840i
$$372$$ 2.93277 + 1.33935i 0.152057 + 0.0694421i
$$373$$ 0.666115 + 2.26858i 0.0344901 + 0.117463i 0.974939 0.222473i $$-0.0714129\pi$$
−0.940449 + 0.339936i $$0.889595\pi$$
$$374$$ −8.37683 18.3427i −0.433156 0.948478i
$$375$$ 0.656472 + 7.49390i 0.0339001 + 0.386983i
$$376$$ 1.52352 + 10.5963i 0.0785693 + 0.546462i
$$377$$ 10.7482 36.6049i 0.553559 1.88525i
$$378$$ 6.05886 + 5.25003i 0.311634 + 0.270032i
$$379$$ −12.2007 7.84092i −0.626708 0.402761i 0.188381 0.982096i $$-0.439676\pi$$
−0.815090 + 0.579335i $$0.803312\pi$$
$$380$$ 8.65440 8.74708i 0.443961 0.448716i
$$381$$ 0.933584 1.07741i 0.0478289 0.0551975i
$$382$$ 0.0398044 0.135561i 0.00203657 0.00693592i
$$383$$ 16.3972 2.35757i 0.837860 0.120466i 0.289990 0.957030i $$-0.406348\pi$$
0.547870 + 0.836564i $$0.315439\pi$$
$$384$$ −0.440618 0.508500i −0.0224852 0.0259493i
$$385$$ −3.74205 16.7714i −0.190713 0.854748i
$$386$$ 14.1652 4.15927i 0.720989 0.211701i
$$387$$ −7.84733 3.58375i −0.398902 0.182172i
$$388$$ 5.33007 + 0.766349i 0.270593 + 0.0389055i
$$389$$ −13.0419 + 8.38153i −0.661251 + 0.424960i −0.827762 0.561079i $$-0.810386\pi$$
0.166511 + 0.986040i $$0.446750\pi$$
$$390$$ 6.62187 + 1.40360i 0.335311 + 0.0710743i
$$391$$ −6.24716 + 26.2983i −0.315932 + 1.32996i
$$392$$ 2.38641i 0.120532i
$$393$$ −2.38794 3.71571i −0.120456 0.187433i
$$394$$ −0.289527 + 2.01371i −0.0145862 + 0.101449i
$$395$$ 26.3908 + 19.5374i 1.32786 + 0.983035i
$$396$$ 8.74446 2.56761i 0.439426 0.129027i
$$397$$ −20.7499 + 9.47616i −1.04141 + 0.475595i −0.861324 0.508056i $$-0.830364\pi$$
−0.180084 + 0.983651i $$0.557637\pi$$
$$398$$ −9.26008 + 8.02391i −0.464166 + 0.402202i
$$399$$ −1.13181 7.87194i −0.0566616 0.394090i
$$400$$ 3.81341 + 3.23387i 0.190671 + 0.161693i
$$401$$ −15.8763 + 18.3222i −0.792824 + 0.914967i −0.997965 0.0637652i $$-0.979689\pi$$
0.205141 + 0.978732i $$0.434235\pi$$
$$402$$ −0.312702 + 0.486573i −0.0155961 + 0.0242681i
$$403$$ −11.6556 + 18.1364i −0.580606 + 0.903441i
$$404$$ 8.38593 9.67788i 0.417215 0.481492i
$$405$$ 5.44432 10.0980i 0.270530 0.501775i
$$406$$ −2.59204 18.0280i −0.128641 0.894715i
$$407$$ −22.5371 + 19.5285i −1.11712 + 0.967993i
$$408$$ 3.44955 1.57536i 0.170778 0.0779917i
$$409$$ 8.25387 2.42355i 0.408128 0.119837i −0.0712233 0.997460i $$-0.522690\pi$$
0.479351 + 0.877623i $$0.340872\pi$$
$$410$$ −13.8567 + 18.7173i −0.684332 + 0.924382i
$$411$$ −0.605330 + 4.21016i −0.0298587 + 0.207672i
$$412$$ 7.70414 + 11.9879i 0.379556 + 0.590600i
$$413$$ 4.12974i 0.203211i
$$414$$ −11.3628 4.48618i −0.558451 0.220484i
$$415$$ −14.4793 3.06911i −0.710762 0.150657i
$$416$$ 3.78489 2.43240i 0.185569 0.119258i
$$417$$ −7.67189 1.10305i −0.375694 0.0540166i
$$418$$ −17.9090 8.17878i −0.875959 0.400037i
$$419$$ −11.4519 + 3.36258i −0.559462 + 0.164273i −0.549225 0.835675i $$-0.685077\pi$$
−0.0102374 + 0.999948i $$0.503259\pi$$
$$420$$ 3.15404 0.703734i 0.153902 0.0343387i
$$421$$ −4.03795 4.66005i −0.196798 0.227117i 0.648770 0.760984i $$-0.275284\pi$$
−0.845568 + 0.533867i $$0.820738\pi$$
$$422$$ −1.16367 + 0.167310i −0.0566465 + 0.00814454i
$$423$$ 7.68266 26.1647i 0.373543 1.27217i
$$424$$ −3.46974 + 4.00429i −0.168505 + 0.194465i
$$425$$ −23.5436 + 15.4874i −1.14203 + 0.751247i
$$426$$ −4.94330 3.17686i −0.239503 0.153920i
$$427$$ 11.1029 + 9.62076i 0.537309 + 0.465581i
$$428$$ 1.10833 3.77462i 0.0535730 0.182453i
$$429$$ −1.54136 10.7204i −0.0744174 0.517584i
$$430$$ −6.62717 + 3.66466i −0.319591 + 0.176726i
$$431$$ −15.2065 33.2976i −0.732472 1.60389i −0.795554 0.605882i $$-0.792820\pi$$
0.0630819 0.998008i $$-0.479907\pi$$
$$432$$ 1.05155 + 3.58125i 0.0505928 + 0.172303i
$$433$$ −4.22009 1.92725i −0.202804 0.0926177i 0.311424 0.950271i $$-0.399194\pi$$
−0.514228 + 0.857654i $$0.671921\pi$$
$$434$$ −1.46477 + 10.1877i −0.0703111 + 0.489025i
$$435$$ 11.9293 4.52192i 0.571967 0.216810i
$$436$$ 9.81674 0.470137
$$437$$ 12.2049 + 23.3993i 0.583838 + 1.11934i
$$438$$ 4.27677i 0.204352i
$$439$$ 11.1991 7.19721i 0.534502 0.343504i −0.245383 0.969426i $$-0.578914\pi$$
0.779885 + 0.625922i $$0.215277\pi$$
$$440$$ 2.75581 7.51054i 0.131378 0.358051i
$$441$$ 2.52525 5.52953i 0.120250 0.263311i
$$442$$ 7.14409 + 24.3305i 0.339810 + 1.15729i
$$443$$ −36.2064 + 16.5349i −1.72022 + 0.785598i −0.724911 + 0.688842i $$0.758119\pi$$
−0.995308 + 0.0967560i $$0.969153\pi$$
$$444$$ −3.67255 4.23835i −0.174292 0.201143i
$$445$$ 9.75375 + 0.645407i 0.462372 + 0.0305952i
$$446$$ −6.05796 1.77878i −0.286853 0.0842276i
$$447$$ 6.74290 + 5.84276i 0.318928 + 0.276353i
$$448$$ 1.16126 1.80695i 0.0548642 0.0853704i
$$449$$ 15.3063 + 9.83679i 0.722351 + 0.464227i 0.849454 0.527663i $$-0.176932\pi$$
−0.127103 + 0.991890i $$0.540568\pi$$
$$450$$ −5.41401 11.5284i −0.255219 0.543456i
$$451$$ 35.7527 + 10.4979i 1.68353 + 0.494328i
$$452$$ 4.74629 0.682414i 0.223247 0.0320980i
$$453$$ 8.80083 7.62596i 0.413499 0.358299i
$$454$$ 5.88472 + 12.8857i 0.276184 + 0.604758i
$$455$$ 1.65633 + 21.5452i 0.0776498 + 1.01006i
$$456$$ 1.53811 3.36799i 0.0720286 0.157721i
$$457$$ −35.7105 5.13439i −1.67046 0.240177i −0.758863 0.651251i $$-0.774245\pi$$
−0.911602 + 0.411074i $$0.865154\pi$$
$$458$$ 10.7033 + 16.6547i 0.500135 + 0.778225i
$$459$$ −21.0367 −0.981907
$$460$$ −9.10003 + 5.67358i −0.424291 + 0.264532i
$$461$$ −7.33582 −0.341663 −0.170832 0.985300i $$-0.554645\pi$$
−0.170832 + 0.985300i $$0.554645\pi$$
$$462$$ −2.79547 4.34984i −0.130057 0.202373i
$$463$$ 31.2533 + 4.49355i 1.45247 + 0.208833i 0.822932 0.568140i $$-0.192337\pi$$
0.629534 + 0.776973i $$0.283246\pi$$
$$464$$ 3.52252 7.71324i 0.163529 0.358078i
$$465$$ −7.18816 + 0.552602i −0.333343 + 0.0256263i
$$466$$ 1.33828 + 2.93043i 0.0619948 + 0.135750i
$$467$$ 4.83467 4.18927i 0.223722 0.193856i −0.535787 0.844353i $$-0.679985\pi$$
0.759509 + 0.650497i $$0.225439\pi$$
$$468$$ −11.3438 + 1.63100i −0.524370 + 0.0753930i
$$469$$ −1.77162 0.520194i −0.0818057 0.0240203i
$$470$$ −14.4472 19.0864i −0.666398 0.880391i
$$471$$ 1.47504 + 0.947950i 0.0679662 + 0.0436792i
$$472$$ 1.03947 1.61745i 0.0478455 0.0744491i
$$473$$ 9.15736 + 7.93490i 0.421056 + 0.364847i
$$474$$ 9.48017 + 2.78363i 0.435439 + 0.127856i
$$475$$ −7.47010 + 26.4811i −0.342752 + 1.21504i
$$476$$ 7.92779 + 9.14915i 0.363370 + 0.419351i
$$477$$ 12.2770 5.60670i 0.562123 0.256713i
$$478$$ −7.15258 24.3595i −0.327151 1.11418i
$$479$$ −7.91448 + 17.3303i −0.361622 + 0.791842i 0.638138 + 0.769922i $$0.279705\pi$$
−0.999760 + 0.0219195i $$0.993022\pi$$
$$480$$ 1.41244 + 0.518260i 0.0644687 + 0.0236552i
$$481$$ 31.5471 20.2741i 1.43842 0.924419i
$$482$$ 9.01947i 0.410826i
$$483$$ −0.625901 + 6.90269i −0.0284795 + 0.314083i
$$484$$ −1.80053 −0.0818422
$$485$$ −11.2592 + 4.26791i −0.511254 + 0.193796i
$$486$$ 2.08482 14.5002i 0.0945694 0.657744i
$$487$$ −11.3435 5.18039i −0.514022 0.234746i 0.141478 0.989941i $$-0.454815\pi$$
−0.655500 + 0.755195i $$0.727542\pi$$
$$488$$ 1.92698 + 6.56270i 0.0872304 + 0.297079i
$$489$$ 0.0533388 + 0.116796i 0.00241206 + 0.00528168i
$$490$$ −2.58226 4.66976i −0.116655 0.210958i
$$491$$ 1.90943 + 13.2804i 0.0861715 + 0.599336i 0.986455 + 0.164032i $$0.0524500\pi$$
−0.900284 + 0.435304i $$0.856641\pi$$
$$492$$ −1.97425 + 6.72368i −0.0890061 + 0.303127i
$$493$$ 36.1187 + 31.2971i 1.62671 + 1.40955i
$$494$$ 20.8279 + 13.3853i 0.937092 + 0.602232i
$$495$$ −14.3330 + 14.4865i −0.644219 + 0.651118i
$$496$$ −3.13797 + 3.62141i −0.140899 + 0.162606i
$$497$$ 5.28486 17.9986i 0.237058 0.807346i
$$498$$ −4.40835 + 0.633826i −0.197543 + 0.0284024i
$$499$$ 2.03359 + 2.34689i 0.0910360 + 0.105061i 0.799440 0.600746i $$-0.205130\pi$$
−0.708404 + 0.705807i $$0.750584\pi$$
$$500$$ −10.9614 2.20170i −0.490209 0.0984630i
$$501$$ −2.71166 + 0.796214i −0.121148 + 0.0355722i
$$502$$ 11.1514 + 5.09269i 0.497713 + 0.227298i
$$503$$ 29.2657 + 4.20777i 1.30489 + 0.187615i 0.759468 0.650544i $$-0.225459\pi$$
0.545425 + 0.838160i $$0.316368\pi$$
$$504$$ −4.60282 + 2.95805i −0.205026 + 0.131762i
$$505$$ −5.93756 + 28.0120i −0.264218 + 1.24652i
$$506$$ 13.5379 + 10.5422i 0.601833 + 0.468656i
$$507$$ 4.87268i 0.216403i
$$508$$ 1.14551 + 1.78245i 0.0508240 + 0.0790836i
$$509$$ 2.13588 14.8554i 0.0946713 0.658453i −0.886129 0.463439i $$-0.846615\pi$$
0.980800 0.195015i $$-0.0624755\pi$$
$$510$$ −5.04548 + 6.81533i −0.223418 + 0.301788i
$$511$$ 13.0998 3.84644i 0.579500 0.170157i
$$512$$ 0.909632 0.415415i 0.0402004 0.0183589i
$$513$$ −15.5226 + 13.4504i −0.685338 + 0.593849i
$$514$$ −3.48738 24.2552i −0.153822 1.06985i
$$515$$ −28.0473 15.1216i −1.23591 0.666339i
$$516$$ −1.49225 + 1.72214i −0.0656924 + 0.0758131i
$$517$$ −20.7071 + 32.2209i −0.910698 + 1.41707i
$$518$$ 9.67909 15.0610i 0.425275 0.661741i
$$519$$ −5.65340 + 6.52437i −0.248157 + 0.286388i
$$520$$ −4.77430 + 8.85527i −0.209367 + 0.388329i
$$521$$ 3.40203 + 23.6616i 0.149045 + 1.03663i 0.917787 + 0.397074i $$0.129974\pi$$
−0.768741 + 0.639560i $$0.779117\pi$$
$$522$$ −16.3240 + 14.1448i −0.714482 + 0.619102i
$$523$$ 29.5151 13.4791i 1.29060 0.589399i 0.352518 0.935805i $$-0.385325\pi$$
0.938085 + 0.346406i $$0.112598\pi$$
$$524$$ 6.29860 1.84944i 0.275156 0.0807930i
$$525$$ −5.41039 + 4.78997i −0.236129 + 0.209052i
$$526$$ 2.42535 16.8687i 0.105750 0.735510i
$$527$$ −14.6013 22.7201i −0.636043 0.989702i
$$528$$ 2.40728i 0.104763i
$$529$$ −5.63553 22.2989i −0.245023 0.969517i
$$530$$ 2.45671 11.5902i 0.106713 0.503444i
$$531$$ −4.12010 + 2.64783i −0.178797 + 0.114906i
$$532$$ 11.6995 + 1.68214i 0.507239 + 0.0729300i
$$533$$ −42.6230 19.4653i −1.84621 0.843135i
$$534$$ 2.82221 0.828676i 0.122129 0.0358603i
$$535$$ 1.91561 + 8.58551i 0.0828190 + 0.371184i
$$536$$ −0.562934 0.649660i −0.0243150 0.0280611i
$$537$$ 12.5677 1.80697i 0.542337 0.0779763i
$$538$$ −8.11558 + 27.6391i −0.349887 + 1.19161i
$$539$$ −5.59124 + 6.45263i −0.240832 + 0.277935i
$$540$$ −5.93286 5.87000i −0.255310 0.252604i
$$541$$ −4.61180 2.96382i −0.198277 0.127425i 0.437735 0.899104i $$-0.355781\pi$$
−0.636012 + 0.771679i $$0.719417\pi$$
$$542$$ 24.2952 + 21.0519i 1.04357 + 0.904257i
$$543$$ −0.597556 + 2.03509i −0.0256436 + 0.0873341i
$$544$$ 0.802110 + 5.57880i 0.0343902 + 0.239189i
$$545$$ −19.2095 + 10.6224i −0.822846 + 0.455014i
$$546$$ 2.70110 + 5.91458i 0.115596 + 0.253121i
$$547$$ −2.66577 9.07877i −0.113980 0.388180i 0.882667 0.469998i $$-0.155746\pi$$
−0.996647 + 0.0818182i $$0.973927\pi$$
$$548$$ −5.75036 2.62610i −0.245643 0.112181i
$$549$$ 2.47952 17.2455i 0.105824 0.736019i
$$550$$ 2.73432 + 17.6787i 0.116592 + 0.753823i
$$551$$ 46.6620 1.98787
$$552$$ −1.98257 + 2.54595i −0.0843838 + 0.108363i
$$553$$ 31.5414i 1.34128i
$$554$$ 4.74895 3.05196i 0.201763 0.129666i
$$555$$ 11.7727 + 4.31971i 0.499723 + 0.183361i
$$556$$ 4.78536 10.4785i 0.202945 0.444386i
$$557$$ 2.65307 + 9.03551i 0.112414 + 0.382847i 0.996411 0.0846454i $$-0.0269758\pi$$
−0.883997 + 0.467492i $$0.845158\pi$$
$$558$$ 11.1031 5.07059i 0.470030 0.214655i
$$559$$ −9.97823 11.5155i −0.422034 0.487053i
$$560$$ −0.317116 + 4.79243i −0.0134006 + 0.202517i
$$561$$ 13.0182 + 3.82250i 0.549630 + 0.161386i
$$562$$ −8.31096 7.20149i −0.350577 0.303777i
$$563$$ 20.3569 31.6759i 0.857939 1.33498i −0.0830510 0.996545i $$-0.526466\pi$$
0.940990 0.338434i $$-0.109897\pi$$
$$564$$ −6.05950 3.89420i −0.255151 0.163976i
$$565$$ −8.54919 + 6.47118i −0.359667 + 0.272245i
$$566$$ 4.98710 + 1.46435i 0.209624 + 0.0615511i
$$567$$ 10.9078 1.56830i 0.458084 0.0658626i
$$568$$ 6.60016 5.71907i 0.276937 0.239967i
$$569$$ 13.1920 + 28.8864i 0.553037 + 1.21098i 0.955349 + 0.295479i $$0.0954792\pi$$
−0.402313 + 0.915502i $$0.631794\pi$$
$$570$$ 0.634608 + 8.25488i 0.0265808 + 0.345759i
$$571$$ −9.00512 + 19.7185i −0.376853 + 0.825192i 0.622249 + 0.782819i $$0.286219\pi$$
−0.999102 + 0.0423730i $$0.986508\pi$$
$$572$$ 15.9330 + 2.29082i 0.666191 + 0.0957838i
$$573$$ 0.0513944 + 0.0799712i 0.00214703 + 0.00334085i
$$574$$ −22.3703 −0.933719
$$575$$ 11.6679 20.9490i 0.486583 0.873634i
$$576$$ −2.54728 −0.106137
$$577$$ −12.5493 19.5270i −0.522433 0.812921i 0.475328 0.879809i $$-0.342330\pi$$
−0.997761 + 0.0668874i $$0.978693\pi$$
$$578$$ −14.6160 2.10147i −0.607947 0.0874096i
$$579$$ −4.12644 + 9.03564i −0.171489 + 0.375508i
$$580$$ 1.45335 + 18.9050i 0.0603473 + 0.784987i
$$581$$ −5.90620 12.9328i −0.245031 0.536542i
$$582$$ −2.73821 + 2.37267i −0.113503 + 0.0983505i
$$583$$ −18.7637 + 2.69781i −0.777113 + 0.111732i
$$584$$ 6.09880 + 1.79077i 0.252370 + 0.0741026i
$$585$$ 20.4330 15.4664i 0.844799 0.639457i
$$586$$ 8.73347 + 5.61266i 0.360776 + 0.231857i
$$587$$ −9.48409 + 14.7575i −0.391450 + 0.609109i −0.979915 0.199414i $$-0.936096\pi$$
0.588465 + 0.808523i $$0.299732\pi$$
$$588$$ −1.21349 1.05149i −0.0500434 0.0433629i
$$589$$ −25.3008 7.42897i −1.04250 0.306105i
$$590$$ −0.283858 + 4.28982i −0.0116863 + 0.176609i
$$591$$ −0.896398 1.03450i −0.0368729 0.0425536i
$$592$$ 7.58180 3.46249i 0.311610 0.142307i
$$593$$ −8.88549 30.2612i −0.364883 1.24268i −0.913581 0.406657i $$-0.866694\pi$$
0.548698 0.836021i $$-0.315124\pi$$
$$594$$ −5.54740 + 12.1471i −0.227613 + 0.498402i
$$595$$ −25.4132 9.32477i −1.04184 0.382278i
$$596$$ −11.1553 + 7.16911i −0.456941 + 0.293658i
$$597$$ 8.24422i 0.337414i
$$598$$ −14.9642 15.5447i −0.611930 0.635672i
$$599$$ 27.0065 1.10345 0.551727 0.834025i $$-0.313969\pi$$
0.551727 + 0.834025i $$0.313969\pi$$
$$600$$ −3.32468 + 0.514220i −0.135729 + 0.0209929i
$$601$$ 1.94657 13.5387i 0.0794022 0.552254i −0.910825 0.412792i $$-0.864554\pi$$
0.990227 0.139462i $$-0.0445373\pi$$
$$602$$ −6.61704 3.02190i −0.269690 0.123163i
$$603$$ 0.616912 + 2.10101i 0.0251226 + 0.0855597i
$$604$$ 7.18977 + 15.7434i 0.292547 + 0.640590i
$$605$$ 3.52330 1.94830i 0.143243 0.0792096i
$$606$$ 1.22621 + 8.52848i 0.0498114 + 0.346446i
$$607$$ −0.196632 + 0.669666i −0.00798103 + 0.0271809i −0.963387 0.268114i $$-0.913600\pi$$
0.955406 + 0.295295i $$0.0954178\pi$$
$$608$$ 4.15882 + 3.60364i 0.168663 + 0.146147i
$$609$$ 10.3093 + 6.62540i 0.417755 + 0.268475i
$$610$$ −10.8721 10.7569i −0.440197 0.435532i
$$611$$ 31.5407 36.4000i 1.27600 1.47258i
$$612$$ 4.04481 13.7754i 0.163502 0.556836i
$$613$$ −38.6183 + 5.55248i −1.55978 + 0.224262i −0.867526 0.497392i $$-0.834291\pi$$
−0.692254 + 0.721654i $$0.743382\pi$$
$$614$$ −0.622585 0.718502i −0.0251255 0.0289964i
$$615$$ −3.41226 15.2933i −0.137595 0.616684i
$$616$$ 7.37353 2.16506i 0.297088 0.0872329i
$$617$$ 17.4707 + 7.97858i 0.703342 + 0.321206i 0.734785 0.678300i $$-0.237283\pi$$
−0.0314429 + 0.999506i $$0.510010\pi$$
$$618$$ −9.49041 1.36452i −0.381760 0.0548888i
$$619$$ −12.2502 + 7.87271i −0.492376 + 0.316431i −0.763160 0.646209i $$-0.776353\pi$$
0.270784 + 0.962640i $$0.412717\pi$$
$$620$$ 2.22180 10.4819i 0.0892297 0.420964i
$$621$$ 15.8710 8.27816i 0.636881 0.332191i
$$622$$ 4.14003i 0.166000i
$$623$$ 5.07649 + 7.89917i 0.203385 + 0.316474i
$$624$$ −0.430813 + 2.99637i −0.0172463 + 0.119951i
$$625$$ 23.8318 7.55270i 0.953274 0.302108i
$$626$$ 9.10353 2.67304i 0.363850 0.106836i
$$627$$ 12.0499 5.50302i 0.481228 0.219770i
$$628$$ −1.96943 + 1.70652i −0.0785890 + 0.0680978i
$$629$$ 6.68560 + 46.4993i 0.266572 + 1.85405i
$$630$$ 5.80604 10.7689i 0.231318 0.429045i
$$631$$ 24.8801 28.7132i 0.990463 1.14306i 0.000748389 1.00000i $$-0.499762\pi$$
0.989715 0.143056i $$-0.0456928\pi$$
$$632$$ −7.93909 + 12.3535i −0.315800 + 0.491394i
$$633$$ 0.427656 0.665445i 0.0169978 0.0264491i
$$634$$ −9.31852 + 10.7541i −0.370086 + 0.427102i
$$635$$ −4.17030 2.24841i −0.165493 0.0892253i
$$636$$ −0.507353 3.52872i −0.0201179 0.139923i
$$637$$ 8.11426 7.03105i 0.321499 0.278580i
$$638$$ 27.5963 12.6028i 1.09255 0.498950i
$$639$$ −21.3450 + 6.26746i −0.844395 + 0.247937i
$$640$$ −1.33047 + 1.79718i −0.0525916 + 0.0710396i
$$641$$ −4.44860 + 30.9407i −0.175709 + 1.22208i 0.690845 + 0.723002i $$0.257238\pi$$
−0.866555 + 0.499082i $$0.833671\pi$$
$$642$$ 1.43104 + 2.22675i 0.0564787 + 0.0878826i
$$643$$ 16.3114i 0.643260i −0.946865 0.321630i $$-0.895769\pi$$
0.946865 0.321630i $$-0.104231\pi$$
$$644$$ −9.58137 3.78285i −0.377559 0.149065i
$$645$$ 1.05657 4.98463i 0.0416023 0.196270i
$$646$$ −26.0917 + 16.7681i −1.02657 + 0.659734i
$$647$$ 24.3191 + 3.49656i 0.956084 + 0.137464i 0.602659 0.797999i $$-0.294108\pi$$
0.353425 + 0.935463i $$0.385017\pi$$
$$648$$ 4.66688 + 2.13129i 0.183332 + 0.0837250i
$$649$$ 6.60023 1.93800i 0.259082 0.0760732i
$$650$$ −0.239618 22.4942i −0.00939860 0.882297i
$$651$$ −4.53503 5.23371i −0.177742 0.205125i
$$652$$ −0.188888 + 0.0271580i −0.00739744 + 0.00106359i
$$653$$ 7.71063 26.2600i 0.301740 1.02763i −0.659450 0.751748i $$-0.729211\pi$$
0.961191 0.275885i $$-0.0889709\pi$$
$$654$$ −4.32543 + 4.99181i −0.169138 + 0.195195i
$$655$$ −10.3240 + 10.4345i −0.403391 + 0.407711i
$$656$$ −8.76152 5.63069i −0.342080 0.219841i
$$657$$ −12.2365 10.6030i −0.477392 0.413663i
$$658$$ 6.47819 22.0627i 0.252546 0.860093i
$$659$$ −2.08830 14.5244i −0.0813486 0.565792i −0.989208 0.146517i $$-0.953194\pi$$
0.907859 0.419275i $$-0.137716\pi$$
$$660$$ 2.60485 + 4.71060i 0.101394 + 0.183360i
$$661$$ 13.4754 + 29.5070i 0.524133 + 1.14769i 0.967851 + 0.251525i $$0.0809319\pi$$
−0.443718 + 0.896166i $$0.646341\pi$$
$$662$$ 2.50158 + 8.51959i 0.0972266 + 0.331123i
$$663$$ −15.5199 7.08769i −0.602742 0.275263i
$$664$$ 0.942013 6.55185i 0.0365572 0.254261i
$$665$$ −24.7140 + 9.36809i −0.958369 + 0.363279i
$$666$$ −21.2317 −0.822710
$$667$$ −39.5653 9.39875i −1.53198 0.363921i
$$668$$ 4.20030i 0.162514i
$$669$$ 3.57375 2.29671i 0.138169 0.0887960i
$$670$$ 1.80454 + 0.662131i 0.0697153 + 0.0255803i
$$671$$ −10.1657 + 22.2598i −0.392442 + 0.859328i
$$672$$ 0.407164 + 1.38667i 0.0157067 + 0.0534921i
$$673$$ 15.7371 7.18690i 0.606621 0.277035i −0.0883303 0.996091i $$-0.528153\pi$$
0.694951 + 0.719057i $$0.255426\pi$$
$$674$$ −8.74179 10.0886i −0.336721 0.388597i
$$675$$ 17.9613 + 5.06672i 0.691329 + 0.195018i
$$676$$ −6.94860 2.04029i −0.267254 0.0784728i
$$677$$ 1.93111 + 1.67332i 0.0742186 + 0.0643108i 0.691180 0.722683i $$-0.257091\pi$$
−0.616961 + 0.786993i $$0.711637\pi$$
$$678$$ −1.74429 + 2.71417i −0.0669891 + 0.104237i
$$679$$ −9.73022 6.25323i −0.373412 0.239977i
$$680$$ −7.60623 10.0487i −0.291686 0.385351i
$$681$$ −9.14531 2.68530i −0.350449 0.102901i
$$682$$ −16.9695 + 2.43985i −0.649797 + 0.0934267i
$$683$$ 26.9619 23.3626i 1.03167 0.893946i 0.0372347 0.999307i $$-0.488145\pi$$
0.994434 + 0.105360i $$0.0335996\pi$$
$$684$$ −5.82307 12.7507i −0.222651 0.487537i
$$685$$ 14.0940 1.08350i 0.538504 0.0413985i
$$686$$ 8.37532 18.3394i 0.319771 0.700201i
$$687$$ −13.1850 1.89572i −0.503040 0.0723262i
$$688$$ −1.83100 2.84909i −0.0698061 0.108620i
$$689$$ 23.8382 0.908164
$$690$$ 1.12462 7.12724i 0.0428136 0.271329i
$$691$$ −5.18589 −0.197281 −0.0986404 0.995123i $$-0.531449\pi$$
−0.0986404 + 0.995123i $$0.531449\pi$$
$$692$$ −6.93676 10.7938i −0.263696 0.410319i
$$693$$ −19.3762 2.78587i −0.736039 0.105826i
$$694$$ −9.02366 + 19.7590i −0.342533 + 0.750043i
$$695$$ 1.97439 + 25.6825i 0.0748929 + 0.974194i
$$696$$ 2.37010 + 5.18979i 0.0898383 + 0.196718i
$$697$$ 44.3623 38.4401i 1.68034 1.45602i
$$698$$ −3.30750 + 0.475546i −0.125191 + 0.0179997i
$$699$$ −2.07980 0.610684i −0.0786652 0.0230982i
$$700$$ −4.56521 9.72104i −0.172549 0.367421i
$$701$$ −16.0200 10.2954i −0.605067 0.388853i 0.201937 0.979398i $$-0.435276\pi$$
−0.807004 + 0.590545i $$0.798913\pi$$
$$702$$ 9.07879 14.1269i 0.342657 0.533185i
$$703$$ 34.6638 + 30.0364i 1.30737 + 1.13284i
$$704$$ 3.43286 + 1.00798i 0.129381 + 0.0379896i
$$705$$ 16.0711 + 1.06343i 0.605273 + 0.0400510i
$$706$$ 12.4518 + 14.3702i 0.468630 + 0.540828i
$$707$$ −25.0200 + 11.4263i −0.940974 + 0.429728i
$$708$$ 0.364463 + 1.24125i 0.0136973 + 0.0466489i
$$709$$ 17.7445 38.8550i 0.666409 1.45923i −0.210018 0.977697i $$-0.567352\pi$$
0.876427 0.481535i $$-0.159920\pi$$
$$710$$ −6.72685 + 18.3330i −0.252454 + 0.688026i
$$711$$ 31.4678 20.2231i 1.18013 0.758426i
$$712$$ 4.37155i 0.163831i
$$713$$ 19.9565 + 11.3952i 0.747376 + 0.426755i
$$714$$ −8.14546 −0.304836
$$715$$ −33.6567 + 12.7579i −1.25869 + 0.477119i
$$716$$ −2.68557 + 18.6786i −0.100365 + 0.698051i
$$717$$ 15.5383 + 7.09612i 0.580289 + 0.265009i
$$718$$ 0.606402 + 2.06521i 0.0226307 + 0.0770731i
$$719$$ −13.0242 28.5190i −0.485720 1.06358i −0.980851 0.194760i $$-0.937607\pi$$
0.495131 0.868819i $$-0.335120\pi$$
$$720$$ 4.98456 2.75634i 0.185764 0.102723i
$$721$$ −4.35597 30.2964i −0.162225 1.12830i
$$722$$ −3.17851 + 10.8250i −0.118292 + 0.402866i
$$723$$ 4.58640 + 3.97414i 0.170570 + 0.147800i
$$724$$ −2.65189 1.70427i −0.0985568 0.0633386i
$$725$$ −23.3005 35.4209i −0.865358 1.31550i
$$726$$ 0.793345 0.915568i 0.0294438 0.0339799i
$$727$$ 10.0017 34.0626i 0.370942 1.26331i −0.536775 0.843726i $$-0.680357\pi$$
0.907716 0.419585i $$-0.137824\pi$$
$$728$$ −9.56539 + 1.37529i −0.354517 + 0.0509718i
$$729$$ −3.62455 4.18295i −0.134242 0.154924i
$$730$$ −13.8720 + 3.09513i −0.513424 + 0.114556i
$$731$$ 18.3149 5.37773i 0.677400 0.198903i
$$732$$ −4.18619 1.91177i −0.154726 0.0706611i
$$733$$ −32.1240 4.61874i −1.18653 0.170597i −0.479344 0.877627i $$-0.659126\pi$$
−0.707184 + 0.707030i $$0.750035\pi$$
$$734$$ 9.77041 6.27906i 0.360632 0.231764i
$$735$$ 3.51236 + 0.744498i 0.129555 + 0.0274612i
$$736$$ −2.80047 3.89325i −0.103227 0.143507i
$$737$$ 3.07555i 0.113289i
$$738$$ 14.3430 + 22.3181i 0.527972 + 0.821540i
$$739$$ 1.23645 8.59969i 0.0454835 0.316345i −0.954360 0.298658i $$-0.903461\pi$$
0.999844 0.0176862i $$-0.00563000\pi$$
$$740$$ −11.0895 + 14.9795i −0.407659 + 0.550657i
$$741$$ −15.9835 + 4.69319i −0.587170 + 0.172409i
$$742$$ 10.3522 4.72769i 0.380041 0.173559i
$$743$$ −13.4558 + 11.6596i −0.493647 + 0.427748i −0.865775 0.500434i $$-0.833174\pi$$
0.372128 + 0.928182i $$0.378628\pi$$
$$744$$ −0.458841 3.19131i −0.0168219 0.116999i
$$745$$ 14.0715 26.0995i 0.515539 0.956211i
$$746$$ 1.54832 1.78686i 0.0566881 0.0654216i
$$747$$ −9.11576 + 14.1844i −0.333528 + 0.518980i
$$748$$ −10.9020 + 16.9638i −0.398617 + 0.620260i
$$749$$ −5.53349 + 6.38599i −0.202189 + 0.233339i
$$750$$ 5.94935 4.60377i 0.217240 0.168106i
$$751$$ −1.15010 7.99912i −0.0419678 0.291892i −0.999987 0.00518675i $$-0.998349\pi$$
0.958019 0.286705i $$-0.0925601\pi$$
$$752$$ 8.09049 7.01045i 0.295030 0.255645i
$$753$$ −7.50315 + 3.42657i −0.273430 + 0.124871i
$$754$$ −36.6049 + 10.7482i −1.33307 + 0.391425i
$$755$$ −31.1045 23.0271i −1.13201 0.838041i
$$756$$ 1.14094 7.93541i 0.0414956 0.288608i
$$757$$ 5.46238 + 8.49962i 0.198533 + 0.308924i 0.926218 0.376988i $$-0.123040\pi$$
−0.727685 + 0.685912i $$0.759404\pi$$
$$758$$ 14.5030i 0.526773i
$$759$$ −11.3257 + 2.23896i −0.411098 + 0.0812692i
$$760$$ −12.0374 2.55152i −0.436644 0.0925532i
$$761$$ −4.92933 + 3.16789i −0.178688 + 0.114836i −0.626927 0.779078i $$-0.715688\pi$$
0.448239 + 0.893914i $$0.352051\pi$$
$$762$$ −1.41111 0.202887i −0.0511192 0.00734982i
$$763$$ −19.1802 8.75929i −0.694369 0.317108i
$$764$$ −0.135561 + 0.0398044i −0.00490444 + 0.00144007i
$$765$$ 6.99096 + 31.3326i 0.252759 + 1.13283i
$$766$$ −10.8483 12.5196i −0.391966 0.452353i
$$767$$ −8.56222 + 1.23106i −0.309164 + 0.0444510i
$$768$$ −0.189561 + 0.645587i −0.00684021 + 0.0232956i
$$769$$ −16.8713 + 19.4705i −0.608394 + 0.702124i −0.973460 0.228857i $$-0.926501\pi$$
0.365066 + 0.930982i $$0.381047\pi$$
$$770$$ −12.0859 + 12.2153i −0.435545 + 0.440209i
$$771$$ 13.8704 + 8.91395i 0.499530 + 0.321028i
$$772$$ −11.1573 9.66784i −0.401559 0.347953i