Properties

Label 230.2.j.a.179.3
Level $230$
Weight $2$
Character 230.179
Analytic conductor $1.837$
Analytic rank $0$
Dimension $120$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [230,2,Mod(9,230)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(230, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([11, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("230.9");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 230 = 2 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 230.j (of order \(22\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.83655924649\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(12\) over \(\Q(\zeta_{22})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 179.3
Character \(\chi\) \(=\) 230.179
Dual form 230.2.j.a.9.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.281733 + 0.959493i) q^{2} +(-0.0697998 - 0.0604819i) q^{3} +(-0.841254 - 0.540641i) q^{4} +(-0.948149 - 2.02510i) q^{5} +(0.0776969 - 0.0499327i) q^{6} +(1.04108 - 0.475445i) q^{7} +(0.755750 - 0.654861i) q^{8} +(-0.425731 - 2.96102i) q^{9} +O(q^{10})\) \(q+(-0.281733 + 0.959493i) q^{2} +(-0.0697998 - 0.0604819i) q^{3} +(-0.841254 - 0.540641i) q^{4} +(-0.948149 - 2.02510i) q^{5} +(0.0776969 - 0.0499327i) q^{6} +(1.04108 - 0.475445i) q^{7} +(0.755750 - 0.654861i) q^{8} +(-0.425731 - 2.96102i) q^{9} +(2.21019 - 0.339207i) q^{10} +(3.69609 - 1.08527i) q^{11} +(0.0260204 + 0.0886173i) q^{12} +(1.25102 + 0.571322i) q^{13} +(0.162880 + 1.13286i) q^{14} +(-0.0563010 + 0.198697i) q^{15} +(0.415415 + 0.909632i) q^{16} +(-0.463067 - 0.720547i) q^{17} +(2.96102 + 0.425731i) q^{18} +(-0.778520 - 0.500325i) q^{19} +(-0.297216 + 2.21623i) q^{20} +(-0.101423 - 0.0297805i) q^{21} +3.85213i q^{22} +(0.229075 - 4.79036i) q^{23} -0.0923584 q^{24} +(-3.20203 + 3.84018i) q^{25} +(-0.900632 + 1.03939i) q^{26} +(-0.299170 + 0.465518i) q^{27} +(-1.13286 - 0.162880i) q^{28} +(0.00469088 - 0.00301465i) q^{29} +(-0.174787 - 0.110000i) q^{30} +(4.36818 + 5.04115i) q^{31} +(-0.989821 + 0.142315i) q^{32} +(-0.323626 - 0.147795i) q^{33} +(0.821820 - 0.241308i) q^{34} +(-1.94992 - 1.65749i) q^{35} +(-1.24270 + 2.72114i) q^{36} +(1.06862 - 0.153645i) q^{37} +(0.699392 - 0.606027i) q^{38} +(-0.0527664 - 0.115542i) q^{39} +(-2.04272 - 0.909560i) q^{40} +(-0.702947 + 4.88910i) q^{41} +(0.0571483 - 0.0889245i) q^{42} +(-5.24726 - 4.54678i) q^{43} +(-3.69609 - 1.08527i) q^{44} +(-5.59270 + 3.66963i) q^{45} +(4.53178 + 1.56940i) q^{46} -7.27641i q^{47} +(0.0260204 - 0.0886173i) q^{48} +(-3.72623 + 4.30030i) q^{49} +(-2.78251 - 4.15423i) q^{50} +(-0.0112580 + 0.0783012i) q^{51} +(-0.743545 - 1.15698i) q^{52} +(0.417802 - 0.190804i) q^{53} +(-0.362376 - 0.418204i) q^{54} +(-5.70223 - 6.45595i) q^{55} +(0.475445 - 1.04108i) q^{56} +(0.0240800 + 0.0820090i) q^{57} +(0.00157096 + 0.00535019i) q^{58} +(0.895090 - 1.95997i) q^{59} +(0.154787 - 0.136716i) q^{60} +(6.33405 + 7.30988i) q^{61} +(-6.06760 + 2.77098i) q^{62} +(-1.85102 - 2.88025i) q^{63} +(0.142315 - 0.989821i) q^{64} +(-0.0291719 - 3.07513i) q^{65} +(0.232984 - 0.268878i) q^{66} +(-2.18008 + 7.42468i) q^{67} +0.856515i q^{68} +(-0.305719 + 0.320511i) q^{69} +(2.13971 - 1.40396i) q^{70} +(3.45459 + 1.01436i) q^{71} +(-2.26080 - 1.95900i) q^{72} +(-7.64561 + 11.8968i) q^{73} +(-0.153645 + 1.06862i) q^{74} +(0.455763 - 0.0743796i) q^{75} +(0.384437 + 0.841800i) q^{76} +(3.33194 - 2.88714i) q^{77} +(0.125728 - 0.0180770i) q^{78} +(-0.879284 + 1.92536i) q^{79} +(1.44822 - 1.70372i) q^{80} +(-8.56185 + 2.51398i) q^{81} +(-4.49301 - 2.05189i) q^{82} +(10.1835 - 1.46416i) q^{83} +(0.0692219 + 0.0798863i) q^{84} +(-1.02012 + 1.62094i) q^{85} +(5.84093 - 3.75374i) q^{86} +(-0.000509755 - 7.32916e-5i) q^{87} +(2.08262 - 3.24062i) q^{88} +(-4.67545 + 5.39575i) q^{89} +(-1.94534 - 6.40001i) q^{90} +1.57404 q^{91} +(-2.78257 + 3.90606i) q^{92} -0.616067i q^{93} +(6.98167 + 2.05000i) q^{94} +(-0.275052 + 2.05096i) q^{95} +(0.0776969 + 0.0499327i) q^{96} +(19.0564 + 2.73989i) q^{97} +(-3.07630 - 4.78682i) q^{98} +(-4.78705 - 10.4822i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120 q + 12 q^{4} - 4 q^{6} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 120 q + 12 q^{4} - 4 q^{6} + 8 q^{9} + 8 q^{11} - 6 q^{15} - 12 q^{16} - 16 q^{19} - 22 q^{20} + 4 q^{24} - 52 q^{25} - 4 q^{26} - 8 q^{29} - 44 q^{30} + 12 q^{31} + 16 q^{35} - 8 q^{36} - 36 q^{39} - 28 q^{41} - 8 q^{44} + 16 q^{45} - 4 q^{46} - 58 q^{49} + 12 q^{50} - 24 q^{51} - 6 q^{54} - 36 q^{55} + 22 q^{56} - 102 q^{59} - 38 q^{60} + 72 q^{61} + 12 q^{64} - 138 q^{65} + 80 q^{66} - 212 q^{69} - 108 q^{70} + 176 q^{71} - 88 q^{74} - 100 q^{75} + 16 q^{76} - 104 q^{79} - 22 q^{80} - 28 q^{81} - 22 q^{84} + 2 q^{85} + 62 q^{86} + 48 q^{89} + 24 q^{90} - 56 q^{91} + 24 q^{94} + 18 q^{95} - 4 q^{96} + 188 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/230\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(-1\) \(e\left(\frac{6}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.281733 + 0.959493i −0.199215 + 0.678464i
\(3\) −0.0697998 0.0604819i −0.0402990 0.0349192i 0.634478 0.772941i \(-0.281215\pi\)
−0.674777 + 0.738021i \(0.735760\pi\)
\(4\) −0.841254 0.540641i −0.420627 0.270320i
\(5\) −0.948149 2.02510i −0.424025 0.905650i
\(6\) 0.0776969 0.0499327i 0.0317196 0.0203850i
\(7\) 1.04108 0.475445i 0.393491 0.179701i −0.208836 0.977951i \(-0.566968\pi\)
0.602327 + 0.798249i \(0.294240\pi\)
\(8\) 0.755750 0.654861i 0.267198 0.231528i
\(9\) −0.425731 2.96102i −0.141910 0.987007i
\(10\) 2.21019 0.339207i 0.698923 0.107267i
\(11\) 3.69609 1.08527i 1.11441 0.327222i 0.327850 0.944730i \(-0.393676\pi\)
0.786564 + 0.617508i \(0.211858\pi\)
\(12\) 0.0260204 + 0.0886173i 0.00751144 + 0.0255816i
\(13\) 1.25102 + 0.571322i 0.346971 + 0.158456i 0.581275 0.813707i \(-0.302554\pi\)
−0.234305 + 0.972163i \(0.575281\pi\)
\(14\) 0.162880 + 1.13286i 0.0435315 + 0.302769i
\(15\) −0.0563010 + 0.198697i −0.0145369 + 0.0513034i
\(16\) 0.415415 + 0.909632i 0.103854 + 0.227408i
\(17\) −0.463067 0.720547i −0.112310 0.174758i 0.780548 0.625096i \(-0.214940\pi\)
−0.892858 + 0.450337i \(0.851304\pi\)
\(18\) 2.96102 + 0.425731i 0.697919 + 0.100346i
\(19\) −0.778520 0.500325i −0.178605 0.114782i 0.448284 0.893891i \(-0.352035\pi\)
−0.626888 + 0.779109i \(0.715672\pi\)
\(20\) −0.297216 + 2.21623i −0.0664595 + 0.495563i
\(21\) −0.101423 0.0297805i −0.0221323 0.00649863i
\(22\) 3.85213i 0.821277i
\(23\) 0.229075 4.79036i 0.0477655 0.998859i
\(24\) −0.0923584 −0.0188526
\(25\) −3.20203 + 3.84018i −0.640406 + 0.768037i
\(26\) −0.900632 + 1.03939i −0.176629 + 0.203840i
\(27\) −0.299170 + 0.465518i −0.0575754 + 0.0895890i
\(28\) −1.13286 0.162880i −0.214090 0.0307815i
\(29\) 0.00469088 0.00301465i 0.000871075 0.000559806i −0.540205 0.841533i \(-0.681653\pi\)
0.541076 + 0.840974i \(0.318017\pi\)
\(30\) −0.174787 0.110000i −0.0319116 0.0200831i
\(31\) 4.36818 + 5.04115i 0.784548 + 0.905416i 0.997429 0.0716617i \(-0.0228302\pi\)
−0.212881 + 0.977078i \(0.568285\pi\)
\(32\) −0.989821 + 0.142315i −0.174977 + 0.0251579i
\(33\) −0.323626 0.147795i −0.0563361 0.0257278i
\(34\) 0.821820 0.241308i 0.140941 0.0413840i
\(35\) −1.94992 1.65749i −0.329596 0.280167i
\(36\) −1.24270 + 2.72114i −0.207117 + 0.453523i
\(37\) 1.06862 0.153645i 0.175680 0.0252590i −0.0539132 0.998546i \(-0.517169\pi\)
0.229593 + 0.973287i \(0.426260\pi\)
\(38\) 0.699392 0.606027i 0.113456 0.0983105i
\(39\) −0.0527664 0.115542i −0.00844938 0.0185016i
\(40\) −2.04272 0.909560i −0.322982 0.143814i
\(41\) −0.702947 + 4.88910i −0.109782 + 0.763549i 0.858342 + 0.513078i \(0.171495\pi\)
−0.968124 + 0.250472i \(0.919414\pi\)
\(42\) 0.0571483 0.0889245i 0.00881817 0.0137213i
\(43\) −5.24726 4.54678i −0.800200 0.693377i 0.155462 0.987842i \(-0.450313\pi\)
−0.955662 + 0.294465i \(0.904859\pi\)
\(44\) −3.69609 1.08527i −0.557207 0.163611i
\(45\) −5.59270 + 3.66963i −0.833710 + 0.547037i
\(46\) 4.53178 + 1.56940i 0.668174 + 0.231395i
\(47\) 7.27641i 1.06137i −0.847568 0.530687i \(-0.821934\pi\)
0.847568 0.530687i \(-0.178066\pi\)
\(48\) 0.0260204 0.0886173i 0.00375572 0.0127908i
\(49\) −3.72623 + 4.30030i −0.532318 + 0.614328i
\(50\) −2.78251 4.15423i −0.393507 0.587497i
\(51\) −0.0112580 + 0.0783012i −0.00157644 + 0.0109644i
\(52\) −0.743545 1.15698i −0.103111 0.160444i
\(53\) 0.417802 0.190804i 0.0573896 0.0262089i −0.386513 0.922284i \(-0.626321\pi\)
0.443903 + 0.896075i \(0.353593\pi\)
\(54\) −0.362376 0.418204i −0.0493131 0.0569103i
\(55\) −5.70223 6.45595i −0.768888 0.870520i
\(56\) 0.475445 1.04108i 0.0635340 0.139120i
\(57\) 0.0240800 + 0.0820090i 0.00318947 + 0.0108624i
\(58\) 0.00157096 + 0.00535019i 0.000206277 + 0.000702515i
\(59\) 0.895090 1.95997i 0.116531 0.255167i −0.842375 0.538892i \(-0.818843\pi\)
0.958906 + 0.283725i \(0.0915704\pi\)
\(60\) 0.154787 0.136716i 0.0199830 0.0176500i
\(61\) 6.33405 + 7.30988i 0.810992 + 0.935934i 0.998930 0.0462467i \(-0.0147260\pi\)
−0.187939 + 0.982181i \(0.560181\pi\)
\(62\) −6.06760 + 2.77098i −0.770586 + 0.351915i
\(63\) −1.85102 2.88025i −0.233207 0.362877i
\(64\) 0.142315 0.989821i 0.0177894 0.123728i
\(65\) −0.0291719 3.07513i −0.00361832 0.381423i
\(66\) 0.232984 0.268878i 0.0286784 0.0330966i
\(67\) −2.18008 + 7.42468i −0.266339 + 0.907069i 0.712368 + 0.701806i \(0.247623\pi\)
−0.978707 + 0.205262i \(0.934195\pi\)
\(68\) 0.856515i 0.103868i
\(69\) −0.305719 + 0.320511i −0.0368043 + 0.0385850i
\(70\) 2.13971 1.40396i 0.255744 0.167806i
\(71\) 3.45459 + 1.01436i 0.409984 + 0.120382i 0.480220 0.877148i \(-0.340557\pi\)
−0.0702355 + 0.997530i \(0.522375\pi\)
\(72\) −2.26080 1.95900i −0.266438 0.230870i
\(73\) −7.64561 + 11.8968i −0.894851 + 1.39242i 0.0248059 + 0.999692i \(0.492103\pi\)
−0.919657 + 0.392723i \(0.871533\pi\)
\(74\) −0.153645 + 1.06862i −0.0178608 + 0.124225i
\(75\) 0.455763 0.0743796i 0.0526269 0.00858861i
\(76\) 0.384437 + 0.841800i 0.0440979 + 0.0965610i
\(77\) 3.33194 2.88714i 0.379710 0.329020i
\(78\) 0.125728 0.0180770i 0.0142359 0.00204681i
\(79\) −0.879284 + 1.92536i −0.0989272 + 0.216620i −0.952624 0.304150i \(-0.901628\pi\)
0.853697 + 0.520770i \(0.174355\pi\)
\(80\) 1.44822 1.70372i 0.161916 0.190482i
\(81\) −8.56185 + 2.51398i −0.951316 + 0.279332i
\(82\) −4.49301 2.05189i −0.496170 0.226593i
\(83\) 10.1835 1.46416i 1.11778 0.160713i 0.441433 0.897294i \(-0.354470\pi\)
0.676349 + 0.736581i \(0.263561\pi\)
\(84\) 0.0692219 + 0.0798863i 0.00755273 + 0.00871631i
\(85\) −1.02012 + 1.62094i −0.110647 + 0.175816i
\(86\) 5.84093 3.75374i 0.629843 0.404776i
\(87\) −0.000509755 0 7.32916e-5i −5.46514e−5 0 7.85769e-6i
\(88\) 2.08262 3.24062i 0.222008 0.345451i
\(89\) −4.67545 + 5.39575i −0.495597 + 0.571949i −0.947352 0.320193i \(-0.896252\pi\)
0.451756 + 0.892142i \(0.350798\pi\)
\(90\) −1.94534 6.40001i −0.205057 0.674620i
\(91\) 1.57404 0.165005
\(92\) −2.78257 + 3.90606i −0.290103 + 0.407235i
\(93\) 0.616067i 0.0638832i
\(94\) 6.98167 + 2.05000i 0.720104 + 0.211442i
\(95\) −0.275052 + 2.05096i −0.0282198 + 0.210424i
\(96\) 0.0776969 + 0.0499327i 0.00792990 + 0.00509624i
\(97\) 19.0564 + 2.73989i 1.93488 + 0.278194i 0.997533 0.0702015i \(-0.0223642\pi\)
0.937348 + 0.348395i \(0.113273\pi\)
\(98\) −3.07630 4.78682i −0.310754 0.483542i
\(99\) −4.78705 10.4822i −0.481117 1.05350i
\(100\) 4.76988 1.49942i 0.476988 0.149942i
\(101\) −1.46183 10.1673i −0.145458 1.01168i −0.923535 0.383514i \(-0.874714\pi\)
0.778077 0.628169i \(-0.216195\pi\)
\(102\) −0.0719577 0.0328620i −0.00712488 0.00325382i
\(103\) 4.19683 + 14.2931i 0.413526 + 1.40834i 0.858508 + 0.512800i \(0.171392\pi\)
−0.444983 + 0.895539i \(0.646790\pi\)
\(104\) 1.31959 0.387468i 0.129397 0.0379943i
\(105\) 0.0358558 + 0.233628i 0.00349916 + 0.0227997i
\(106\) 0.0653665 + 0.454634i 0.00634896 + 0.0441580i
\(107\) 13.5230 11.7177i 1.30732 1.13280i 0.324969 0.945725i \(-0.394646\pi\)
0.982347 0.187070i \(-0.0598992\pi\)
\(108\) 0.503356 0.229875i 0.0484355 0.0221198i
\(109\) 11.5072 7.39525i 1.10219 0.708336i 0.142614 0.989778i \(-0.454449\pi\)
0.959578 + 0.281442i \(0.0908128\pi\)
\(110\) 7.80094 3.65240i 0.743790 0.348242i
\(111\) −0.0838823 0.0539079i −0.00796176 0.00511671i
\(112\) 0.864960 + 0.749492i 0.0817310 + 0.0708203i
\(113\) −4.35279 + 14.8243i −0.409476 + 1.39455i 0.454379 + 0.890809i \(0.349861\pi\)
−0.863855 + 0.503740i \(0.831957\pi\)
\(114\) −0.0854711 −0.00800511
\(115\) −9.91813 + 4.07807i −0.924871 + 0.380282i
\(116\) −0.00557606 −0.000517725
\(117\) 1.15910 3.94753i 0.107159 0.364949i
\(118\) 1.62840 + 1.41102i 0.149907 + 0.129895i
\(119\) −0.824670 0.529983i −0.0755973 0.0485835i
\(120\) 0.0875695 + 0.187035i 0.00799397 + 0.0170739i
\(121\) 3.22951 2.07548i 0.293592 0.188680i
\(122\) −8.79828 + 4.01804i −0.796559 + 0.363776i
\(123\) 0.344768 0.298743i 0.0310867 0.0269367i
\(124\) −0.949296 6.60250i −0.0852493 0.592922i
\(125\) 10.8127 + 2.84335i 0.967121 + 0.254317i
\(126\) 3.28507 0.964583i 0.292657 0.0859319i
\(127\) −0.858846 2.92496i −0.0762103 0.259548i 0.912571 0.408918i \(-0.134094\pi\)
−0.988781 + 0.149370i \(0.952276\pi\)
\(128\) 0.909632 + 0.415415i 0.0804009 + 0.0367178i
\(129\) 0.0912602 + 0.634729i 0.00803502 + 0.0558848i
\(130\) 2.95879 + 0.838375i 0.259503 + 0.0735304i
\(131\) 2.74657 + 6.01415i 0.239969 + 0.525459i 0.990848 0.134981i \(-0.0430972\pi\)
−0.750879 + 0.660440i \(0.770370\pi\)
\(132\) 0.192348 + 0.299299i 0.0167417 + 0.0260506i
\(133\) −1.04838 0.150734i −0.0909059 0.0130703i
\(134\) −6.50972 4.18355i −0.562355 0.361403i
\(135\) 1.22638 + 0.164468i 0.105550 + 0.0141552i
\(136\) −0.821820 0.241308i −0.0704705 0.0206920i
\(137\) 12.2743i 1.04866i 0.851515 + 0.524330i \(0.175684\pi\)
−0.851515 + 0.524330i \(0.824316\pi\)
\(138\) −0.221397 0.383634i −0.0188466 0.0326571i
\(139\) 16.1706 1.37157 0.685785 0.727804i \(-0.259459\pi\)
0.685785 + 0.727804i \(0.259459\pi\)
\(140\) 0.744268 + 2.44858i 0.0629022 + 0.206943i
\(141\) −0.440091 + 0.507892i −0.0370624 + 0.0427723i
\(142\) −1.94654 + 3.02888i −0.163350 + 0.254178i
\(143\) 5.24393 + 0.753963i 0.438519 + 0.0630495i
\(144\) 2.51658 1.61731i 0.209715 0.134776i
\(145\) −0.0105526 0.00664115i −0.000876346 0.000551518i
\(146\) −9.26088 10.6876i −0.766436 0.884514i
\(147\) 0.520180 0.0747906i 0.0429037 0.00616863i
\(148\) −0.982048 0.448486i −0.0807239 0.0368654i
\(149\) −14.1219 + 4.14655i −1.15691 + 0.339699i −0.803230 0.595668i \(-0.796887\pi\)
−0.353678 + 0.935367i \(0.615069\pi\)
\(150\) −0.0570365 + 0.458256i −0.00465701 + 0.0374165i
\(151\) 1.73764 3.80489i 0.141407 0.309638i −0.825657 0.564173i \(-0.809195\pi\)
0.967064 + 0.254535i \(0.0819224\pi\)
\(152\) −0.916009 + 0.131702i −0.0742982 + 0.0106825i
\(153\) −1.93641 + 1.67791i −0.156550 + 0.135651i
\(154\) 1.83148 + 4.01037i 0.147585 + 0.323165i
\(155\) 6.06712 13.6257i 0.487323 1.09445i
\(156\) −0.0180770 + 0.125728i −0.00144731 + 0.0100663i
\(157\) 1.41025 2.19439i 0.112550 0.175132i −0.780409 0.625270i \(-0.784989\pi\)
0.892959 + 0.450138i \(0.148625\pi\)
\(158\) −1.59965 1.38610i −0.127261 0.110273i
\(159\) −0.0407027 0.0119514i −0.00322794 0.000947807i
\(160\) 1.22670 + 1.86955i 0.0969791 + 0.147801i
\(161\) −2.03906 5.09605i −0.160701 0.401625i
\(162\) 8.92330i 0.701081i
\(163\) −0.865221 + 2.94667i −0.0677693 + 0.230801i −0.986413 0.164287i \(-0.947468\pi\)
0.918643 + 0.395088i \(0.129286\pi\)
\(164\) 3.23460 3.73293i 0.252580 0.291493i
\(165\) 0.00754646 + 0.795506i 0.000587491 + 0.0619300i
\(166\) −1.46416 + 10.1835i −0.113641 + 0.790391i
\(167\) −7.41220 11.5336i −0.573573 0.892497i 0.426354 0.904556i \(-0.359798\pi\)
−0.999927 + 0.0120592i \(0.996161\pi\)
\(168\) −0.0961524 + 0.0439113i −0.00741832 + 0.00338783i
\(169\) −7.27455 8.39527i −0.559581 0.645790i
\(170\) −1.26788 1.43547i −0.0972420 0.110095i
\(171\) −1.15003 + 2.51822i −0.0879451 + 0.192573i
\(172\) 1.95610 + 6.66188i 0.149152 + 0.507963i
\(173\) −4.49878 15.3214i −0.342036 1.16487i −0.933513 0.358545i \(-0.883273\pi\)
0.591477 0.806322i \(-0.298545\pi\)
\(174\) 0.000213937 0 0.000468457i 1.62185e−5 0 3.55137e-5i
\(175\) −1.50777 + 5.52032i −0.113977 + 0.417297i
\(176\) 2.52261 + 2.91125i 0.190149 + 0.219444i
\(177\) −0.181020 + 0.0826691i −0.0136063 + 0.00621379i
\(178\) −3.85996 6.00622i −0.289316 0.450185i
\(179\) −3.39154 + 23.5887i −0.253496 + 1.76310i 0.323381 + 0.946269i \(0.395181\pi\)
−0.576876 + 0.816831i \(0.695729\pi\)
\(180\) 6.68883 0.0634527i 0.498556 0.00472949i
\(181\) −1.14197 + 1.31790i −0.0848820 + 0.0979591i −0.796602 0.604504i \(-0.793371\pi\)
0.711720 + 0.702464i \(0.247917\pi\)
\(182\) −0.443459 + 1.51028i −0.0328714 + 0.111950i
\(183\) 0.893324i 0.0660364i
\(184\) −2.96389 3.77032i −0.218501 0.277952i
\(185\) −1.32436 2.01838i −0.0973687 0.148395i
\(186\) 0.591112 + 0.173566i 0.0433424 + 0.0127265i
\(187\) −2.49353 2.16065i −0.182345 0.158003i
\(188\) −3.93393 + 6.12131i −0.286911 + 0.446442i
\(189\) −0.0901318 + 0.626880i −0.00655612 + 0.0455988i
\(190\) −1.89039 0.841733i −0.137143 0.0610657i
\(191\) −6.27677 13.7442i −0.454171 0.994496i −0.988778 0.149395i \(-0.952267\pi\)
0.534607 0.845101i \(-0.320460\pi\)
\(192\) −0.0697998 + 0.0604819i −0.00503737 + 0.00436491i
\(193\) −23.5131 + 3.38067i −1.69251 + 0.243346i −0.920073 0.391747i \(-0.871871\pi\)
−0.772435 + 0.635093i \(0.780962\pi\)
\(194\) −7.99770 + 17.5125i −0.574202 + 1.25733i
\(195\) −0.183954 + 0.216408i −0.0131732 + 0.0154973i
\(196\) 5.45962 1.60309i 0.389973 0.114506i
\(197\) −8.75402 3.99783i −0.623698 0.284834i 0.0783906 0.996923i \(-0.475022\pi\)
−0.702089 + 0.712089i \(0.747749\pi\)
\(198\) 11.4062 1.63997i 0.810607 0.116548i
\(199\) −3.28145 3.78700i −0.232616 0.268453i 0.627426 0.778676i \(-0.284108\pi\)
−0.860042 + 0.510223i \(0.829563\pi\)
\(200\) 0.0948552 + 4.99910i 0.00670727 + 0.353490i
\(201\) 0.601228 0.386386i 0.0424073 0.0272535i
\(202\) 10.1673 + 1.46183i 0.715367 + 0.102854i
\(203\) 0.00345028 0.00536874i 0.000242162 0.000376812i
\(204\) 0.0518037 0.0597846i 0.00362698 0.00418576i
\(205\) 10.5674 3.21206i 0.738059 0.224340i
\(206\) −14.8965 −1.03789
\(207\) −14.2819 + 1.36110i −0.992659 + 0.0946033i
\(208\) 1.37530i 0.0953601i
\(209\) −3.42047 1.00434i −0.236599 0.0694717i
\(210\) −0.234266 0.0314171i −0.0161659 0.00216799i
\(211\) −18.3831 11.8141i −1.26555 0.813317i −0.276513 0.961010i \(-0.589179\pi\)
−0.989033 + 0.147693i \(0.952815\pi\)
\(212\) −0.454634 0.0653665i −0.0312244 0.00448939i
\(213\) −0.179779 0.279742i −0.0123183 0.0191676i
\(214\) 7.43321 + 16.2765i 0.508124 + 1.11264i
\(215\) −4.23248 + 14.9372i −0.288653 + 1.01871i
\(216\) 0.0787517 + 0.547730i 0.00535838 + 0.0372683i
\(217\) 6.94440 + 3.17140i 0.471417 + 0.215289i
\(218\) 3.85373 + 13.1246i 0.261007 + 0.888909i
\(219\) 1.25320 0.367974i 0.0846836 0.0248654i
\(220\) 1.30667 + 8.51394i 0.0880956 + 0.574010i
\(221\) −0.167642 1.16598i −0.0112768 0.0784322i
\(222\) 0.0753566 0.0652969i 0.00505761 0.00438244i
\(223\) 18.5392 8.46657i 1.24148 0.566964i 0.317081 0.948398i \(-0.397297\pi\)
0.924396 + 0.381435i \(0.124570\pi\)
\(224\) −0.962819 + 0.618766i −0.0643311 + 0.0413431i
\(225\) 12.7341 + 7.84639i 0.848938 + 0.523092i
\(226\) −12.9974 8.35295i −0.864577 0.555630i
\(227\) 2.24627 + 1.94640i 0.149090 + 0.129187i 0.726212 0.687471i \(-0.241279\pi\)
−0.577122 + 0.816658i \(0.695824\pi\)
\(228\) 0.0240800 0.0820090i 0.00159474 0.00543118i
\(229\) 22.4667 1.48464 0.742320 0.670046i \(-0.233726\pi\)
0.742320 + 0.670046i \(0.233726\pi\)
\(230\) −1.11862 10.6653i −0.0737597 0.703249i
\(231\) −0.407189 −0.0267910
\(232\) 0.00157096 0.00535019i 0.000103138 0.000351257i
\(233\) −10.5253 9.12026i −0.689538 0.597488i 0.237979 0.971270i \(-0.423515\pi\)
−0.927516 + 0.373783i \(0.878061\pi\)
\(234\) 3.46107 + 2.22429i 0.226257 + 0.145407i
\(235\) −14.7354 + 6.89912i −0.961234 + 0.450049i
\(236\) −1.81264 + 1.16491i −0.117993 + 0.0758293i
\(237\) 0.177824 0.0812093i 0.0115509 0.00527511i
\(238\) 0.740851 0.641951i 0.0480222 0.0416115i
\(239\) 1.65603 + 11.5180i 0.107120 + 0.745036i 0.970608 + 0.240666i \(0.0773660\pi\)
−0.863488 + 0.504370i \(0.831725\pi\)
\(240\) −0.204130 + 0.0313286i −0.0131765 + 0.00202225i
\(241\) −17.8128 + 5.23031i −1.14742 + 0.336914i −0.799534 0.600621i \(-0.794920\pi\)
−0.347890 + 0.937535i \(0.613102\pi\)
\(242\) 1.08155 + 3.68342i 0.0695247 + 0.236779i
\(243\) 2.25974 + 1.03199i 0.144962 + 0.0662020i
\(244\) −1.37652 9.57391i −0.0881227 0.612907i
\(245\) 12.2415 + 3.46865i 0.782083 + 0.221604i
\(246\) 0.189509 + 0.414968i 0.0120827 + 0.0264574i
\(247\) −0.688098 1.07070i −0.0437826 0.0681271i
\(248\) 6.60250 + 0.949296i 0.419259 + 0.0602803i
\(249\) −0.799361 0.513718i −0.0506574 0.0325555i
\(250\) −5.77447 + 9.57369i −0.365210 + 0.605493i
\(251\) −6.14302 1.80375i −0.387744 0.113852i 0.0820495 0.996628i \(-0.473853\pi\)
−0.469793 + 0.882776i \(0.655672\pi\)
\(252\) 3.42375i 0.215676i
\(253\) −4.35215 17.9542i −0.273617 1.12877i
\(254\) 3.04844 0.191276
\(255\) 0.169242 0.0514426i 0.0105983 0.00322146i
\(256\) −0.654861 + 0.755750i −0.0409288 + 0.0472343i
\(257\) −6.44307 + 10.0256i −0.401908 + 0.625380i −0.981935 0.189216i \(-0.939405\pi\)
0.580028 + 0.814597i \(0.303042\pi\)
\(258\) −0.634729 0.0912602i −0.0395165 0.00568161i
\(259\) 1.03947 0.668027i 0.0645895 0.0415092i
\(260\) −1.63800 + 2.60274i −0.101585 + 0.161415i
\(261\) −0.0109235 0.0126064i −0.000676147 0.000780315i
\(262\) −6.54433 + 0.940933i −0.404310 + 0.0581310i
\(263\) 8.46647 + 3.86651i 0.522065 + 0.238419i 0.658975 0.752164i \(-0.270990\pi\)
−0.136911 + 0.990583i \(0.543717\pi\)
\(264\) −0.341365 + 0.100234i −0.0210096 + 0.00616897i
\(265\) −0.782535 0.665179i −0.0480707 0.0408616i
\(266\) 0.439990 0.963444i 0.0269775 0.0590726i
\(267\) 0.652691 0.0938428i 0.0399440 0.00574309i
\(268\) 5.84808 5.06739i 0.357229 0.309540i
\(269\) 12.2184 + 26.7546i 0.744970 + 1.63126i 0.775202 + 0.631714i \(0.217648\pi\)
−0.0302316 + 0.999543i \(0.509624\pi\)
\(270\) −0.503317 + 1.13036i −0.0306309 + 0.0687918i
\(271\) −2.18178 + 15.1746i −0.132534 + 0.921793i 0.809702 + 0.586842i \(0.199629\pi\)
−0.942236 + 0.334951i \(0.891280\pi\)
\(272\) 0.463067 0.720547i 0.0280776 0.0436895i
\(273\) −0.109868 0.0952011i −0.00664951 0.00576183i
\(274\) −11.7771 3.45806i −0.711479 0.208909i
\(275\) −7.66735 + 17.6688i −0.462359 + 1.06547i
\(276\) 0.430469 0.104347i 0.0259112 0.00628094i
\(277\) 18.2644i 1.09740i −0.836018 0.548702i \(-0.815122\pi\)
0.836018 0.548702i \(-0.184878\pi\)
\(278\) −4.55578 + 15.5156i −0.273237 + 0.930561i
\(279\) 13.0673 15.0804i 0.782317 0.902842i
\(280\) −2.55908 + 0.0242764i −0.152934 + 0.00145079i
\(281\) 3.16822 22.0354i 0.189000 1.31452i −0.645604 0.763673i \(-0.723394\pi\)
0.834604 0.550851i \(-0.185697\pi\)
\(282\) −0.363331 0.565354i −0.0216361 0.0336664i
\(283\) 17.6388 8.05536i 1.04852 0.478842i 0.184778 0.982780i \(-0.440844\pi\)
0.863739 + 0.503939i \(0.168116\pi\)
\(284\) −2.35778 2.72102i −0.139909 0.161463i
\(285\) 0.143245 0.126521i 0.00848508 0.00749446i
\(286\) −2.20081 + 4.81910i −0.130136 + 0.284959i
\(287\) 1.59267 + 5.42415i 0.0940126 + 0.320178i
\(288\) 0.842794 + 2.87029i 0.0496621 + 0.169134i
\(289\) 6.75730 14.7964i 0.397488 0.870378i
\(290\) 0.00934515 0.00825412i 0.000548766 0.000484699i
\(291\) −1.16442 1.34381i −0.0682593 0.0787755i
\(292\) 12.8638 5.87470i 0.752796 0.343791i
\(293\) −6.21266 9.66709i −0.362948 0.564757i 0.610972 0.791652i \(-0.290779\pi\)
−0.973919 + 0.226895i \(0.927143\pi\)
\(294\) −0.0747906 + 0.520180i −0.00436188 + 0.0303375i
\(295\) −4.81781 + 0.0457036i −0.280504 + 0.00266096i
\(296\) 0.706995 0.815915i 0.0410932 0.0474241i
\(297\) −0.600549 + 2.04528i −0.0348474 + 0.118679i
\(298\) 14.7180i 0.852594i
\(299\) 3.02341 5.86196i 0.174849 0.339006i
\(300\) −0.423625 0.183832i −0.0244580 0.0106135i
\(301\) −7.62456 2.23877i −0.439472 0.129041i
\(302\) 3.16122 + 2.73921i 0.181908 + 0.157624i
\(303\) −0.512901 + 0.798089i −0.0294654 + 0.0458490i
\(304\) 0.131702 0.916009i 0.00755364 0.0525367i
\(305\) 8.79759 19.7579i 0.503748 1.13133i
\(306\) −1.06439 2.33070i −0.0608473 0.133237i
\(307\) −5.79883 + 5.02472i −0.330957 + 0.286776i −0.804448 0.594023i \(-0.797539\pi\)
0.473491 + 0.880798i \(0.342993\pi\)
\(308\) −4.36391 + 0.627436i −0.248657 + 0.0357515i
\(309\) 0.571535 1.25149i 0.0325135 0.0711946i
\(310\) 11.3645 + 9.66017i 0.645460 + 0.548661i
\(311\) 0.619013 0.181759i 0.0351010 0.0103066i −0.264135 0.964486i \(-0.585086\pi\)
0.299236 + 0.954179i \(0.403268\pi\)
\(312\) −0.115542 0.0527664i −0.00654129 0.00298731i
\(313\) −3.65395 + 0.525358i −0.206533 + 0.0296950i −0.244805 0.969572i \(-0.578724\pi\)
0.0382716 + 0.999267i \(0.487815\pi\)
\(314\) 1.70819 + 1.97136i 0.0963989 + 0.111250i
\(315\) −4.07773 + 6.47940i −0.229754 + 0.365073i
\(316\) 1.78063 1.14434i 0.100168 0.0643743i
\(317\) 18.2009 + 2.61689i 1.02226 + 0.146979i 0.633004 0.774148i \(-0.281822\pi\)
0.389260 + 0.921128i \(0.372731\pi\)
\(318\) 0.0229346 0.0356869i 0.00128611 0.00200122i
\(319\) 0.0140662 0.0162333i 0.000787558 0.000908890i
\(320\) −2.13942 + 0.650297i −0.119597 + 0.0363527i
\(321\) −1.65261 −0.0922398
\(322\) 5.46410 0.520744i 0.304502 0.0290200i
\(323\) 0.792644i 0.0441039i
\(324\) 8.56185 + 2.51398i 0.475658 + 0.139666i
\(325\) −6.19978 + 2.97476i −0.343902 + 0.165010i
\(326\) −2.58355 1.66035i −0.143090 0.0919581i
\(327\) −1.25048 0.179792i −0.0691518 0.00994252i
\(328\) 2.67043 + 4.15527i 0.147450 + 0.229436i
\(329\) −3.45953 7.57532i −0.190730 0.417641i
\(330\) −0.765408 0.216879i −0.0421343 0.0119388i
\(331\) −4.58706 31.9037i −0.252128 1.75359i −0.585390 0.810752i \(-0.699058\pi\)
0.333262 0.942834i \(-0.391851\pi\)
\(332\) −9.35847 4.27387i −0.513613 0.234559i
\(333\) −0.909890 3.09880i −0.0498617 0.169813i
\(334\) 13.1547 3.86256i 0.719792 0.211350i
\(335\) 17.1027 2.62482i 0.934422 0.143409i
\(336\) −0.0150434 0.104629i −0.000820682 0.00570797i
\(337\) −7.50022 + 6.49898i −0.408563 + 0.354022i −0.834765 0.550606i \(-0.814397\pi\)
0.426202 + 0.904628i \(0.359851\pi\)
\(338\) 10.1047 4.61465i 0.549622 0.251004i
\(339\) 1.20042 0.771465i 0.0651981 0.0419002i
\(340\) 1.73453 0.812104i 0.0940679 0.0440425i
\(341\) 21.6162 + 13.8919i 1.17058 + 0.752288i
\(342\) −2.09221 1.81291i −0.113134 0.0980310i
\(343\) −4.09186 + 13.9356i −0.220939 + 0.752451i
\(344\) −6.94312 −0.374348
\(345\) 0.938934 + 0.315219i 0.0505505 + 0.0169708i
\(346\) 15.9683 0.858459
\(347\) −0.511743 + 1.74284i −0.0274718 + 0.0935604i −0.972088 0.234617i \(-0.924616\pi\)
0.944616 + 0.328178i \(0.106434\pi\)
\(348\) 0.000389208 0 0.000337251i 2.08638e−5 0 1.80786e-5i
\(349\) −7.67643 4.93334i −0.410910 0.264076i 0.318815 0.947817i \(-0.396715\pi\)
−0.729724 + 0.683741i \(0.760352\pi\)
\(350\) −4.87192 3.00195i −0.260415 0.160461i
\(351\) −0.640229 + 0.411450i −0.0341729 + 0.0219616i
\(352\) −3.50402 + 1.60023i −0.186765 + 0.0852927i
\(353\) −11.6061 + 10.0567i −0.617730 + 0.535266i −0.906540 0.422121i \(-0.861286\pi\)
0.288810 + 0.957386i \(0.406740\pi\)
\(354\) −0.0283212 0.196978i −0.00150525 0.0104693i
\(355\) −1.22129 7.95764i −0.0648194 0.422348i
\(356\) 6.85040 2.01146i 0.363071 0.106607i
\(357\) 0.0255074 + 0.0868703i 0.00135000 + 0.00459766i
\(358\) −21.6777 9.89986i −1.14570 0.523224i
\(359\) −0.348942 2.42695i −0.0184165 0.128089i 0.978539 0.206061i \(-0.0660646\pi\)
−0.996956 + 0.0779719i \(0.975156\pi\)
\(360\) −1.82358 + 6.43576i −0.0961110 + 0.339194i
\(361\) −7.53712 16.5040i −0.396690 0.868631i
\(362\) −0.942790 1.46701i −0.0495519 0.0771043i
\(363\) −0.350948 0.0504587i −0.0184200 0.00264840i
\(364\) −1.32417 0.850992i −0.0694053 0.0446041i
\(365\) 31.3413 + 4.20316i 1.64048 + 0.220003i
\(366\) 0.857138 + 0.251678i 0.0448033 + 0.0131554i
\(367\) 22.7391i 1.18697i 0.804845 + 0.593485i \(0.202248\pi\)
−0.804845 + 0.593485i \(0.797752\pi\)
\(368\) 4.45262 1.78161i 0.232109 0.0928729i
\(369\) 14.7760 0.769208
\(370\) 2.30974 0.702067i 0.120078 0.0364987i
\(371\) 0.344248 0.397284i 0.0178725 0.0206259i
\(372\) −0.333071 + 0.518268i −0.0172689 + 0.0268710i
\(373\) 34.5081 + 4.96151i 1.78676 + 0.256897i 0.954654 0.297717i \(-0.0962253\pi\)
0.832107 + 0.554615i \(0.187134\pi\)
\(374\) 2.77564 1.78380i 0.143525 0.0922379i
\(375\) −0.582757 0.852440i −0.0300934 0.0440198i
\(376\) −4.76504 5.49915i −0.245738 0.283597i
\(377\) 0.00759072 0.00109138i 0.000390942 5.62090e-5i
\(378\) −0.576094 0.263093i −0.0296311 0.0135321i
\(379\) −30.1488 + 8.85248i −1.54864 + 0.454721i −0.940693 0.339258i \(-0.889824\pi\)
−0.607945 + 0.793979i \(0.708006\pi\)
\(380\) 1.34022 1.57667i 0.0687519 0.0808816i
\(381\) −0.116960 + 0.256107i −0.00599204 + 0.0131207i
\(382\) 14.9558 2.15032i 0.765207 0.110020i
\(383\) 25.2467 21.8764i 1.29004 1.11783i 0.303765 0.952747i \(-0.401756\pi\)
0.986280 0.165083i \(-0.0527893\pi\)
\(384\) −0.0383671 0.0840122i −0.00195791 0.00428723i
\(385\) −9.00591 4.01006i −0.458984 0.204371i
\(386\) 3.38067 23.5131i 0.172072 1.19678i
\(387\) −11.2292 + 17.4730i −0.570812 + 0.888200i
\(388\) −14.5499 12.6076i −0.738661 0.640053i
\(389\) −7.19341 2.11218i −0.364720 0.107092i 0.0942372 0.995550i \(-0.469959\pi\)
−0.458957 + 0.888458i \(0.651777\pi\)
\(390\) −0.155816 0.237472i −0.00789007 0.0120248i
\(391\) −3.55775 + 2.05320i −0.179923 + 0.103835i
\(392\) 5.69011i 0.287394i
\(393\) 0.172037 0.585905i 0.00867813 0.0295550i
\(394\) 6.30218 7.27311i 0.317499 0.366414i
\(395\) 4.73274 0.0448965i 0.238130 0.00225899i
\(396\) −1.63997 + 11.4062i −0.0824116 + 0.573185i
\(397\) −14.2718 22.2073i −0.716279 1.11455i −0.988339 0.152271i \(-0.951341\pi\)
0.272060 0.962280i \(-0.412295\pi\)
\(398\) 4.55809 2.08161i 0.228476 0.104342i
\(399\) 0.0640599 + 0.0739291i 0.00320701 + 0.00370108i
\(400\) −4.82333 1.31740i −0.241166 0.0658698i
\(401\) 3.29610 7.21746i 0.164600 0.360423i −0.809302 0.587392i \(-0.800155\pi\)
0.973902 + 0.226970i \(0.0728818\pi\)
\(402\) 0.201349 + 0.685731i 0.0100424 + 0.0342012i
\(403\) 2.58456 + 8.80221i 0.128746 + 0.438469i
\(404\) −4.26707 + 9.34359i −0.212295 + 0.464861i
\(405\) 13.2090 + 14.9549i 0.656359 + 0.743116i
\(406\) 0.00417921 + 0.00482307i 0.000207411 + 0.000239365i
\(407\) 3.78298 1.72763i 0.187515 0.0856354i
\(408\) 0.0427682 + 0.0665485i 0.00211734 + 0.00329464i
\(409\) −1.73550 + 12.0707i −0.0858150 + 0.596856i 0.900855 + 0.434121i \(0.142941\pi\)
−0.986670 + 0.162736i \(0.947968\pi\)
\(410\) 0.104770 + 11.0443i 0.00517423 + 0.545438i
\(411\) 0.742371 0.856741i 0.0366184 0.0422599i
\(412\) 4.19683 14.2931i 0.206763 0.704169i
\(413\) 2.46605i 0.121347i
\(414\) 2.71770 14.0868i 0.133568 0.692330i
\(415\) −12.6205 19.2343i −0.619517 0.944174i
\(416\) −1.31959 0.387468i −0.0646984 0.0189972i
\(417\) −1.12870 0.978028i −0.0552729 0.0478942i
\(418\) 1.92732 2.99896i 0.0942681 0.146684i
\(419\) −2.14712 + 14.9335i −0.104894 + 0.729550i 0.867708 + 0.497074i \(0.165592\pi\)
−0.972602 + 0.232477i \(0.925317\pi\)
\(420\) 0.0961448 0.215925i 0.00469139 0.0105361i
\(421\) 8.54469 + 18.7103i 0.416443 + 0.911883i 0.995335 + 0.0964786i \(0.0307579\pi\)
−0.578892 + 0.815404i \(0.696515\pi\)
\(422\) 16.5147 14.3101i 0.803923 0.696603i
\(423\) −21.5456 + 3.09779i −1.04758 + 0.150620i
\(424\) 0.190804 0.417802i 0.00926626 0.0202903i
\(425\) 4.24979 + 0.528947i 0.206145 + 0.0256577i
\(426\) 0.319060 0.0936846i 0.0154585 0.00453903i
\(427\) 10.0697 + 4.59867i 0.487306 + 0.222545i
\(428\) −17.7113 + 2.54650i −0.856109 + 0.123090i
\(429\) −0.320424 0.369789i −0.0154702 0.0178536i
\(430\) −13.1397 8.26934i −0.633655 0.398783i
\(431\) −12.7650 + 8.20355i −0.614867 + 0.395151i −0.810679 0.585490i \(-0.800902\pi\)
0.195812 + 0.980641i \(0.437266\pi\)
\(432\) −0.547730 0.0787517i −0.0263527 0.00378894i
\(433\) 1.83241 2.85128i 0.0880599 0.137024i −0.794429 0.607357i \(-0.792230\pi\)
0.882489 + 0.470333i \(0.155866\pi\)
\(434\) −4.99940 + 5.76962i −0.239979 + 0.276951i
\(435\) 0.000334901 0.00110179i 1.60573e−5 5.28269e-5i
\(436\) −13.6787 −0.655089
\(437\) −2.57507 + 3.61478i −0.123182 + 0.172918i
\(438\) 1.30611i 0.0624084i
\(439\) −15.2146 4.46741i −0.726154 0.213218i −0.102294 0.994754i \(-0.532618\pi\)
−0.623860 + 0.781536i \(0.714436\pi\)
\(440\) −8.53720 1.14492i −0.406995 0.0545817i
\(441\) 14.3196 + 9.20267i 0.681887 + 0.438222i
\(442\) 1.16598 + 0.167642i 0.0554599 + 0.00797394i
\(443\) 16.5079 + 25.6868i 0.784314 + 1.22042i 0.971254 + 0.238045i \(0.0765065\pi\)
−0.186940 + 0.982371i \(0.559857\pi\)
\(444\) 0.0414215 + 0.0907004i 0.00196578 + 0.00430445i
\(445\) 15.3599 + 4.35225i 0.728131 + 0.206317i
\(446\) 2.90052 + 20.1735i 0.137344 + 0.955245i
\(447\) 1.23650 + 0.564688i 0.0584842 + 0.0267088i
\(448\) −0.322444 1.09815i −0.0152341 0.0518825i
\(449\) −6.20596 + 1.82224i −0.292878 + 0.0859966i −0.424871 0.905254i \(-0.639680\pi\)
0.131993 + 0.991251i \(0.457862\pi\)
\(450\) −11.1162 + 10.0077i −0.524021 + 0.471766i
\(451\) 2.70784 + 18.8335i 0.127507 + 0.886833i
\(452\) 11.6764 10.1177i 0.549212 0.475895i
\(453\) −0.351414 + 0.160485i −0.0165109 + 0.00754026i
\(454\) −2.50041 + 1.60691i −0.117350 + 0.0754162i
\(455\) −1.49243 3.18759i −0.0699660 0.149436i
\(456\) 0.0719029 + 0.0462092i 0.00336716 + 0.00216394i
\(457\) 15.0484 + 13.0395i 0.703935 + 0.609963i 0.931475 0.363806i \(-0.118523\pi\)
−0.227540 + 0.973769i \(0.573068\pi\)
\(458\) −6.32959 + 21.5566i −0.295762 + 1.00727i
\(459\) 0.473964 0.0221227
\(460\) 10.5484 + 1.93145i 0.491823 + 0.0900545i
\(461\) −13.0285 −0.606796 −0.303398 0.952864i \(-0.598121\pi\)
−0.303398 + 0.952864i \(0.598121\pi\)
\(462\) 0.114718 0.390695i 0.00533718 0.0181768i
\(463\) 14.3298 + 12.4168i 0.665962 + 0.577059i 0.920853 0.389911i \(-0.127494\pi\)
−0.254891 + 0.966970i \(0.582040\pi\)
\(464\) 0.00469088 + 0.00301465i 0.000217769 + 0.000139952i
\(465\) −1.24759 + 0.584123i −0.0578558 + 0.0270881i
\(466\) 11.7162 7.52951i 0.542740 0.348798i
\(467\) −29.8041 + 13.6111i −1.37917 + 0.629846i −0.960497 0.278291i \(-0.910232\pi\)
−0.418673 + 0.908137i \(0.637505\pi\)
\(468\) −3.10929 + 2.69421i −0.143727 + 0.124540i
\(469\) 1.26039 + 8.76618i 0.0581993 + 0.404785i
\(470\) −2.46821 16.0823i −0.113850 0.741819i
\(471\) −0.231156 + 0.0678737i −0.0106511 + 0.00312745i
\(472\) −0.607046 2.06741i −0.0279415 0.0951602i
\(473\) −24.3289 11.1106i −1.11864 0.510867i
\(474\) 0.0278211 + 0.193500i 0.00127786 + 0.00888774i
\(475\) 4.41418 1.38761i 0.202537 0.0636678i
\(476\) 0.407226 + 0.891700i 0.0186652 + 0.0408710i
\(477\) −0.742846 1.15589i −0.0340126 0.0529246i
\(478\) −11.5180 1.65603i −0.526820 0.0757453i
\(479\) 17.9599 + 11.5421i 0.820608 + 0.527373i 0.882281 0.470724i \(-0.156007\pi\)
−0.0616728 + 0.998096i \(0.519644\pi\)
\(480\) 0.0274504 0.204687i 0.00125293 0.00934265i
\(481\) 1.42465 + 0.418314i 0.0649583 + 0.0190735i
\(482\) 18.5648i 0.845604i
\(483\) −0.165893 + 0.479030i −0.00754837 + 0.0217966i
\(484\) −3.83893 −0.174497
\(485\) −12.5197 41.1888i −0.568491 1.87029i
\(486\) −1.62682 + 1.87746i −0.0737943 + 0.0851631i
\(487\) −11.3067 + 17.5936i −0.512357 + 0.797243i −0.996995 0.0774722i \(-0.975315\pi\)
0.484638 + 0.874715i \(0.338951\pi\)
\(488\) 9.57391 + 1.37652i 0.433390 + 0.0623121i
\(489\) 0.238613 0.153347i 0.0107904 0.00693459i
\(490\) −6.77698 + 10.7684i −0.306153 + 0.486468i
\(491\) 27.0112 + 31.1726i 1.21900 + 1.40680i 0.885881 + 0.463913i \(0.153555\pi\)
0.333118 + 0.942885i \(0.391899\pi\)
\(492\) −0.451550 + 0.0649230i −0.0203574 + 0.00292696i
\(493\) −0.00434439 0.00198402i −0.000195661 8.93556e-5i
\(494\) 1.22119 0.358574i 0.0549439 0.0161330i
\(495\) −16.6886 + 19.6329i −0.750096 + 0.882433i
\(496\) −2.77098 + 6.06760i −0.124421 + 0.272443i
\(497\) 4.07877 0.586439i 0.182958 0.0263054i
\(498\) 0.718115 0.622250i 0.0321795 0.0278837i
\(499\) −14.7053 32.2001i −0.658300 1.44148i −0.884098 0.467301i \(-0.845226\pi\)
0.225798 0.974174i \(-0.427501\pi\)
\(500\) −7.55903 8.23778i −0.338050 0.368405i
\(501\) −0.180204 + 1.25335i −0.00805093 + 0.0559954i
\(502\) 3.46138 5.38601i 0.154489 0.240389i
\(503\) −3.70454 3.21001i −0.165177 0.143127i 0.568350 0.822787i \(-0.307582\pi\)
−0.733527 + 0.679660i \(0.762127\pi\)
\(504\) −3.28507 0.964583i −0.146329 0.0429659i
\(505\) −19.2037 + 12.6005i −0.854553 + 0.560713i
\(506\) 18.4531 + 0.882429i 0.820340 + 0.0392288i
\(507\) 1.02597i 0.0455648i
\(508\) −0.858846 + 2.92496i −0.0381051 + 0.129774i
\(509\) −6.24616 + 7.20845i −0.276856 + 0.319509i −0.877100 0.480308i \(-0.840525\pi\)
0.600244 + 0.799817i \(0.295070\pi\)
\(510\) 0.00167794 + 0.176879i 7.43006e−5 + 0.00783235i
\(511\) −2.30341 + 16.0206i −0.101897 + 0.708708i
\(512\) −0.540641 0.841254i −0.0238932 0.0371785i
\(513\) 0.465821 0.212733i 0.0205665 0.00939240i
\(514\) −7.80428 9.00662i −0.344232 0.397265i
\(515\) 24.9656 22.0509i 1.10012 0.971680i
\(516\) 0.266387 0.583307i 0.0117270 0.0256787i
\(517\) −7.89688 26.8943i −0.347304 1.18281i
\(518\) 0.348114 + 1.18557i 0.0152953 + 0.0520909i
\(519\) −0.612655 + 1.34153i −0.0268926 + 0.0588865i
\(520\) −2.03583 2.30493i −0.0892771 0.101078i
\(521\) 15.2873 + 17.6425i 0.669748 + 0.772930i 0.984337 0.176298i \(-0.0564121\pi\)
−0.314589 + 0.949228i \(0.601867\pi\)
\(522\) 0.0151732 0.00692938i 0.000664114 0.000303291i
\(523\) 2.28976 + 3.56293i 0.100124 + 0.155796i 0.887701 0.460420i \(-0.152301\pi\)
−0.787577 + 0.616216i \(0.788665\pi\)
\(524\) 0.940933 6.54433i 0.0411049 0.285891i
\(525\) 0.439122 0.294125i 0.0191648 0.0128367i
\(526\) −6.09516 + 7.03419i −0.265762 + 0.306705i
\(527\) 1.60962 5.48186i 0.0701162 0.238794i
\(528\) 0.355777i 0.0154832i
\(529\) −22.8950 2.19471i −0.995437 0.0954220i
\(530\) 0.858700 0.563434i 0.0372996 0.0244740i
\(531\) −6.18459 1.81596i −0.268388 0.0788059i
\(532\) 0.800458 + 0.693601i 0.0347043 + 0.0300714i
\(533\) −3.67265 + 5.71475i −0.159080 + 0.247533i
\(534\) −0.0938428 + 0.652691i −0.00406098 + 0.0282447i
\(535\) −36.5513 16.2752i −1.58025 0.703637i
\(536\) 3.21453 + 7.03885i 0.138847 + 0.304032i
\(537\) 1.66342 1.44136i 0.0717817 0.0621992i
\(538\) −29.1132 + 4.18584i −1.25516 + 0.180465i
\(539\) −9.10550 + 19.9383i −0.392202 + 0.858802i
\(540\) −0.942776 0.801389i −0.0405706 0.0344863i
\(541\) 19.2376 5.64867i 0.827089 0.242855i 0.159323 0.987227i \(-0.449069\pi\)
0.667766 + 0.744371i \(0.267251\pi\)
\(542\) −13.9453 6.36859i −0.599000 0.273554i
\(543\) 0.159419 0.0229210i 0.00684131 0.000983632i
\(544\) 0.560898 + 0.647311i 0.0240483 + 0.0277532i
\(545\) −25.8867 16.2914i −1.10886 0.697849i
\(546\) 0.122298 0.0785963i 0.00523388 0.00336361i
\(547\) −5.59151 0.803938i −0.239076 0.0343739i 0.0217354 0.999764i \(-0.493081\pi\)
−0.260811 + 0.965390i \(0.583990\pi\)
\(548\) 6.63597 10.3258i 0.283474 0.441095i
\(549\) 18.9481 21.8673i 0.808686 0.933273i
\(550\) −14.7929 12.3346i −0.630771 0.525951i
\(551\) −0.00516025 −0.000219834
\(552\) −0.0211571 + 0.442430i −0.000900504 + 0.0188311i
\(553\) 2.42251i 0.103015i
\(554\) 17.5246 + 5.14569i 0.744549 + 0.218619i
\(555\) −0.0296357 + 0.220983i −0.00125797 + 0.00938018i
\(556\) −13.6036 8.74248i −0.576919 0.370764i
\(557\) −34.5963 4.97419i −1.46589 0.210763i −0.637299 0.770617i \(-0.719948\pi\)
−0.828592 + 0.559853i \(0.810857\pi\)
\(558\) 10.7881 + 16.7866i 0.456696 + 0.710634i
\(559\) −3.96676 8.68599i −0.167776 0.367378i
\(560\) 0.697682 2.46226i 0.0294825 0.104049i
\(561\) 0.0433674 + 0.301627i 0.00183097 + 0.0127347i
\(562\) 20.2503 + 9.24798i 0.854205 + 0.390103i
\(563\) −4.00533 13.6409i −0.168804 0.574895i −0.999826 0.0186549i \(-0.994062\pi\)
0.831022 0.556240i \(-0.187757\pi\)
\(564\) 0.644816 0.189335i 0.0271516 0.00797244i
\(565\) 34.1476 5.24077i 1.43660 0.220481i
\(566\) 2.75964 + 19.1938i 0.115997 + 0.806774i
\(567\) −7.71830 + 6.68794i −0.324138 + 0.280867i
\(568\) 3.27507 1.49567i 0.137419 0.0627571i
\(569\) 11.0496 7.10113i 0.463222 0.297695i −0.288136 0.957590i \(-0.593035\pi\)
0.751358 + 0.659895i \(0.229399\pi\)
\(570\) 0.0810394 + 0.173087i 0.00339437 + 0.00724983i
\(571\) 6.97446 + 4.48221i 0.291872 + 0.187575i 0.678380 0.734711i \(-0.262682\pi\)
−0.386508 + 0.922286i \(0.626319\pi\)
\(572\) −4.00385 3.46936i −0.167409 0.145061i
\(573\) −0.393158 + 1.33897i −0.0164244 + 0.0559365i
\(574\) −5.65314 −0.235958
\(575\) 17.6624 + 16.2185i 0.736571 + 0.676360i
\(576\) −2.99147 −0.124645
\(577\) 5.22928 17.8093i 0.217698 0.741410i −0.776140 0.630561i \(-0.782825\pi\)
0.993837 0.110849i \(-0.0353570\pi\)
\(578\) 12.2933 + 10.6522i 0.511334 + 0.443074i
\(579\) 1.84568 + 1.18615i 0.0767038 + 0.0492945i
\(580\) 0.00528694 + 0.0112921i 0.000219528 + 0.000468877i
\(581\) 9.90568 6.36599i 0.410957 0.264106i
\(582\) 1.61743 0.738655i 0.0670446 0.0306183i
\(583\) 1.33716 1.15866i 0.0553796 0.0479867i
\(584\) 2.01258 + 13.9978i 0.0832812 + 0.579234i
\(585\) −9.09312 + 1.39556i −0.375954 + 0.0576992i
\(586\) 11.0258 3.23747i 0.455472 0.133739i
\(587\) −4.20940 14.3359i −0.173741 0.591706i −0.999612 0.0278477i \(-0.991135\pi\)
0.825872 0.563858i \(-0.190684\pi\)
\(588\) −0.478038 0.218313i −0.0197140 0.00900307i
\(589\) −0.878505 6.11014i −0.0361982 0.251764i
\(590\) 1.31348 4.63553i 0.0540752 0.190842i
\(591\) 0.369233 + 0.808508i 0.0151882 + 0.0332576i
\(592\) 0.583682 + 0.908226i 0.0239892 + 0.0373279i
\(593\) −44.3260 6.37311i −1.82025 0.261712i −0.854177 0.519983i \(-0.825938\pi\)
−0.966073 + 0.258270i \(0.916847\pi\)
\(594\) −1.79324 1.15244i −0.0735775 0.0472854i
\(595\) −0.291357 + 2.17254i −0.0119445 + 0.0890654i
\(596\) 14.1219 + 4.14655i 0.578454 + 0.169849i
\(597\) 0.462800i 0.0189411i
\(598\) 4.77271 + 4.55245i 0.195171 + 0.186163i
\(599\) −24.3359 −0.994336 −0.497168 0.867654i \(-0.665627\pi\)
−0.497168 + 0.867654i \(0.665627\pi\)
\(600\) 0.295734 0.354673i 0.0120733 0.0144795i
\(601\) −17.3309 + 20.0009i −0.706940 + 0.815853i −0.989673 0.143346i \(-0.954214\pi\)
0.282732 + 0.959199i \(0.408759\pi\)
\(602\) 4.29617 6.68497i 0.175099 0.272459i
\(603\) 22.9127 + 3.29436i 0.933079 + 0.134157i
\(604\) −3.51887 + 2.26144i −0.143181 + 0.0920168i
\(605\) −7.26510 4.57220i −0.295368 0.185887i
\(606\) −0.621260 0.716972i −0.0252370 0.0291250i
\(607\) 5.88323 0.845881i 0.238793 0.0343333i −0.0218792 0.999761i \(-0.506965\pi\)
0.260672 + 0.965427i \(0.416056\pi\)
\(608\) 0.841800 + 0.384437i 0.0341395 + 0.0155910i
\(609\) −0.000565541 0 0.000166058i −2.29169e−5 0 6.72900e-6i
\(610\) 16.4790 + 14.0077i 0.667215 + 0.567154i
\(611\) 4.15717 9.10294i 0.168181 0.368266i
\(612\) 2.53616 0.364645i 0.102518 0.0147399i
\(613\) −14.5319 + 12.5920i −0.586940 + 0.508586i −0.896941 0.442150i \(-0.854216\pi\)
0.310002 + 0.950736i \(0.399670\pi\)
\(614\) −3.18746 6.97957i −0.128635 0.281672i
\(615\) −0.931874 0.414935i −0.0375768 0.0167318i
\(616\) 0.627436 4.36391i 0.0252801 0.175827i
\(617\) −7.50772 + 11.6822i −0.302250 + 0.470310i −0.958844 0.283935i \(-0.908360\pi\)
0.656594 + 0.754244i \(0.271996\pi\)
\(618\) 1.03977 + 0.900968i 0.0418258 + 0.0362422i
\(619\) 38.2748 + 11.2385i 1.53840 + 0.451714i 0.937608 0.347695i \(-0.113035\pi\)
0.600788 + 0.799408i \(0.294854\pi\)
\(620\) −12.4706 + 8.18256i −0.500832 + 0.328620i
\(621\) 2.16147 + 1.53977i 0.0867367 + 0.0617889i
\(622\) 0.645146i 0.0258680i
\(623\) −2.30213 + 7.84032i −0.0922328 + 0.314116i
\(624\) 0.0831810 0.0959960i 0.00332990 0.00384291i
\(625\) −4.49404 24.5928i −0.179762 0.983710i
\(626\) 0.525358 3.65395i 0.0209975 0.146041i
\(627\) 0.178004 + 0.276980i 0.00710879 + 0.0110615i
\(628\) −2.37276 + 1.08360i −0.0946834 + 0.0432404i
\(629\) −0.605552 0.698844i −0.0241449 0.0278647i
\(630\) −5.06811 5.73801i −0.201918 0.228608i
\(631\) 15.3213 33.5491i 0.609933 1.33557i −0.312687 0.949856i \(-0.601229\pi\)
0.922620 0.385711i \(-0.126044\pi\)
\(632\) 0.596326 + 2.03090i 0.0237206 + 0.0807849i
\(633\) 0.568599 + 1.93647i 0.0225998 + 0.0769678i
\(634\) −7.63868 + 16.7264i −0.303371 + 0.664289i
\(635\) −5.10901 + 4.51254i −0.202745 + 0.179075i
\(636\) 0.0277799 + 0.0320597i 0.00110154 + 0.00127125i
\(637\) −7.11844 + 3.25088i −0.282043 + 0.128805i
\(638\) 0.0116128 + 0.0180699i 0.000459756 + 0.000715394i
\(639\) 1.53281 10.6610i 0.0606372 0.421741i
\(640\) −0.0212112 2.23597i −0.000838447 0.0883844i
\(641\) 10.1816 11.7502i 0.402148 0.464103i −0.518168 0.855279i \(-0.673386\pi\)
0.920316 + 0.391175i \(0.127931\pi\)
\(642\) 0.465595 1.58567i 0.0183756 0.0625814i
\(643\) 28.4579i 1.12227i −0.827724 0.561136i \(-0.810365\pi\)
0.827724 0.561136i \(-0.189635\pi\)
\(644\) −1.03976 + 5.38947i −0.0409724 + 0.212375i
\(645\) 1.19886 0.786628i 0.0472050 0.0309735i
\(646\) −0.760536 0.223314i −0.0299229 0.00878616i
\(647\) 24.7703 + 21.4636i 0.973820 + 0.843820i 0.987744 0.156083i \(-0.0498868\pi\)
−0.0139238 + 0.999903i \(0.504432\pi\)
\(648\) −4.82430 + 7.50676i −0.189516 + 0.294893i
\(649\) 1.18123 8.21566i 0.0463675 0.322493i
\(650\) −1.10758 6.78673i −0.0434429 0.266198i
\(651\) −0.292906 0.641374i −0.0114799 0.0251374i
\(652\) 2.32096 2.01112i 0.0908959 0.0787617i
\(653\) −14.3223 + 2.05924i −0.560475 + 0.0805841i −0.416729 0.909031i \(-0.636824\pi\)
−0.143745 + 0.989615i \(0.545915\pi\)
\(654\) 0.524811 1.14917i 0.0205217 0.0449363i
\(655\) 9.57508 11.2644i 0.374129 0.440136i
\(656\) −4.73930 + 1.39158i −0.185038 + 0.0543322i
\(657\) 38.4816 + 17.5740i 1.50131 + 0.685626i
\(658\) 8.24313 1.18518i 0.321351 0.0462032i
\(659\) −11.7391 13.5477i −0.457292 0.527743i 0.479541 0.877519i \(-0.340803\pi\)
−0.936833 + 0.349776i \(0.886258\pi\)
\(660\) 0.423734 0.673302i 0.0164938 0.0262082i
\(661\) 1.44448 0.928308i 0.0561836 0.0361070i −0.512248 0.858838i \(-0.671187\pi\)
0.568431 + 0.822731i \(0.307551\pi\)
\(662\) 31.9037 + 4.58706i 1.23997 + 0.178281i
\(663\) −0.0588192 + 0.0915245i −0.00228435 + 0.00355452i
\(664\) 6.73734 7.77530i 0.261459 0.301740i
\(665\) 0.688767 + 2.26598i 0.0267093 + 0.0878711i
\(666\) 3.22962 0.125145
\(667\) −0.0133667 0.0231616i −0.000517560 0.000896820i
\(668\) 13.7100i 0.530457i
\(669\) −1.80611 0.530321i −0.0698282 0.0205034i
\(670\) −2.29989 + 17.1494i −0.0888527 + 0.662541i
\(671\) 31.3444 + 20.1438i 1.21004 + 0.777644i
\(672\) 0.104629 + 0.0150434i 0.00403614 + 0.000580310i
\(673\) 20.2803 + 31.5567i 0.781747 + 1.21642i 0.972068 + 0.234700i \(0.0754109\pi\)
−0.190321 + 0.981722i \(0.560953\pi\)
\(674\) −4.12267 9.02738i −0.158799 0.347722i
\(675\) −0.829724 2.63947i −0.0319361 0.101593i
\(676\) 1.58091 + 10.9955i 0.0608042 + 0.422903i
\(677\) 4.43279 + 2.02439i 0.170366 + 0.0778035i 0.498772 0.866733i \(-0.333784\pi\)
−0.328407 + 0.944536i \(0.606512\pi\)
\(678\) 0.402017 + 1.36914i 0.0154394 + 0.0525817i
\(679\) 21.1418 6.20781i 0.811350 0.238234i
\(680\) 0.290536 + 1.89306i 0.0111415 + 0.0725956i
\(681\) −0.0390670 0.271717i −0.00149705 0.0104122i
\(682\) −19.4192 + 16.8268i −0.743598 + 0.644331i
\(683\) 27.0727 12.3637i 1.03591 0.473084i 0.176461 0.984308i \(-0.443535\pi\)
0.859448 + 0.511224i \(0.170808\pi\)
\(684\) 2.32892 1.49671i 0.0890485 0.0572280i
\(685\) 24.8566 11.6378i 0.949720 0.444658i
\(686\) −12.2183 7.85221i −0.466496 0.299799i
\(687\) −1.56817 1.35883i −0.0598294 0.0518425i
\(688\) 1.95610 6.66188i 0.0745758 0.253982i
\(689\) 0.631689 0.0240655
\(690\) −0.566978 + 0.812093i −0.0215845 + 0.0309158i
\(691\) 4.16285 0.158362 0.0791812 0.996860i \(-0.474769\pi\)
0.0791812 + 0.996860i \(0.474769\pi\)
\(692\) −4.49878 + 15.3214i −0.171018 + 0.582433i
\(693\) −9.96740 8.63680i −0.378630 0.328085i
\(694\) −1.52807 0.982028i −0.0580046 0.0372773i
\(695\) −15.3321 32.7470i −0.581580 1.24216i
\(696\) −0.000433243 0 0.000278428i −1.64220e−5 0 1.05538e-5i
\(697\) 3.84834 1.75748i 0.145766 0.0665691i
\(698\) 6.89621 5.97560i 0.261025 0.226180i
\(699\) 0.183056 + 1.27318i 0.00692383 + 0.0481563i
\(700\) 4.25293 3.82883i 0.160746 0.144716i
\(701\) 10.5790 3.10627i 0.399563 0.117322i −0.0757762 0.997125i \(-0.524143\pi\)
0.475339 + 0.879802i \(0.342325\pi\)
\(702\) −0.214410 0.730214i −0.00809239 0.0275602i
\(703\) −0.908816 0.415042i −0.0342766 0.0156536i
\(704\) −0.548216 3.81292i −0.0206617 0.143705i
\(705\) 1.44580 + 0.409670i 0.0544521 + 0.0154290i
\(706\) −6.37955 13.9693i −0.240098 0.525740i
\(707\) −6.35587 9.88992i −0.239037 0.371949i
\(708\) 0.196978 + 0.0283212i 0.00740289 + 0.00106437i
\(709\) −5.17991 3.32892i −0.194535 0.125020i 0.439747 0.898122i \(-0.355068\pi\)
−0.634283 + 0.773101i \(0.718704\pi\)
\(710\) 7.97937 + 1.07011i 0.299461 + 0.0401604i
\(711\) 6.07538 + 1.78389i 0.227845 + 0.0669012i
\(712\) 7.13961i 0.267568i
\(713\) 25.1495 19.7703i 0.941857 0.740405i
\(714\) −0.0905377 −0.00338829
\(715\) −3.44518 11.3343i −0.128842 0.423880i
\(716\) 15.6061 18.0105i 0.583229 0.673082i
\(717\) 0.581038 0.904113i 0.0216993 0.0337647i
\(718\) 2.42695 + 0.348942i 0.0905729 + 0.0130224i
\(719\) −18.6063 + 11.9575i −0.693897 + 0.445940i −0.839469 0.543407i \(-0.817134\pi\)
0.145572 + 0.989348i \(0.453498\pi\)
\(720\) −5.66131 3.56287i −0.210984 0.132780i
\(721\) 11.1648 + 12.8849i 0.415799 + 0.479857i
\(722\) 17.9589 2.58210i 0.668361 0.0960958i
\(723\) 1.55967 + 0.712278i 0.0580048 + 0.0264899i
\(724\) 1.67320 0.491296i 0.0621840 0.0182589i
\(725\) −0.00344353 + 0.0276668i −0.000127890 + 0.00102752i
\(726\) 0.147288 0.322517i 0.00546638 0.0119697i
\(727\) −14.0078 + 2.01402i −0.519520 + 0.0746957i −0.397087 0.917781i \(-0.629979\pi\)
−0.122433 + 0.992477i \(0.539070\pi\)
\(728\) 1.18958 1.03078i 0.0440888 0.0382032i
\(729\) 11.0253 + 24.1421i 0.408345 + 0.894150i
\(730\) −12.8628 + 28.8876i −0.476073 + 1.06918i
\(731\) −0.846331 + 5.88636i −0.0313027 + 0.217715i
\(732\) −0.482967 + 0.751512i −0.0178510 + 0.0277767i
\(733\) −7.77249 6.73490i −0.287084 0.248759i 0.499399 0.866372i \(-0.333554\pi\)
−0.786482 + 0.617613i \(0.788100\pi\)
\(734\) −21.8180 6.40634i −0.805316 0.236462i
\(735\) −0.644666 0.982502i −0.0237789 0.0362401i
\(736\) 0.454995 + 4.77420i 0.0167713 + 0.175979i
\(737\) 29.8083i 1.09800i
\(738\) −4.16288 + 14.1775i −0.153238 + 0.521880i
\(739\) 29.5389 34.0897i 1.08660 1.25401i 0.121375 0.992607i \(-0.461270\pi\)
0.965230 0.261402i \(-0.0841849\pi\)
\(740\) 0.0228999 + 2.41397i 0.000841815 + 0.0887394i
\(741\) −0.0167289 + 0.116352i −0.000614553 + 0.00427431i
\(742\) 0.284205 + 0.442232i 0.0104335 + 0.0162348i
\(743\) 35.1049 16.0319i 1.28788 0.588153i 0.350529 0.936552i \(-0.386002\pi\)
0.937346 + 0.348399i \(0.113274\pi\)
\(744\) −0.403438 0.465592i −0.0147908 0.0170694i
\(745\) 21.7868 + 24.6666i 0.798206 + 0.903714i
\(746\) −14.4826 + 31.7125i −0.530245 + 1.16108i
\(747\) −8.67084 29.5302i −0.317249 1.08045i
\(748\) 0.929551 + 3.16576i 0.0339878 + 0.115752i
\(749\) 8.50735 18.6285i 0.310852 0.680671i
\(750\) 0.982092 0.318991i 0.0358609 0.0116479i
\(751\) −17.2821 19.9446i −0.630632 0.727788i 0.347057 0.937844i \(-0.387181\pi\)
−0.977689 + 0.210056i \(0.932635\pi\)
\(752\) 6.61886 3.02273i 0.241365 0.110228i
\(753\) 0.319687 + 0.497443i 0.0116501 + 0.0181278i
\(754\) −0.00109138 + 0.00759072i −3.97458e−5 + 0.000276438i
\(755\) −9.35281 + 0.0887243i −0.340384 + 0.00322901i
\(756\) 0.414741 0.478636i 0.0150840 0.0174078i
\(757\) 8.31937 28.3332i 0.302373 1.02979i −0.658451 0.752624i \(-0.728788\pi\)
0.960823 0.277162i \(-0.0893940\pi\)
\(758\) 31.4216i 1.14128i
\(759\) −0.782126 + 1.51643i −0.0283894 + 0.0550429i
\(760\) 1.13522 + 1.73013i 0.0411789 + 0.0627585i
\(761\) −35.4871 10.4200i −1.28641 0.377723i −0.434147 0.900842i \(-0.642950\pi\)
−0.852260 + 0.523119i \(0.824768\pi\)
\(762\) −0.212781 0.184376i −0.00770824 0.00667923i
\(763\) 8.46390 13.1701i 0.306414 0.476789i
\(764\) −2.15032 + 14.9558i −0.0777960 + 0.541083i
\(765\) 5.23394 + 2.33051i 0.189233 + 0.0842598i
\(766\) 13.8774 + 30.3873i 0.501411 + 1.09794i
\(767\) 2.23955 1.94058i 0.0808655