# Properties

 Label 230.2.j.a.119.4 Level $230$ Weight $2$ Character 230.119 Analytic conductor $1.837$ Analytic rank $0$ Dimension $120$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$230 = 2 \cdot 5 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 230.j (of order $$22$$, degree $$10$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$1.83655924649$$ Analytic rank: $$0$$ Dimension: $$120$$ Relative dimension: $$12$$ over $$\Q(\zeta_{22})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

## Embedding invariants

 Embedding label 119.4 Character $$\chi$$ $$=$$ 230.119 Dual form 230.2.j.a.29.4

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.909632 + 0.415415i) q^{2} +(0.192005 + 0.653908i) q^{3} +(0.654861 - 0.755750i) q^{4} +(2.23607 - 0.00163718i) q^{5} +(-0.446297 - 0.515054i) q^{6} +(-0.838442 + 0.120550i) q^{7} +(-0.281733 + 0.959493i) q^{8} +(2.13303 - 1.37082i) q^{9} +O(q^{10})$$ $$q+(-0.909632 + 0.415415i) q^{2} +(0.192005 + 0.653908i) q^{3} +(0.654861 - 0.755750i) q^{4} +(2.23607 - 0.00163718i) q^{5} +(-0.446297 - 0.515054i) q^{6} +(-0.838442 + 0.120550i) q^{7} +(-0.281733 + 0.959493i) q^{8} +(2.13303 - 1.37082i) q^{9} +(-2.03332 + 0.930385i) q^{10} +(0.0655354 - 0.143502i) q^{11} +(0.619927 + 0.283111i) q^{12} +(2.33610 + 0.335881i) q^{13} +(0.712596 - 0.457958i) q^{14} +(0.430406 + 1.46187i) q^{15} +(-0.142315 - 0.989821i) q^{16} +(-1.02083 + 0.884550i) q^{17} +(-1.37082 + 2.13303i) q^{18} +(-1.86520 + 2.15256i) q^{19} +(1.46308 - 1.69098i) q^{20} +(-0.239813 - 0.525118i) q^{21} +0.157759i q^{22} +(3.82181 + 2.89719i) q^{23} -0.681514 q^{24} +(4.99999 - 0.00732171i) q^{25} +(-2.26452 + 0.664924i) q^{26} +(2.85110 + 2.47049i) q^{27} +(-0.457958 + 0.712596i) q^{28} +(5.24884 + 6.05748i) q^{29} +(-0.998792 - 1.15096i) q^{30} +(-8.15854 - 2.39556i) q^{31} +(0.540641 + 0.841254i) q^{32} +(0.106420 + 0.0153010i) q^{33} +(0.561120 - 1.22868i) q^{34} +(-1.87462 + 0.270930i) q^{35} +(0.360845 - 2.50973i) q^{36} +(-5.32167 - 8.28068i) q^{37} +(0.802442 - 2.73287i) q^{38} +(0.228907 + 1.59209i) q^{39} +(-0.628402 + 2.14595i) q^{40} +(-4.40840 - 2.83311i) q^{41} +(0.436284 + 0.378042i) q^{42} +(-0.846481 - 2.88285i) q^{43} +(-0.0655354 - 0.143502i) q^{44} +(4.76736 - 3.06873i) q^{45} +(-4.67998 - 1.04774i) q^{46} -5.12942i q^{47} +(0.619927 - 0.283111i) q^{48} +(-6.02800 + 1.76998i) q^{49} +(-4.54511 + 2.08373i) q^{50} +(-0.774417 - 0.497688i) q^{51} +(1.78366 - 1.54555i) q^{52} +(2.24070 - 0.322165i) q^{53} +(-3.61973 - 1.06285i) q^{54} +(0.146307 - 0.320989i) q^{55} +(0.120550 - 0.838442i) q^{56} +(-1.76570 - 0.806368i) q^{57} +(-7.29088 - 3.32963i) q^{58} +(1.21457 - 8.44754i) q^{59} +(1.38666 + 0.632040i) q^{60} +(-7.90952 - 2.32245i) q^{61} +(8.41642 - 1.21010i) q^{62} +(-1.62317 + 1.40649i) q^{63} +(-0.841254 - 0.540641i) q^{64} +(5.22423 + 0.747227i) q^{65} +(-0.103160 + 0.0302904i) q^{66} +(-9.98767 + 4.56122i) q^{67} +1.35075i q^{68} +(-1.16069 + 3.05539i) q^{69} +(1.59266 - 1.02519i) q^{70} +(-2.29577 - 5.02704i) q^{71} +(0.714344 + 2.43283i) q^{72} +(-0.325011 - 0.281624i) q^{73} +(8.28068 + 5.32167i) q^{74} +(0.964810 + 3.26813i) q^{75} +(0.405347 + 2.81925i) q^{76} +(-0.0376485 + 0.128219i) q^{77} +(-0.869598 - 1.35312i) q^{78} +(-0.416071 + 2.89384i) q^{79} +(-0.319846 - 2.21307i) q^{80} +(2.09185 - 4.58052i) q^{81} +(5.18694 + 0.745770i) q^{82} +(4.37858 + 6.81320i) q^{83} +(-0.553902 - 0.162640i) q^{84} +(-2.28119 + 1.97958i) q^{85} +(1.96756 + 2.27069i) q^{86} +(-2.95323 + 4.59532i) q^{87} +(0.119226 + 0.103310i) q^{88} +(5.58913 - 1.64112i) q^{89} +(-3.06174 + 4.77185i) q^{90} -1.99918 q^{91} +(4.69231 - 0.991076i) q^{92} -5.79489i q^{93} +(2.13084 + 4.66589i) q^{94} +(-4.16719 + 4.81631i) q^{95} +(-0.446297 + 0.515054i) q^{96} +(3.23796 - 5.03836i) q^{97} +(4.74798 - 4.11415i) q^{98} +(-0.0569265 - 0.395932i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$120 q + 12 q^{4} - 4 q^{6} + 8 q^{9}+O(q^{10})$$ 120 * q + 12 * q^4 - 4 * q^6 + 8 * q^9 $$120 q + 12 q^{4} - 4 q^{6} + 8 q^{9} + 8 q^{11} - 6 q^{15} - 12 q^{16} - 16 q^{19} - 22 q^{20} + 4 q^{24} - 52 q^{25} - 4 q^{26} - 8 q^{29} - 44 q^{30} + 12 q^{31} + 16 q^{35} - 8 q^{36} - 36 q^{39} - 28 q^{41} - 8 q^{44} + 16 q^{45} - 4 q^{46} - 58 q^{49} + 12 q^{50} - 24 q^{51} - 6 q^{54} - 36 q^{55} + 22 q^{56} - 102 q^{59} - 38 q^{60} + 72 q^{61} + 12 q^{64} - 138 q^{65} + 80 q^{66} - 212 q^{69} - 108 q^{70} + 176 q^{71} - 88 q^{74} - 100 q^{75} + 16 q^{76} - 104 q^{79} - 22 q^{80} - 28 q^{81} - 22 q^{84} + 2 q^{85} + 62 q^{86} + 48 q^{89} + 24 q^{90} - 56 q^{91} + 24 q^{94} + 18 q^{95} - 4 q^{96} + 188 q^{99}+O(q^{100})$$ 120 * q + 12 * q^4 - 4 * q^6 + 8 * q^9 + 8 * q^11 - 6 * q^15 - 12 * q^16 - 16 * q^19 - 22 * q^20 + 4 * q^24 - 52 * q^25 - 4 * q^26 - 8 * q^29 - 44 * q^30 + 12 * q^31 + 16 * q^35 - 8 * q^36 - 36 * q^39 - 28 * q^41 - 8 * q^44 + 16 * q^45 - 4 * q^46 - 58 * q^49 + 12 * q^50 - 24 * q^51 - 6 * q^54 - 36 * q^55 + 22 * q^56 - 102 * q^59 - 38 * q^60 + 72 * q^61 + 12 * q^64 - 138 * q^65 + 80 * q^66 - 212 * q^69 - 108 * q^70 + 176 * q^71 - 88 * q^74 - 100 * q^75 + 16 * q^76 - 104 * q^79 - 22 * q^80 - 28 * q^81 - 22 * q^84 + 2 * q^85 + 62 * q^86 + 48 * q^89 + 24 * q^90 - 56 * q^91 + 24 * q^94 + 18 * q^95 - 4 * q^96 + 188 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/230\mathbb{Z}\right)^\times$$.

 $$n$$ $$47$$ $$51$$ $$\chi(n)$$ $$-1$$ $$e\left(\frac{2}{11}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.909632 + 0.415415i −0.643207 + 0.293743i
$$3$$ 0.192005 + 0.653908i 0.110854 + 0.377534i 0.996168 0.0874597i $$-0.0278749\pi$$
−0.885314 + 0.464993i $$0.846057\pi$$
$$4$$ 0.654861 0.755750i 0.327430 0.377875i
$$5$$ 2.23607 0.00163718i 1.00000 0.000732171i
$$6$$ −0.446297 0.515054i −0.182200 0.210270i
$$7$$ −0.838442 + 0.120550i −0.316901 + 0.0455636i −0.298930 0.954275i $$-0.596630\pi$$
−0.0179712 + 0.999839i $$0.505721\pi$$
$$8$$ −0.281733 + 0.959493i −0.0996075 + 0.339232i
$$9$$ 2.13303 1.37082i 0.711010 0.456939i
$$10$$ −2.03332 + 0.930385i −0.642992 + 0.294214i
$$11$$ 0.0655354 0.143502i 0.0197597 0.0432676i −0.899495 0.436931i $$-0.856065\pi$$
0.919255 + 0.393664i $$0.128793\pi$$
$$12$$ 0.619927 + 0.283111i 0.178957 + 0.0817271i
$$13$$ 2.33610 + 0.335881i 0.647918 + 0.0931566i 0.458436 0.888728i $$-0.348410\pi$$
0.189482 + 0.981884i $$0.439319\pi$$
$$14$$ 0.712596 0.457958i 0.190449 0.122394i
$$15$$ 0.430406 + 1.46187i 0.111130 + 0.377452i
$$16$$ −0.142315 0.989821i −0.0355787 0.247455i
$$17$$ −1.02083 + 0.884550i −0.247586 + 0.214535i −0.769809 0.638274i $$-0.779649\pi$$
0.522222 + 0.852809i $$0.325103\pi$$
$$18$$ −1.37082 + 2.13303i −0.323104 + 0.502760i
$$19$$ −1.86520 + 2.15256i −0.427906 + 0.493830i −0.928229 0.372009i $$-0.878669\pi$$
0.500323 + 0.865839i $$0.333215\pi$$
$$20$$ 1.46308 1.69098i 0.327154 0.378114i
$$21$$ −0.239813 0.525118i −0.0523315 0.114590i
$$22$$ 0.157759i 0.0336343i
$$23$$ 3.82181 + 2.89719i 0.796903 + 0.604107i
$$24$$ −0.681514 −0.139113
$$25$$ 4.99999 0.00732171i 0.999999 0.00146434i
$$26$$ −2.26452 + 0.664924i −0.444110 + 0.130402i
$$27$$ 2.85110 + 2.47049i 0.548694 + 0.475446i
$$28$$ −0.457958 + 0.712596i −0.0865458 + 0.134668i
$$29$$ 5.24884 + 6.05748i 0.974685 + 1.12485i 0.992157 + 0.124999i $$0.0398926\pi$$
−0.0174724 + 0.999847i $$0.505562\pi$$
$$30$$ −0.998792 1.15096i −0.182354 0.210136i
$$31$$ −8.15854 2.39556i −1.46532 0.430256i −0.550743 0.834675i $$-0.685656\pi$$
−0.914574 + 0.404419i $$0.867474\pi$$
$$32$$ 0.540641 + 0.841254i 0.0955727 + 0.148714i
$$33$$ 0.106420 + 0.0153010i 0.0185254 + 0.00266355i
$$34$$ 0.561120 1.22868i 0.0962312 0.210717i
$$35$$ −1.87462 + 0.270930i −0.316868 + 0.0457956i
$$36$$ 0.360845 2.50973i 0.0601408 0.418289i
$$37$$ −5.32167 8.28068i −0.874877 1.36133i −0.931806 0.362957i $$-0.881767\pi$$
0.0569291 0.998378i $$-0.481869\pi$$
$$38$$ 0.802442 2.73287i 0.130173 0.443329i
$$39$$ 0.228907 + 1.59209i 0.0366545 + 0.254938i
$$40$$ −0.628402 + 2.14595i −0.0993591 + 0.339305i
$$41$$ −4.40840 2.83311i −0.688477 0.442457i 0.149067 0.988827i $$-0.452373\pi$$
−0.837544 + 0.546370i $$0.816009\pi$$
$$42$$ 0.436284 + 0.378042i 0.0673200 + 0.0583331i
$$43$$ −0.846481 2.88285i −0.129087 0.439630i 0.869431 0.494055i $$-0.164486\pi$$
−0.998518 + 0.0544244i $$0.982668\pi$$
$$44$$ −0.0655354 0.143502i −0.00987983 0.0216338i
$$45$$ 4.76736 3.06873i 0.710676 0.457459i
$$46$$ −4.67998 1.04774i −0.690026 0.154481i
$$47$$ 5.12942i 0.748203i −0.927388 0.374102i $$-0.877951\pi$$
0.927388 0.374102i $$-0.122049\pi$$
$$48$$ 0.619927 0.283111i 0.0894787 0.0408636i
$$49$$ −6.02800 + 1.76998i −0.861142 + 0.252854i
$$50$$ −4.54511 + 2.08373i −0.642776 + 0.294684i
$$51$$ −0.774417 0.497688i −0.108440 0.0696902i
$$52$$ 1.78366 1.54555i 0.247350 0.214330i
$$53$$ 2.24070 0.322165i 0.307784 0.0442527i 0.0133079 0.999911i $$-0.495764\pi$$
0.294476 + 0.955659i $$0.404855\pi$$
$$54$$ −3.61973 1.06285i −0.492583 0.144635i
$$55$$ 0.146307 0.320989i 0.0197280 0.0432821i
$$56$$ 0.120550 0.838442i 0.0161091 0.112042i
$$57$$ −1.76570 0.806368i −0.233873 0.106806i
$$58$$ −7.29088 3.32963i −0.957339 0.437202i
$$59$$ 1.21457 8.44754i 0.158124 1.09978i −0.743963 0.668221i $$-0.767056\pi$$
0.902087 0.431555i $$-0.142035\pi$$
$$60$$ 1.38666 + 0.632040i 0.179017 + 0.0815961i
$$61$$ −7.90952 2.32245i −1.01271 0.297359i −0.267049 0.963683i $$-0.586048\pi$$
−0.745662 + 0.666324i $$0.767867\pi$$
$$62$$ 8.41642 1.21010i 1.06889 0.153683i
$$63$$ −1.62317 + 1.40649i −0.204500 + 0.177201i
$$64$$ −0.841254 0.540641i −0.105157 0.0675801i
$$65$$ 5.22423 + 0.747227i 0.647986 + 0.0926821i
$$66$$ −0.103160 + 0.0302904i −0.0126981 + 0.00372849i
$$67$$ −9.98767 + 4.56122i −1.22019 + 0.557241i −0.918218 0.396076i $$-0.870372\pi$$
−0.301971 + 0.953317i $$0.597644\pi$$
$$68$$ 1.35075i 0.163802i
$$69$$ −1.16069 + 3.05539i −0.139731 + 0.367825i
$$70$$ 1.59266 1.02519i 0.190360 0.122534i
$$71$$ −2.29577 5.02704i −0.272458 0.596599i 0.723101 0.690742i $$-0.242716\pi$$
−0.995559 + 0.0941431i $$0.969989\pi$$
$$72$$ 0.714344 + 2.43283i 0.0841862 + 0.286712i
$$73$$ −0.325011 0.281624i −0.0380397 0.0329616i 0.635633 0.771991i $$-0.280739\pi$$
−0.673673 + 0.739029i $$0.735284\pi$$
$$74$$ 8.28068 + 5.32167i 0.962609 + 0.618631i
$$75$$ 0.964810 + 3.26813i 0.111407 + 0.377371i
$$76$$ 0.405347 + 2.81925i 0.0464965 + 0.323390i
$$77$$ −0.0376485 + 0.128219i −0.00429044 + 0.0146119i
$$78$$ −0.869598 1.35312i −0.0984625 0.153211i
$$79$$ −0.416071 + 2.89384i −0.0468117 + 0.325582i 0.952937 + 0.303168i $$0.0980444\pi$$
−0.999749 + 0.0224143i $$0.992865\pi$$
$$80$$ −0.319846 2.21307i −0.0357599 0.247429i
$$81$$ 2.09185 4.58052i 0.232428 0.508947i
$$82$$ 5.18694 + 0.745770i 0.572802 + 0.0823565i
$$83$$ 4.37858 + 6.81320i 0.480611 + 0.747846i 0.993890 0.110376i $$-0.0352056\pi$$
−0.513279 + 0.858222i $$0.671569\pi$$
$$84$$ −0.553902 0.162640i −0.0604356 0.0177455i
$$85$$ −2.28119 + 1.97958i −0.247429 + 0.214716i
$$86$$ 1.96756 + 2.27069i 0.212168 + 0.244855i
$$87$$ −2.95323 + 4.59532i −0.316620 + 0.492670i
$$88$$ 0.119226 + 0.103310i 0.0127096 + 0.0110129i
$$89$$ 5.58913 1.64112i 0.592446 0.173958i 0.0282533 0.999601i $$-0.491005\pi$$
0.564193 + 0.825643i $$0.309187\pi$$
$$90$$ −3.06174 + 4.77185i −0.322736 + 0.502997i
$$91$$ −1.99918 −0.209571
$$92$$ 4.69231 0.991076i 0.489207 0.103327i
$$93$$ 5.79489i 0.600902i
$$94$$ 2.13084 + 4.66589i 0.219779 + 0.481249i
$$95$$ −4.16719 + 4.81631i −0.427545 + 0.494143i
$$96$$ −0.446297 + 0.515054i −0.0455499 + 0.0525674i
$$97$$ 3.23796 5.03836i 0.328765 0.511568i −0.637043 0.770829i $$-0.719842\pi$$
0.965807 + 0.259260i $$0.0834788\pi$$
$$98$$ 4.74798 4.11415i 0.479619 0.415592i
$$99$$ −0.0569265 0.395932i −0.00572133 0.0397927i
$$100$$ 3.26877 3.78354i 0.326877 0.378354i
$$101$$ 1.28915 0.828487i 0.128275 0.0824376i −0.474930 0.880024i $$-0.657526\pi$$
0.603205 + 0.797586i $$0.293890\pi$$
$$102$$ 0.911181 + 0.131008i 0.0902204 + 0.0129717i
$$103$$ −6.55682 2.99440i −0.646063 0.295047i 0.0653068 0.997865i $$-0.479197\pi$$
−0.711369 + 0.702818i $$0.751925\pi$$
$$104$$ −0.980431 + 2.14684i −0.0961392 + 0.210515i
$$105$$ −0.537098 1.17381i −0.0524154 0.114552i
$$106$$ −1.90438 + 1.22387i −0.184970 + 0.118873i
$$107$$ −3.12112 + 10.6296i −0.301730 + 1.02760i 0.659467 + 0.751734i $$0.270782\pi$$
−0.961197 + 0.275864i $$0.911036\pi$$
$$108$$ 3.73415 0.536889i 0.359318 0.0516622i
$$109$$ 0.652738 + 0.753300i 0.0625210 + 0.0721531i 0.786148 0.618038i $$-0.212072\pi$$
−0.723628 + 0.690191i $$0.757527\pi$$
$$110$$ 0.000258280 0.352759i 2.46261e−5 0.0336343i
$$111$$ 4.39301 5.06981i 0.416966 0.481205i
$$112$$ 0.238646 + 0.812752i 0.0225499 + 0.0767979i
$$113$$ −11.5161 + 5.25925i −1.08335 + 0.494748i −0.875404 0.483392i $$-0.839404\pi$$
−0.207944 + 0.978141i $$0.566677\pi$$
$$114$$ 1.94111 0.181802
$$115$$ 8.55058 + 6.47206i 0.797346 + 0.603523i
$$116$$ 8.01520 0.744192
$$117$$ 5.44341 2.48592i 0.503243 0.229824i
$$118$$ 2.40442 + 8.18871i 0.221345 + 0.753831i
$$119$$ 0.749271 0.864704i 0.0686855 0.0792673i
$$120$$ −1.52391 + 0.00111576i −0.139113 + 0.000101855i
$$121$$ 7.18717 + 8.29444i 0.653379 + 0.754040i
$$122$$ 8.15954 1.17316i 0.738730 0.106213i
$$123$$ 1.00616 3.42666i 0.0907222 0.308971i
$$124$$ −7.15315 + 4.59705i −0.642372 + 0.412828i
$$125$$ 11.1803 0.0245577i 0.999998 0.00219651i
$$126$$ 0.892214 1.95368i 0.0794847 0.174047i
$$127$$ −5.83410 2.66434i −0.517693 0.236422i 0.139395 0.990237i $$-0.455484\pi$$
−0.657087 + 0.753815i $$0.728212\pi$$
$$128$$ 0.989821 + 0.142315i 0.0874887 + 0.0125790i
$$129$$ 1.72259 1.10704i 0.151665 0.0974695i
$$130$$ −5.06254 + 1.49052i −0.444014 + 0.130727i
$$131$$ 1.11243 + 7.73713i 0.0971936 + 0.675997i 0.978921 + 0.204238i $$0.0654716\pi$$
−0.881728 + 0.471759i $$0.843619\pi$$
$$132$$ 0.0812543 0.0704072i 0.00707228 0.00612816i
$$133$$ 1.30437 2.02964i 0.113103 0.175992i
$$134$$ 7.19031 8.29806i 0.621148 0.716843i
$$135$$ 6.37930 + 5.51952i 0.549042 + 0.475045i
$$136$$ −0.561120 1.22868i −0.0481156 0.105359i
$$137$$ 10.5092i 0.897863i 0.893566 + 0.448931i $$0.148195\pi$$
−0.893566 + 0.448931i $$0.851805\pi$$
$$138$$ −0.213452 3.26145i −0.0181703 0.277633i
$$139$$ 6.93930 0.588584 0.294292 0.955716i $$-0.404916\pi$$
0.294292 + 0.955716i $$0.404916\pi$$
$$140$$ −1.02286 + 1.59416i −0.0864472 + 0.134731i
$$141$$ 3.35417 0.984873i 0.282472 0.0829412i
$$142$$ 4.17661 + 3.61905i 0.350493 + 0.303704i
$$143$$ 0.201297 0.313224i 0.0168333 0.0261931i
$$144$$ −1.66043 1.91623i −0.138369 0.159686i
$$145$$ 11.7467 + 13.5363i 0.975508 + 1.12413i
$$146$$ 0.412631 + 0.121160i 0.0341496 + 0.0100272i
$$147$$ −2.31481 3.60191i −0.190922 0.297080i
$$148$$ −9.74307 1.40084i −0.800875 0.115149i
$$149$$ 4.86908 10.6618i 0.398891 0.873449i −0.598491 0.801130i $$-0.704233\pi$$
0.997382 0.0723190i $$-0.0230400\pi$$
$$150$$ −2.23525 2.57200i −0.182507 0.210003i
$$151$$ −0.142151 + 0.988679i −0.0115681 + 0.0804576i −0.994788 0.101968i $$-0.967486\pi$$
0.983220 + 0.182426i $$0.0583950\pi$$
$$152$$ −1.53987 2.39609i −0.124900 0.194349i
$$153$$ −0.964897 + 3.28614i −0.0780073 + 0.265668i
$$154$$ −0.0190178 0.132272i −0.00153250 0.0106588i
$$155$$ −18.2470 5.34329i −1.46563 0.429183i
$$156$$ 1.35312 + 0.869598i 0.108336 + 0.0696235i
$$157$$ −11.6398 10.0859i −0.928958 0.804946i 0.0521041 0.998642i $$-0.483407\pi$$
−0.981062 + 0.193695i $$0.937953\pi$$
$$158$$ −0.823673 2.80517i −0.0655279 0.223167i
$$159$$ 0.640891 + 1.40336i 0.0508260 + 0.111293i
$$160$$ 1.21029 + 1.88021i 0.0956816 + 0.148644i
$$161$$ −3.55363 1.96841i −0.280065 0.155133i
$$162$$ 5.03558i 0.395632i
$$163$$ 15.1132 6.90196i 1.18376 0.540603i 0.276432 0.961034i $$-0.410848\pi$$
0.907325 + 0.420430i $$0.138121\pi$$
$$164$$ −5.02801 + 1.47636i −0.392622 + 0.115284i
$$165$$ 0.237988 + 0.0340397i 0.0185274 + 0.00264999i
$$166$$ −6.81320 4.37858i −0.528807 0.339843i
$$167$$ −11.1305 + 9.64460i −0.861301 + 0.746322i −0.968790 0.247884i $$-0.920265\pi$$
0.107488 + 0.994206i $$0.465719\pi$$
$$168$$ 0.571410 0.0821563i 0.0440852 0.00633850i
$$169$$ −7.12885 2.09322i −0.548373 0.161017i
$$170$$ 1.25269 2.74833i 0.0960769 0.210787i
$$171$$ −1.02777 + 7.14831i −0.0785957 + 0.546645i
$$172$$ −2.73304 1.24814i −0.208392 0.0951696i
$$173$$ −18.3348 8.37321i −1.39397 0.636603i −0.430050 0.902805i $$-0.641504\pi$$
−0.963917 + 0.266202i $$0.914231\pi$$
$$174$$ 0.777390 5.40687i 0.0589338 0.409893i
$$175$$ −4.19133 + 0.608887i −0.316834 + 0.0460276i
$$176$$ −0.151369 0.0444458i −0.0114098 0.00335023i
$$177$$ 5.75711 0.827748i 0.432731 0.0622174i
$$178$$ −4.40231 + 3.81462i −0.329967 + 0.285918i
$$179$$ −3.08803 1.98456i −0.230810 0.148333i 0.420124 0.907467i $$-0.361986\pi$$
−0.650935 + 0.759134i $$0.725623\pi$$
$$180$$ 0.802765 5.61252i 0.0598345 0.418332i
$$181$$ 18.3680 5.39332i 1.36528 0.400883i 0.484659 0.874703i $$-0.338944\pi$$
0.880621 + 0.473821i $$0.157125\pi$$
$$182$$ 1.81852 0.830488i 0.134797 0.0615599i
$$183$$ 5.61802i 0.415296i
$$184$$ −3.85657 + 2.85077i −0.284310 + 0.210162i
$$185$$ −11.9132 18.5074i −0.875873 1.36069i
$$186$$ 2.40728 + 5.27122i 0.176511 + 0.386504i
$$187$$ 0.0600349 + 0.204460i 0.00439019 + 0.0149516i
$$188$$ −3.87656 3.35906i −0.282727 0.244984i
$$189$$ −2.68830 1.72767i −0.195545 0.125669i
$$190$$ 1.78984 6.11218i 0.129849 0.443424i
$$191$$ 3.32960 + 23.1579i 0.240922 + 1.67565i 0.647527 + 0.762043i $$0.275803\pi$$
−0.406605 + 0.913604i $$0.633287\pi$$
$$192$$ 0.192005 0.653908i 0.0138567 0.0471917i
$$193$$ 3.74555 + 5.82819i 0.269611 + 0.419522i 0.949488 0.313804i $$-0.101603\pi$$
−0.679877 + 0.733326i $$0.737967\pi$$
$$194$$ −0.852340 + 5.92815i −0.0611944 + 0.425617i
$$195$$ 0.514459 + 3.55964i 0.0368412 + 0.254911i
$$196$$ −2.60984 + 5.71475i −0.186417 + 0.408196i
$$197$$ 0.961948 + 0.138307i 0.0685360 + 0.00985398i 0.176498 0.984301i $$-0.443523\pi$$
−0.107962 + 0.994155i $$0.534432\pi$$
$$198$$ 0.216258 + 0.336505i 0.0153688 + 0.0239143i
$$199$$ −24.9595 7.32878i −1.76933 0.519523i −0.775594 0.631233i $$-0.782549\pi$$
−0.993741 + 0.111709i $$0.964367\pi$$
$$200$$ −1.40164 + 4.79952i −0.0991106 + 0.339377i
$$201$$ −4.90029 5.65524i −0.345640 0.398890i
$$202$$ −0.828487 + 1.28915i −0.0582922 + 0.0907044i
$$203$$ −5.13108 4.44610i −0.360131 0.312055i
$$204$$ −0.883262 + 0.259349i −0.0618407 + 0.0181581i
$$205$$ −9.86213 6.32781i −0.688801 0.441953i
$$206$$ 7.20821 0.502220
$$207$$ 12.1236 + 0.940801i 0.842646 + 0.0653902i
$$208$$ 2.36012i 0.163645i
$$209$$ 0.186660 + 0.408729i 0.0129116 + 0.0282724i
$$210$$ 0.976178 + 0.844613i 0.0673627 + 0.0582838i
$$211$$ −0.242799 + 0.280204i −0.0167149 + 0.0192901i −0.764045 0.645162i $$-0.776790\pi$$
0.747331 + 0.664452i $$0.231335\pi$$
$$212$$ 1.22387 1.90438i 0.0840559 0.130794i
$$213$$ 2.84642 2.46644i 0.195033 0.168997i
$$214$$ −1.57661 10.9655i −0.107775 0.749589i
$$215$$ −1.89751 6.44486i −0.129409 0.439536i
$$216$$ −3.17367 + 2.03959i −0.215941 + 0.138777i
$$217$$ 7.12925 + 1.02503i 0.483965 + 0.0695837i
$$218$$ −0.906684 0.414069i −0.0614084 0.0280443i
$$219$$ 0.121752 0.266600i 0.00822726 0.0180152i
$$220$$ −0.146776 0.320774i −0.00989567 0.0216266i
$$221$$ −2.68185 + 1.72352i −0.180401 + 0.115937i
$$222$$ −1.88995 + 6.43658i −0.126845 + 0.431995i
$$223$$ 28.5755 4.10853i 1.91356 0.275128i 0.920313 0.391183i $$-0.127934\pi$$
0.993243 + 0.116055i $$0.0370250\pi$$
$$224$$ −0.554709 0.640169i −0.0370631 0.0427731i
$$225$$ 10.6551 6.86969i 0.710341 0.457979i
$$226$$ 8.29069 9.56796i 0.551488 0.636451i
$$227$$ −7.35169 25.0376i −0.487949 1.66180i −0.723798 0.690012i $$-0.757605\pi$$
0.235849 0.971790i $$-0.424213\pi$$
$$228$$ −1.76570 + 0.806368i −0.116936 + 0.0534030i
$$229$$ −1.92024 −0.126893 −0.0634464 0.997985i $$-0.520209\pi$$
−0.0634464 + 0.997985i $$0.520209\pi$$
$$230$$ −10.4665 2.33516i −0.690139 0.153976i
$$231$$ −0.0910720 −0.00599209
$$232$$ −7.29088 + 3.32963i −0.478670 + 0.218601i
$$233$$ 6.15875 + 20.9748i 0.403473 + 1.37410i 0.871503 + 0.490390i $$0.163146\pi$$
−0.468030 + 0.883713i $$0.655036\pi$$
$$234$$ −3.91881 + 4.52255i −0.256181 + 0.295648i
$$235$$ −0.00839781 11.4697i −0.000547813 0.748203i
$$236$$ −5.58885 6.44988i −0.363803 0.419851i
$$237$$ −1.97219 + 0.283558i −0.128108 + 0.0184191i
$$238$$ −0.322349 + 1.09782i −0.0208948 + 0.0711612i
$$239$$ 9.65214 6.20306i 0.624345 0.401242i −0.189867 0.981810i $$-0.560806\pi$$
0.814212 + 0.580568i $$0.197169\pi$$
$$240$$ 1.38573 0.634070i 0.0894488 0.0409291i
$$241$$ −7.16563 + 15.6905i −0.461579 + 1.01072i 0.525546 + 0.850765i $$0.323861\pi$$
−0.987125 + 0.159952i $$0.948866\pi$$
$$242$$ −9.98331 4.55923i −0.641752 0.293078i
$$243$$ 14.5993 + 2.09907i 0.936547 + 0.134655i
$$244$$ −6.93482 + 4.45674i −0.443957 + 0.285314i
$$245$$ −13.4761 + 3.96766i −0.860957 + 0.253485i
$$246$$ 0.508252 + 3.53497i 0.0324050 + 0.225382i
$$247$$ −5.08030 + 4.40210i −0.323252 + 0.280099i
$$248$$ 4.59705 7.15315i 0.291913 0.454226i
$$249$$ −3.61449 + 4.17135i −0.229059 + 0.264349i
$$250$$ −10.1598 + 4.66681i −0.642560 + 0.295155i
$$251$$ −1.85426 4.06026i −0.117040 0.256281i 0.842041 0.539413i $$-0.181354\pi$$
−0.959081 + 0.283132i $$0.908627\pi$$
$$252$$ 2.14776i 0.135296i
$$253$$ 0.666219 0.358571i 0.0418848 0.0225432i
$$254$$ 6.41369 0.402431
$$255$$ −1.73246 1.11159i −0.108491 0.0696108i
$$256$$ −0.959493 + 0.281733i −0.0599683 + 0.0176083i
$$257$$ 11.9204 + 10.3291i 0.743573 + 0.644310i 0.941926 0.335821i $$-0.109014\pi$$
−0.198353 + 0.980131i $$0.563559\pi$$
$$258$$ −1.10704 + 1.72259i −0.0689213 + 0.107244i
$$259$$ 5.46015 + 6.30135i 0.339277 + 0.391547i
$$260$$ 3.98586 3.45888i 0.247193 0.214511i
$$261$$ 19.4996 + 5.72561i 1.20700 + 0.354406i
$$262$$ −4.22603 6.57582i −0.261085 0.406256i
$$263$$ −4.57476 0.657751i −0.282092 0.0405586i −0.000183226 1.00000i $$-0.500058\pi$$
−0.281908 + 0.959441i $$0.590967\pi$$
$$264$$ −0.0446633 + 0.0977989i −0.00274883 + 0.00601911i
$$265$$ 5.00984 0.724050i 0.307752 0.0444780i
$$266$$ −0.343355 + 2.38808i −0.0210524 + 0.146423i
$$267$$ 2.14628 + 3.33967i 0.131350 + 0.204385i
$$268$$ −3.09340 + 10.5351i −0.188959 + 0.643536i
$$269$$ 1.66055 + 11.5494i 0.101245 + 0.704176i 0.975707 + 0.219081i $$0.0703060\pi$$
−0.874461 + 0.485095i $$0.838785\pi$$
$$270$$ −8.09570 2.37068i −0.492689 0.144275i
$$271$$ 23.8621 + 15.3353i 1.44952 + 0.931550i 0.999253 + 0.0386569i $$0.0123079\pi$$
0.450268 + 0.892893i $$0.351328\pi$$
$$272$$ 1.02083 + 0.884550i 0.0618966 + 0.0536337i
$$273$$ −0.383851 1.30728i −0.0232317 0.0791200i
$$274$$ −4.36568 9.55952i −0.263741 0.577511i
$$275$$ 0.326626 0.717992i 0.0196963 0.0432965i
$$276$$ 1.54902 + 2.87805i 0.0932399 + 0.173238i
$$277$$ 27.9347i 1.67843i −0.543797 0.839217i $$-0.683014\pi$$
0.543797 0.839217i $$-0.316986\pi$$
$$278$$ −6.31221 + 2.88269i −0.378581 + 0.172892i
$$279$$ −20.6863 + 6.07405i −1.23846 + 0.363644i
$$280$$ 0.268185 1.87501i 0.0160271 0.112053i
$$281$$ −2.62086 1.68433i −0.156348 0.100479i 0.460128 0.887853i $$-0.347804\pi$$
−0.616475 + 0.787374i $$0.711440\pi$$
$$282$$ −2.64193 + 2.28924i −0.157325 + 0.136322i
$$283$$ −0.729777 + 0.104926i −0.0433807 + 0.00623721i −0.163971 0.986465i $$-0.552430\pi$$
0.120590 + 0.992702i $$0.461521\pi$$
$$284$$ −5.30259 1.55698i −0.314651 0.0923898i
$$285$$ −3.94954 1.80020i −0.233951 0.106635i
$$286$$ −0.0529882 + 0.368541i −0.00313326 + 0.0217923i
$$287$$ 4.03772 + 1.84397i 0.238339 + 0.108846i
$$288$$ 2.30641 + 1.05330i 0.135906 + 0.0620664i
$$289$$ −2.15970 + 15.0210i −0.127041 + 0.883590i
$$290$$ −16.3083 7.43335i −0.957659 0.436501i
$$291$$ 3.91633 + 1.14994i 0.229579 + 0.0674105i
$$292$$ −0.425674 + 0.0612027i −0.0249107 + 0.00358162i
$$293$$ −10.2257 + 8.86058i −0.597389 + 0.517640i −0.900238 0.435398i $$-0.856608\pi$$
0.302849 + 0.953039i $$0.402062\pi$$
$$294$$ 3.60191 + 2.31481i 0.210068 + 0.135002i
$$295$$ 2.70204 18.8913i 0.157319 1.09989i
$$296$$ 9.44454 2.77317i 0.548953 0.161187i
$$297$$ 0.541370 0.247235i 0.0314135 0.0143460i
$$298$$ 11.7210i 0.678979i
$$299$$ 7.95504 + 8.05181i 0.460052 + 0.465648i
$$300$$ 3.10170 + 1.41101i 0.179077 + 0.0814650i
$$301$$ 1.05725 + 2.31506i 0.0609390 + 0.133438i
$$302$$ −0.281407 0.958386i −0.0161932 0.0551489i
$$303$$ 0.789277 + 0.683912i 0.0453428 + 0.0392897i
$$304$$ 2.39609 + 1.53987i 0.137425 + 0.0883178i
$$305$$ −17.6900 5.18020i −1.01293 0.296617i
$$306$$ −0.487409 3.39001i −0.0278633 0.193794i
$$307$$ −3.95317 + 13.4633i −0.225619 + 0.768389i 0.766407 + 0.642356i $$0.222043\pi$$
−0.992026 + 0.126033i $$0.959775\pi$$
$$308$$ 0.0722469 + 0.112418i 0.00411665 + 0.00640563i
$$309$$ 0.699121 4.86249i 0.0397716 0.276618i
$$310$$ 18.8177 2.71964i 1.06877 0.154465i
$$311$$ 9.54217 20.8944i 0.541087 1.18481i −0.419735 0.907647i $$-0.637877\pi$$
0.960822 0.277168i $$-0.0893958\pi$$
$$312$$ −1.59209 0.228907i −0.0901341 0.0129593i
$$313$$ 10.0294 + 15.6060i 0.566893 + 0.882102i 0.999813 0.0193299i $$-0.00615327\pi$$
−0.432920 + 0.901432i $$0.642517\pi$$
$$314$$ 14.7778 + 4.33915i 0.833959 + 0.244873i
$$315$$ −3.62722 + 3.14766i −0.204371 + 0.177350i
$$316$$ 1.91455 + 2.20951i 0.107702 + 0.124295i
$$317$$ 2.94533 4.58303i 0.165426 0.257409i −0.748637 0.662980i $$-0.769291\pi$$
0.914063 + 0.405572i $$0.132928\pi$$
$$318$$ −1.16595 1.01030i −0.0653832 0.0566549i
$$319$$ 1.21325 0.356242i 0.0679289 0.0199457i
$$320$$ −1.88198 1.20753i −0.105206 0.0675031i
$$321$$ −7.55002 −0.421401
$$322$$ 4.05020 + 0.314299i 0.225709 + 0.0175152i
$$323$$ 3.84724i 0.214066i
$$324$$ −2.09185 4.58052i −0.116214 0.254473i
$$325$$ 11.6830 + 1.66230i 0.648054 + 0.0922077i
$$326$$ −10.8803 + 12.5565i −0.602602 + 0.695440i
$$327$$ −0.367260 + 0.571467i −0.0203095 + 0.0316022i
$$328$$ 3.96034 3.43165i 0.218673 0.189481i
$$329$$ 0.618351 + 4.30073i 0.0340908 + 0.237107i
$$330$$ −0.230622 + 0.0679003i −0.0126953 + 0.00373779i
$$331$$ 18.6460 11.9831i 1.02488 0.658649i 0.0836763 0.996493i $$-0.473334\pi$$
0.941202 + 0.337844i $$0.109697\pi$$
$$332$$ 8.01643 + 1.15259i 0.439959 + 0.0632565i
$$333$$ −22.7026 10.3679i −1.24409 0.568158i
$$334$$ 6.11812 13.3968i 0.334768 0.733040i
$$335$$ −22.3256 + 10.2155i −1.21978 + 0.558135i
$$336$$ −0.485644 + 0.312104i −0.0264940 + 0.0170267i
$$337$$ −6.81020 + 23.1934i −0.370975 + 1.26343i 0.536707 + 0.843769i $$0.319668\pi$$
−0.907683 + 0.419658i $$0.862150\pi$$
$$338$$ 7.35419 1.05737i 0.400015 0.0575135i
$$339$$ −5.65021 6.52070i −0.306878 0.354156i
$$340$$ 0.00221142 + 3.02036i 0.000119931 + 0.163802i
$$341$$ −0.878443 + 1.01378i −0.0475703 + 0.0548991i
$$342$$ −2.03462 6.92929i −0.110020 0.374693i
$$343$$ 10.2344 4.67388i 0.552604 0.252366i
$$344$$ 3.00455 0.161995
$$345$$ −2.59038 + 6.83395i −0.139461 + 0.367928i
$$346$$ 20.1563 1.08361
$$347$$ 20.7095 9.45771i 1.11174 0.507716i 0.227047 0.973884i $$-0.427093\pi$$
0.884696 + 0.466168i $$0.154366\pi$$
$$348$$ 1.53895 + 5.24120i 0.0824966 + 0.280958i
$$349$$ 21.9046 25.2793i 1.17253 1.35317i 0.249528 0.968368i $$-0.419725\pi$$
0.922999 0.384801i $$-0.125730\pi$$
$$350$$ 3.55962 2.29500i 0.190270 0.122673i
$$351$$ 5.83067 + 6.72895i 0.311218 + 0.359165i
$$352$$ 0.156153 0.0224514i 0.00832299 0.00119666i
$$353$$ −9.09561 + 30.9768i −0.484110 + 1.64873i 0.248914 + 0.968526i $$0.419926\pi$$
−0.733024 + 0.680203i $$0.761892\pi$$
$$354$$ −4.89300 + 3.14454i −0.260060 + 0.167130i
$$355$$ −5.14173 11.2370i −0.272895 0.596400i
$$356$$ 2.41983 5.29868i 0.128251 0.280830i
$$357$$ 0.709300 + 0.323927i 0.0375401 + 0.0171440i
$$358$$ 3.63339 + 0.522402i 0.192031 + 0.0276098i
$$359$$ 27.6221 17.7516i 1.45784 0.936895i 0.459012 0.888430i $$-0.348203\pi$$
0.998825 0.0484650i $$-0.0154329\pi$$
$$360$$ 1.60130 + 5.43881i 0.0843961 + 0.286650i
$$361$$ 1.54946 + 10.7767i 0.0815504 + 0.567196i
$$362$$ −14.4676 + 12.5363i −0.760402 + 0.658892i
$$363$$ −4.04382 + 6.29231i −0.212246 + 0.330261i
$$364$$ −1.30918 + 1.51088i −0.0686198 + 0.0791915i
$$365$$ −0.727208 0.629198i −0.0380638 0.0329337i
$$366$$ 2.33381 + 5.11033i 0.121990 + 0.267121i
$$367$$ 10.7767i 0.562537i −0.959629 0.281269i $$-0.909245\pi$$
0.959629 0.281269i $$-0.0907552\pi$$
$$368$$ 2.32380 4.19523i 0.121137 0.218691i
$$369$$ −13.2869 −0.691690
$$370$$ 18.5249 + 11.8861i 0.963062 + 0.617926i
$$371$$ −1.83986 + 0.540233i −0.0955210 + 0.0280475i
$$372$$ −4.37949 3.79485i −0.227066 0.196754i
$$373$$ −15.4129 + 23.9830i −0.798050 + 1.24179i 0.168598 + 0.985685i $$0.446076\pi$$
−0.966649 + 0.256106i $$0.917560\pi$$
$$374$$ −0.139546 0.161044i −0.00721573 0.00832740i
$$375$$ 2.16273 + 7.30618i 0.111683 + 0.377289i
$$376$$ 4.92164 + 1.44513i 0.253814 + 0.0745266i
$$377$$ 10.2272 + 15.9139i 0.526729 + 0.819606i
$$378$$ 3.16306 + 0.454780i 0.162690 + 0.0233913i
$$379$$ −5.60508 + 12.2734i −0.287914 + 0.630443i −0.997225 0.0744526i $$-0.976279\pi$$
0.709311 + 0.704896i $$0.249006\pi$$
$$380$$ 0.910998 + 6.30336i 0.0467332 + 0.323356i
$$381$$ 0.622061 4.32653i 0.0318691 0.221655i
$$382$$ −12.6489 19.6820i −0.647172 1.00702i
$$383$$ 10.5663 35.9854i 0.539911 1.83877i −0.00456073 0.999990i $$-0.501452\pi$$
0.544472 0.838779i $$-0.316730\pi$$
$$384$$ 0.0969895 + 0.674577i 0.00494947 + 0.0344244i
$$385$$ −0.0839746 + 0.286768i −0.00427974 + 0.0146150i
$$386$$ −5.82819 3.74555i −0.296647 0.190643i
$$387$$ −5.75743 4.98884i −0.292666 0.253597i
$$388$$ −1.68733 5.74651i −0.0856611 0.291735i
$$389$$ −2.93825 6.43387i −0.148975 0.326210i 0.820402 0.571787i $$-0.193750\pi$$
−0.969377 + 0.245577i $$0.921023\pi$$
$$390$$ −1.94669 3.02424i −0.0985747 0.153139i
$$391$$ −6.46412 + 0.423058i −0.326904 + 0.0213950i
$$392$$ 6.28248i 0.317313i
$$393$$ −4.84578 + 2.21299i −0.244437 + 0.111631i
$$394$$ −0.932474 + 0.273799i −0.0469773 + 0.0137938i
$$395$$ −0.925626 + 6.47150i −0.0465733 + 0.325617i
$$396$$ −0.336505 0.216258i −0.0169100 0.0108674i
$$397$$ 10.7817 9.34236i 0.541116 0.468880i −0.340900 0.940100i $$-0.610732\pi$$
0.882016 + 0.471220i $$0.156186\pi$$
$$398$$ 25.7485 3.70207i 1.29065 0.185568i
$$399$$ 1.57764 + 0.463238i 0.0789810 + 0.0231909i
$$400$$ −0.718821 4.94806i −0.0359410 0.247403i
$$401$$ −2.31363 + 16.0916i −0.115537 + 0.803577i 0.846838 + 0.531851i $$0.178504\pi$$
−0.962375 + 0.271726i $$0.912406\pi$$
$$402$$ 6.80673 + 3.10853i 0.339489 + 0.155039i
$$403$$ −18.2546 8.33658i −0.909324 0.415275i
$$404$$ 0.218086 1.51682i 0.0108502 0.0754646i
$$405$$ 4.67003 10.2458i 0.232056 0.509117i
$$406$$ 6.51437 + 1.91279i 0.323303 + 0.0949302i
$$407$$ −1.53706 + 0.220995i −0.0761890 + 0.0109543i
$$408$$ 0.695706 0.602833i 0.0344426 0.0298447i
$$409$$ −30.4398 19.5625i −1.50515 0.967302i −0.994183 0.107702i $$-0.965651\pi$$
−0.510968 0.859600i $$-0.670713\pi$$
$$410$$ 11.5996 + 1.65910i 0.572862 + 0.0819371i
$$411$$ −6.87205 + 2.01782i −0.338973 + 0.0995316i
$$412$$ −6.55682 + 2.99440i −0.323031 + 0.147523i
$$413$$ 7.22919i 0.355725i
$$414$$ −11.4188 + 4.18053i −0.561204 + 0.205462i
$$415$$ 9.80195 + 15.2276i 0.481159 + 0.747494i
$$416$$ 0.980431 + 2.14684i 0.0480696 + 0.105258i
$$417$$ 1.33238 + 4.53766i 0.0652468 + 0.222210i
$$418$$ −0.339585 0.294252i −0.0166096 0.0143923i
$$419$$ 19.8526 + 12.7585i 0.969864 + 0.623294i 0.926711 0.375775i $$-0.122623\pi$$
0.0431532 + 0.999068i $$0.486260\pi$$
$$420$$ −1.23883 0.362768i −0.0604486 0.0177012i
$$421$$ −2.62284 18.2422i −0.127829 0.889072i −0.948298 0.317381i $$-0.897197\pi$$
0.820469 0.571691i $$-0.193712\pi$$
$$422$$ 0.104456 0.355745i 0.00508485 0.0173174i
$$423$$ −7.03149 10.9412i −0.341883 0.531980i
$$424$$ −0.322165 + 2.24070i −0.0156457 + 0.108818i
$$425$$ −5.09764 + 4.43022i −0.247272 + 0.214897i
$$426$$ −1.56460 + 3.42599i −0.0758050 + 0.165990i
$$427$$ 6.91165 + 0.993745i 0.334478 + 0.0480907i
$$428$$ 5.98938 + 9.31966i 0.289508 + 0.450483i
$$429$$ 0.243470 + 0.0714892i 0.0117548 + 0.00345153i
$$430$$ 4.40333 + 5.07420i 0.212347 + 0.244699i
$$431$$ −10.5778 12.2074i −0.509515 0.588011i 0.441460 0.897281i $$-0.354461\pi$$
−0.950974 + 0.309270i $$0.899915\pi$$
$$432$$ 2.03959 3.17367i 0.0981299 0.152693i
$$433$$ −14.7923 12.8176i −0.710871 0.615973i 0.222480 0.974937i $$-0.428585\pi$$
−0.933352 + 0.358964i $$0.883130\pi$$
$$434$$ −6.91081 + 2.02920i −0.331729 + 0.0974046i
$$435$$ −6.59610 + 10.2803i −0.316259 + 0.492901i
$$436$$ 0.996759 0.0477361
$$437$$ −13.3648 + 2.82282i −0.639326 + 0.135034i
$$438$$ 0.293086i 0.0140042i
$$439$$ 2.87649 + 6.29864i 0.137288 + 0.300618i 0.965771 0.259395i $$-0.0835233\pi$$
−0.828484 + 0.560013i $$0.810796\pi$$
$$440$$ 0.266767 + 0.230813i 0.0127176 + 0.0110036i
$$441$$ −10.4316 + 12.0387i −0.496742 + 0.573271i
$$442$$ 1.72352 2.68185i 0.0819796 0.127563i
$$443$$ 16.1098 13.9592i 0.765398 0.663221i −0.181993 0.983300i $$-0.558255\pi$$
0.947391 + 0.320079i $$0.103709\pi$$
$$444$$ −0.954693 6.64003i −0.0453077 0.315122i
$$445$$ 12.4950 3.67880i 0.592319 0.174392i
$$446$$ −24.2864 + 15.6079i −1.15000 + 0.739057i
$$447$$ 7.90672 + 1.13681i 0.373975 + 0.0537695i
$$448$$ 0.770517 + 0.351883i 0.0364035 + 0.0166249i
$$449$$ 2.15138 4.71086i 0.101530 0.222319i −0.852050 0.523461i $$-0.824641\pi$$
0.953579 + 0.301142i $$0.0973678\pi$$
$$450$$ −6.83846 + 10.6752i −0.322368 + 0.503233i
$$451$$ −0.695465 + 0.446948i −0.0327482 + 0.0210460i
$$452$$ −3.56680 + 12.1474i −0.167768 + 0.571366i
$$453$$ −0.673798 + 0.0968776i −0.0316578 + 0.00455170i
$$454$$ 17.0883 + 19.7210i 0.801994 + 0.925551i
$$455$$ −4.47030 + 0.00327302i −0.209571 + 0.000153442i
$$456$$ 1.27116 1.46700i 0.0595275 0.0686984i
$$457$$ 8.23241 + 28.0370i 0.385096 + 1.31152i 0.892982 + 0.450092i $$0.148609\pi$$
−0.507886 + 0.861424i $$0.669573\pi$$
$$458$$ 1.74671 0.797695i 0.0816184 0.0372739i
$$459$$ −5.09575 −0.237849
$$460$$ 10.4907 2.22380i 0.489131 0.103685i
$$461$$ −19.3274 −0.900165 −0.450082 0.892987i $$-0.648605\pi$$
−0.450082 + 0.892987i $$0.648605\pi$$
$$462$$ 0.0828420 0.0378327i 0.00385416 0.00176013i
$$463$$ 9.18540 + 31.2826i 0.426882 + 1.45383i 0.839719 + 0.543021i $$0.182720\pi$$
−0.412837 + 0.910805i $$0.635462\pi$$
$$464$$ 5.24884 6.05748i 0.243671 0.281211i
$$465$$ −0.00948730 12.9578i −0.000439963 0.600902i
$$466$$ −14.3154 16.5209i −0.663149 0.765315i
$$467$$ −0.134260 + 0.0193037i −0.00621283 + 0.000893271i −0.145421 0.989370i $$-0.546454\pi$$
0.139208 + 0.990263i $$0.455544\pi$$
$$468$$ 1.68594 5.74179i 0.0779326 0.265414i
$$469$$ 7.82423 5.02833i 0.361290 0.232187i
$$470$$ 4.77234 + 10.4297i 0.220132 + 0.481088i
$$471$$ 4.36038 9.54790i 0.200916 0.439944i
$$472$$ 7.76317 + 3.54532i 0.357329 + 0.163187i
$$473$$ −0.469171 0.0674565i −0.0215725 0.00310165i
$$474$$ 1.67617 1.07721i 0.0769892 0.0494780i
$$475$$ −9.31023 + 10.7764i −0.427183 + 0.494456i
$$476$$ −0.162832 1.13252i −0.00746340 0.0519091i
$$477$$ 4.33786 3.75878i 0.198617 0.172103i
$$478$$ −6.20306 + 9.65214i −0.283721 + 0.441479i
$$479$$ −25.2392 + 29.1276i −1.15321 + 1.33087i −0.218342 + 0.975872i $$0.570065\pi$$
−0.934866 + 0.355001i $$0.884481\pi$$
$$480$$ −0.997106 + 1.15243i −0.0455114 + 0.0526008i
$$481$$ −9.65064 21.1320i −0.440031 0.963534i
$$482$$ 17.2493i 0.785686i
$$483$$ 0.604846 2.70169i 0.0275215 0.122931i
$$484$$ 10.9751 0.498869
$$485$$ 7.23205 11.2714i 0.328390 0.511809i
$$486$$ −14.1520 + 4.15540i −0.641947 + 0.188493i
$$487$$ −3.33150 2.88676i −0.150965 0.130811i 0.576104 0.817376i $$-0.304572\pi$$
−0.727069 + 0.686565i $$0.759118\pi$$
$$488$$ 4.45674 6.93482i 0.201747 0.313925i
$$489$$ 7.41505 + 8.55742i 0.335320 + 0.386980i
$$490$$ 10.6101 9.20729i 0.479314 0.415943i
$$491$$ −2.94594 0.865007i −0.132949 0.0390372i 0.214581 0.976706i $$-0.431161\pi$$
−0.347530 + 0.937669i $$0.612979\pi$$
$$492$$ −1.93080 3.00439i −0.0870473 0.135448i
$$493$$ −10.7163 1.54077i −0.482637 0.0693928i
$$494$$ 2.79250 6.11473i 0.125641 0.275115i
$$495$$ −0.127940 0.885238i −0.00575046 0.0397885i
$$496$$ −1.21010 + 8.41642i −0.0543350 + 0.377909i
$$497$$ 2.53088 + 3.93812i 0.113525 + 0.176649i
$$498$$ 1.55502 5.29591i 0.0696821 0.237315i
$$499$$ −2.86829 19.9494i −0.128402 0.893056i −0.947580 0.319517i $$-0.896479\pi$$
0.819178 0.573539i $$-0.194430\pi$$
$$500$$ 7.30299 8.46560i 0.326600 0.378593i
$$501$$ −8.44378 5.42649i −0.377240 0.242438i
$$502$$ 3.37338 + 2.92305i 0.150562 + 0.130462i
$$503$$ −8.17978 27.8578i −0.364719 1.24212i −0.913737 0.406307i $$-0.866816\pi$$
0.549018 0.835810i $$-0.315002\pi$$
$$504$$ −0.892214 1.95368i −0.0397424 0.0870236i
$$505$$ 2.88127 1.85466i 0.128215 0.0825315i
$$506$$ −0.457058 + 0.602925i −0.0203187 + 0.0268033i
$$507$$ 5.06352i 0.224879i
$$508$$ −5.83410 + 2.66434i −0.258846 + 0.118211i
$$509$$ −20.6803 + 6.07230i −0.916640 + 0.269150i −0.705833 0.708378i $$-0.749427\pi$$
−0.210807 + 0.977528i $$0.567609\pi$$
$$510$$ 2.03768 + 0.291451i 0.0902299 + 0.0129057i
$$511$$ 0.306453 + 0.196945i 0.0135567 + 0.00871235i
$$512$$ 0.755750 0.654861i 0.0333997 0.0289410i
$$513$$ −10.6357 + 1.52919i −0.469579 + 0.0675153i
$$514$$ −15.1340 4.44375i −0.667533 0.196005i
$$515$$ −14.6664 6.68494i −0.646279 0.294574i
$$516$$ 0.291410 2.02680i 0.0128286 0.0892250i
$$517$$ −0.736085 0.336159i −0.0323730 0.0147842i
$$518$$ −7.58440 3.46368i −0.333239 0.152185i
$$519$$ 1.95495 13.5969i 0.0858126 0.596839i
$$520$$ −2.18880 + 4.80210i −0.0959850 + 0.210586i
$$521$$ −12.4496 3.65553i −0.545427 0.160152i −0.00260018 0.999997i $$-0.500828\pi$$
−0.542826 + 0.839845i $$0.682646\pi$$
$$522$$ −20.1160 + 2.89224i −0.880453 + 0.126590i
$$523$$ 33.2436 28.8058i 1.45364 1.25959i 0.547371 0.836890i $$-0.315629\pi$$
0.906271 0.422698i $$-0.138917\pi$$
$$524$$ 6.57582 + 4.22603i 0.287266 + 0.184615i
$$525$$ −1.20291 2.62383i −0.0524993 0.114513i
$$526$$ 4.43458 1.30211i 0.193357 0.0567748i
$$527$$ 10.4474 4.77119i 0.455098 0.207836i
$$528$$ 0.107515i 0.00467898i
$$529$$ 6.21254 + 22.1451i 0.270110 + 0.962829i
$$530$$ −4.25633 + 2.73978i −0.184883 + 0.119008i
$$531$$ −8.98930 19.6838i −0.390102 0.854205i
$$532$$ −0.679720 2.31491i −0.0294696 0.100364i
$$533$$ −9.34690 8.09913i −0.404859 0.350812i
$$534$$ −3.33967 2.14628i −0.144522 0.0928785i
$$535$$ −6.96163 + 23.7735i −0.300978 + 1.02782i
$$536$$ −1.56260 10.8681i −0.0674942 0.469432i
$$537$$ 0.704801 2.40033i 0.0304144 0.103582i
$$538$$ −6.30826 9.81584i −0.271968 0.423191i
$$539$$ −0.141051 + 0.981029i −0.00607548 + 0.0422559i
$$540$$ 8.34892 1.20663i 0.359280 0.0519253i
$$541$$ 11.0401 24.1744i 0.474650 1.03934i −0.509250 0.860619i $$-0.670077\pi$$
0.983900 0.178720i $$-0.0571956\pi$$
$$542$$ −28.0762 4.03675i −1.20598 0.173393i
$$543$$ 7.05347 + 10.9754i 0.302693 + 0.471000i
$$544$$ −1.29603 0.380549i −0.0555668 0.0163159i
$$545$$ 1.46080 + 1.68336i 0.0625738 + 0.0721073i
$$546$$ 0.892226 + 1.02968i 0.0381837 + 0.0440664i
$$547$$ −2.15783 + 3.35764i −0.0922620 + 0.143562i −0.884317 0.466888i $$-0.845375\pi$$
0.792055 + 0.610450i $$0.209012\pi$$
$$548$$ 7.94233 + 6.88207i 0.339280 + 0.293987i
$$549$$ −20.0549 + 5.88865i −0.855923 + 0.251322i
$$550$$ 0.00115506 + 0.788793i 4.92521e−5 + 0.0336343i
$$551$$ −22.8292 −0.972556
$$552$$ −2.60462 1.97448i −0.110860 0.0840393i
$$553$$ 2.47648i 0.105310i
$$554$$ 11.6045 + 25.4103i 0.493028 + 1.07958i
$$555$$ 9.81477 11.3436i 0.416614 0.481510i
$$556$$ 4.54427 5.24437i 0.192720 0.222411i
$$557$$ 16.0950 25.0443i 0.681968 1.06116i −0.311849 0.950132i $$-0.600948\pi$$
0.993817 0.111031i $$-0.0354153\pi$$
$$558$$ 16.2937 14.1185i 0.689766 0.597686i
$$559$$ −1.00917 7.01895i −0.0426834 0.296870i
$$560$$ 0.534958 + 1.81698i 0.0226061 + 0.0767813i
$$561$$ −0.122171 + 0.0785146i −0.00515807 + 0.00331489i
$$562$$ 3.08372 + 0.443371i 0.130079 + 0.0187025i
$$563$$ −30.2254 13.8035i −1.27385 0.581747i −0.340339 0.940303i $$-0.610542\pi$$
−0.933508 + 0.358556i $$0.883269\pi$$
$$564$$ 1.45220 3.17987i 0.0611485 0.133896i
$$565$$ −25.7423 + 11.7789i −1.08299 + 0.495542i
$$566$$ 0.620241 0.398604i 0.0260707 0.0167546i
$$567$$ −1.20172 + 4.09268i −0.0504674 + 0.171876i
$$568$$ 5.47020 0.786496i 0.229524 0.0330006i
$$569$$ 9.00955 + 10.3976i 0.377700 + 0.435889i 0.912492 0.409095i $$-0.134155\pi$$
−0.534792 + 0.844984i $$0.679610\pi$$
$$570$$ 4.34046 0.00317796i 0.181802 0.000133110i
$$571$$ −27.6480 + 31.9075i −1.15703 + 1.33529i −0.224386 + 0.974500i $$0.572038\pi$$
−0.932648 + 0.360788i $$0.882508\pi$$
$$572$$ −0.104898 0.357249i −0.00438599 0.0149373i
$$573$$ −14.5038 + 6.62368i −0.605906 + 0.276708i
$$574$$ −4.43885 −0.185274
$$575$$ 19.1303 + 14.4580i 0.797787 + 0.602939i
$$576$$ −2.53554 −0.105647
$$577$$ −11.6030 + 5.29891i −0.483039 + 0.220597i −0.642024 0.766684i $$-0.721905\pi$$
0.158985 + 0.987281i $$0.449178\pi$$
$$578$$ −4.27543 14.5608i −0.177834 0.605648i
$$579$$ −3.09193 + 3.56828i −0.128496 + 0.148293i
$$580$$ 17.9225 0.0131224i 0.744192 0.000544876i
$$581$$ −4.49251 5.18464i −0.186381 0.215095i
$$582$$ −4.04012 + 0.580881i −0.167468 + 0.0240783i
$$583$$ 0.100614 0.342660i 0.00416700 0.0141915i
$$584$$ 0.361782 0.232503i 0.0149707 0.00962106i
$$585$$ 12.1678 5.56760i 0.503075 0.230192i
$$586$$ 5.62076 12.3078i 0.232192 0.508429i
$$587$$ 10.2048 + 4.66037i 0.421197 + 0.192354i 0.614727 0.788740i $$-0.289266\pi$$
−0.193530 + 0.981094i $$0.561994\pi$$
$$588$$ −4.23802 0.609335i −0.174773 0.0251285i
$$589$$ 20.3739 13.0935i 0.839492 0.539509i
$$590$$ 5.38985 + 18.3066i 0.221897 + 0.753669i
$$591$$ 0.0942583 + 0.655581i 0.00387727 + 0.0269670i
$$592$$ −7.43904 + 6.44596i −0.305743 + 0.264928i
$$593$$ −3.28292 + 5.10832i −0.134813 + 0.209774i −0.902096 0.431535i $$-0.857972\pi$$
0.767283 + 0.641309i $$0.221608\pi$$
$$594$$ −0.389742 + 0.449786i −0.0159913 + 0.0184550i
$$595$$ 1.67400 1.93476i 0.0686275 0.0793176i
$$596$$ −4.86908 10.6618i −0.199445 0.436724i
$$597$$ 17.7284i 0.725575i
$$598$$ −10.5810 4.01955i −0.432689 0.164371i
$$599$$ 34.6374 1.41524 0.707622 0.706591i $$-0.249768\pi$$
0.707622 + 0.706591i $$0.249768\pi$$
$$600$$ −3.40756 + 0.00498984i −0.139113 + 0.000203710i
$$601$$ 26.2051 7.69450i 1.06893 0.313865i 0.300486 0.953786i $$-0.402851\pi$$
0.768441 + 0.639921i $$0.221033\pi$$
$$602$$ −1.92342 1.66665i −0.0783928 0.0679277i
$$603$$ −15.0514 + 23.4205i −0.612942 + 0.953756i
$$604$$ 0.654105 + 0.754877i 0.0266152 + 0.0307155i
$$605$$ 16.0846 + 18.5352i 0.653931 + 0.753561i
$$606$$ −1.00206 0.294231i −0.0407059 0.0119523i
$$607$$ 13.7892 + 21.4564i 0.559686 + 0.870889i 0.999632 0.0271355i $$-0.00863857\pi$$
−0.439945 + 0.898025i $$0.645002\pi$$
$$608$$ −2.81925 0.405347i −0.114336 0.0164390i
$$609$$ 1.92215 4.20892i 0.0778894 0.170554i
$$610$$ 18.2434 2.63663i 0.738652 0.106754i
$$611$$ 1.72287 11.9829i 0.0697000 0.484774i
$$612$$ 1.85162 + 2.88118i 0.0748474 + 0.116465i
$$613$$ 7.87930 26.8344i 0.318242 1.08383i −0.632683 0.774411i $$-0.718046\pi$$
0.950925 0.309422i $$-0.100135\pi$$
$$614$$ −1.99691 13.8888i −0.0805888 0.560507i
$$615$$ 2.24423 7.66389i 0.0904959 0.309038i
$$616$$ −0.112418 0.0722469i −0.00452946 0.00291091i
$$617$$ 12.3085 + 10.6654i 0.495523 + 0.429373i 0.866431 0.499296i $$-0.166408\pi$$
−0.370908 + 0.928670i $$0.620954\pi$$
$$618$$ 1.38401 + 4.71350i 0.0556730 + 0.189605i
$$619$$ 2.39946 + 5.25407i 0.0964423 + 0.211179i 0.951704 0.307017i $$-0.0993309\pi$$
−0.855262 + 0.518196i $$0.826604\pi$$
$$620$$ −15.9874 + 10.2910i −0.642070 + 0.413298i
$$621$$ 3.73888 + 17.7020i 0.150036 + 0.710355i
$$622$$ 22.9702i 0.921021i
$$623$$ −4.48833 + 2.04975i −0.179821 + 0.0821215i
$$624$$ 1.54330 0.453155i 0.0617816 0.0181407i
$$625$$ 24.9999 0.0732170i 0.999996 0.00292868i
$$626$$ −15.6060 10.0294i −0.623740 0.400854i
$$627$$ −0.231432 + 0.200537i −0.00924249 + 0.00800866i
$$628$$ −15.2449 + 2.19189i −0.608338 + 0.0874658i
$$629$$ 12.7572 + 3.74584i 0.508661 + 0.149356i
$$630$$ 1.99185 4.37001i 0.0793573 0.174105i
$$631$$ 2.99534 20.8330i 0.119242 0.829349i −0.839151 0.543899i $$-0.816948\pi$$
0.958393 0.285451i $$-0.0921433\pi$$
$$632$$ −2.65940 1.21451i −0.105785 0.0483105i
$$633$$ −0.229846 0.104967i −0.00913557 0.00417207i
$$634$$ −0.775311 + 5.39241i −0.0307915 + 0.214160i
$$635$$ −13.0498 5.94810i −0.517865 0.236043i
$$636$$ 1.48028 + 0.434649i 0.0586969 + 0.0172350i
$$637$$ −14.6765 + 2.11016i −0.581505 + 0.0836078i
$$638$$ −0.955621 + 0.828050i −0.0378334 + 0.0327828i
$$639$$ −11.7881 7.57574i −0.466330 0.299692i
$$640$$ 2.21354 + 0.316605i 0.0874979 + 0.0125149i
$$641$$ −11.2921 + 3.31566i −0.446011 + 0.130961i −0.497023 0.867737i $$-0.665574\pi$$
0.0510119 + 0.998698i $$0.483755\pi$$
$$642$$ 6.86774 3.13639i 0.271048 0.123783i
$$643$$ 4.81021i 0.189696i 0.995492 + 0.0948481i $$0.0302365\pi$$
−0.995492 + 0.0948481i $$0.969763\pi$$
$$644$$ −3.81476 + 1.39662i −0.150322 + 0.0550344i
$$645$$ 3.85001 2.47824i 0.151594 0.0975805i
$$646$$ 1.59820 + 3.49958i 0.0628805 + 0.137689i
$$647$$ −1.01117 3.44371i −0.0397530 0.135386i 0.937226 0.348724i $$-0.113385\pi$$
−0.976979 + 0.213337i $$0.931567\pi$$
$$648$$ 3.80563 + 3.29760i 0.149499 + 0.129542i
$$649$$ −1.13265 0.727907i −0.0444602 0.0285729i
$$650$$ −11.3177 + 3.34120i −0.443918 + 0.131053i
$$651$$ 0.698573 + 4.85868i 0.0273792 + 0.190427i
$$652$$ 4.68088 15.9416i 0.183317 0.624322i
$$653$$ 24.5693 + 38.2306i 0.961472 + 1.49608i 0.865630 + 0.500684i $$0.166918\pi$$
0.0958421 + 0.995397i $$0.469446\pi$$
$$654$$ 0.0966751 0.672390i 0.00378030 0.0262925i
$$655$$ 2.50014 + 17.2989i 0.0976886 + 0.675925i
$$656$$ −2.17689 + 4.76673i −0.0849933 + 0.186109i
$$657$$ −1.07931 0.155182i −0.0421080 0.00605422i
$$658$$ −2.34906 3.65521i −0.0915758 0.142495i
$$659$$ 47.2679 + 13.8791i 1.84130 + 0.540653i 1.00000 7.77027e-5i $$2.47335e-5\pi$$
0.841296 + 0.540575i $$0.181793\pi$$
$$660$$ 0.181575 0.157568i 0.00706779 0.00613334i
$$661$$ −2.19577 2.53405i −0.0854056 0.0985633i 0.711438 0.702749i $$-0.248044\pi$$
−0.796844 + 0.604185i $$0.793499\pi$$
$$662$$ −11.9831 + 18.6460i −0.465735 + 0.724699i
$$663$$ −1.64195 1.42276i −0.0637682 0.0552554i
$$664$$ −7.77080 + 2.28171i −0.301566 + 0.0885477i
$$665$$ 2.91334 4.54055i 0.112975 0.176075i
$$666$$ 24.9580 0.967102
$$667$$ 2.51039 + 38.3575i 0.0972025 + 1.48521i
$$668$$ 14.7277i 0.569833i
$$669$$ 8.17322 + 17.8969i 0.315995 + 0.691933i
$$670$$ 16.0644 18.5668i 0.620623 0.717298i
$$671$$ −0.851631 + 0.982834i −0.0328768 + 0.0379419i
$$672$$ 0.312104 0.485644i 0.0120397 0.0187341i
$$673$$ 27.4474 23.7833i 1.05802 0.916778i 0.0613312 0.998117i $$-0.480465\pi$$
0.996686 + 0.0813400i $$0.0259200\pi$$
$$674$$ −3.44012 23.9265i −0.132508 0.921616i
$$675$$ 14.2736 + 12.3316i 0.549390 + 0.474642i
$$676$$ −6.25036 + 4.01686i −0.240398 + 0.154495i
$$677$$ 3.27028 + 0.470196i 0.125687 + 0.0180711i 0.204871 0.978789i $$-0.434322\pi$$
−0.0791841 + 0.996860i $$0.525232\pi$$
$$678$$ 7.84841 + 3.58425i 0.301416 + 0.137652i
$$679$$ −2.10747 + 4.61471i −0.0808772 + 0.177096i
$$680$$ −1.25671 2.74649i −0.0481928 0.105323i
$$681$$ 14.9607 9.61465i 0.573295 0.368434i
$$682$$ 0.377921 1.28708i 0.0144714 0.0492849i
$$683$$ 35.1573 5.05486i 1.34526 0.193419i 0.568222 0.822875i $$-0.307631\pi$$
0.777036 + 0.629456i $$0.216722\pi$$
$$684$$ 4.72929 + 5.45789i 0.180829 + 0.208688i
$$685$$ 0.0172055 + 23.4993i 0.000657389 + 0.897862i
$$686$$ −7.36791 + 8.50303i −0.281308 + 0.324647i
$$687$$ −0.368694 1.25566i −0.0140666 0.0479063i
$$688$$ −2.73304 + 1.24814i −0.104196 + 0.0475848i
$$689$$ 5.34272 0.203541
$$690$$ −0.482633 7.29247i −0.0183735 0.277619i
$$691$$ −16.3035 −0.620215 −0.310108 0.950701i $$-0.600365\pi$$
−0.310108 + 0.950701i $$0.600365\pi$$
$$692$$ −18.3348 + 8.37321i −0.696984 + 0.318302i
$$693$$ 0.0954591 + 0.325104i 0.00362619 + 0.0123497i
$$694$$ −14.9091 + 17.2061i −0.565943 + 0.653133i
$$695$$ 15.5167 0.0113609i 0.588584 0.000430944i
$$696$$ −3.57715 4.12826i −0.135592 0.156481i
$$697$$ 7.00624 1.00734i 0.265380 0.0381559i
$$698$$ −9.42375 + 32.0944i −0.356694 + 1.21479i
$$699$$ −12.5331 + 8.05450i −0.474044 + 0.304649i
$$700$$ −2.28457 + 3.56633i −0.0863486 + 0.134795i
$$701$$ −9.69080 + 21.2199i −0.366017 + 0.801465i 0.633597 + 0.773663i $$0.281578\pi$$
−0.999613 + 0.0278012i $$0.991149\pi$$
$$702$$ −8.09907 3.69872i −0.305680 0.139599i
$$703$$ 27.7506 + 3.98993i 1.04663 + 0.150483i
$$704$$ −0.132715 + 0.0852909i −0.00500189 + 0.00321452i
$$705$$ 7.49853 2.20773i 0.282411 0.0831480i
$$706$$ −4.59457 31.9559i −0.172919 1.20268i
$$707$$ −0.981005 + 0.850046i −0.0368945 + 0.0319693i
$$708$$ 3.14454 4.89300i 0.118179 0.183890i
$$709$$ −9.72912 + 11.2280i −0.365385 + 0.421677i −0.908437 0.418023i $$-0.862723\pi$$
0.543052 + 0.839699i $$0.317269\pi$$
$$710$$ 9.34511 + 8.08561i 0.350716 + 0.303448i
$$711$$ 3.07943 + 6.74301i 0.115488 + 0.252883i
$$712$$ 5.82509i 0.218304i
$$713$$ −24.2400 32.7923i −0.907796 1.22808i
$$714$$ −0.779766 −0.0291820
$$715$$ 0.449601 0.700720i 0.0168141 0.0262055i
$$716$$ −3.52206 + 1.03417i −0.131626 + 0.0386488i
$$717$$ 5.90948 + 5.12059i 0.220694 + 0.191232i
$$718$$ −17.7516 + 27.6221i −0.662485 + 1.03085i
$$719$$ 2.47270 + 2.85364i 0.0922160 + 0.106423i 0.799982 0.600024i $$-0.204842\pi$$
−0.707766 + 0.706447i $$0.750297\pi$$
$$720$$ −3.71596 4.28211i −0.138486 0.159585i
$$721$$ 5.85849 + 1.72021i 0.218182 + 0.0640639i
$$722$$ −5.88625 9.15918i −0.219063 0.340869i
$$723$$ −11.6360 1.67300i −0.432748 0.0622197i
$$724$$ 7.95246 17.4135i 0.295551 0.647166i
$$725$$ 26.2885 + 30.2489i 0.976331 + 1.12342i
$$726$$ 1.06447 7.40356i 0.0395062 0.274772i
$$727$$ −5.14035 7.99854i −0.190645 0.296649i 0.732752 0.680496i $$-0.238236\pi$$
−0.923397 + 0.383846i $$0.874599\pi$$
$$728$$ 0.563233 1.91820i 0.0208748 0.0710931i
$$729$$ −0.719370 5.00333i −0.0266433 0.185308i
$$730$$ 0.922870 + 0.270245i 0.0341570 + 0.0100022i
$$731$$ 3.41413 + 2.19413i 0.126276 + 0.0811528i
$$732$$ −4.24581 3.67902i −0.156930 0.135980i
$$733$$ 3.64380 + 12.4097i 0.134587 + 0.458361i 0.999014 0.0443972i $$-0.0141367\pi$$
−0.864427 + 0.502758i $$0.832319\pi$$
$$734$$ 4.47679 + 9.80280i 0.165241 + 0.361828i
$$735$$ −5.18196 8.05032i −0.191139 0.296941i
$$736$$ −0.371046 + 4.78146i −0.0136769 + 0.176247i
$$737$$ 1.73218i 0.0638056i
$$738$$ 12.0862 5.51959i 0.444900 0.203179i
$$739$$ 12.3471 3.62543i 0.454195 0.133364i −0.0466302 0.998912i $$-0.514848\pi$$
0.500825 + 0.865549i $$0.333030\pi$$
$$740$$ −21.7885 3.11643i −0.800960 0.114562i
$$741$$ −3.85401 2.47682i −0.141581 0.0909883i
$$742$$ 1.44918 1.25572i 0.0532010 0.0460989i
$$743$$ −40.7993 + 5.86605i −1.49678 + 0.215204i −0.841531 0.540209i $$-0.818345\pi$$
−0.655249 + 0.755413i $$0.727436\pi$$
$$744$$ 5.56016 + 1.63261i 0.203845 + 0.0598544i
$$745$$ 10.8701 23.8485i 0.398251 0.873740i
$$746$$ 4.05720 28.2184i 0.148545 1.03315i
$$747$$ 18.6793 + 8.53054i 0.683439 + 0.312116i
$$748$$ 0.193835 + 0.0885216i 0.00708732 + 0.00323667i
$$749$$ 1.33549 9.28852i 0.0487977 0.339395i
$$750$$ −5.00238 5.74750i −0.182661 0.209869i
$$751$$ −10.7184 3.14721i −0.391120 0.114843i 0.0802587 0.996774i $$-0.474425\pi$$
−0.471379 + 0.881931i $$0.656244\pi$$
$$752$$ −5.07721 + 0.729993i −0.185147 + 0.0266201i
$$753$$ 2.29901 1.99210i 0.0837805 0.0725962i
$$754$$ −15.9139 10.2272i −0.579549 0.372454i
$$755$$ −0.316240 + 2.21099i −0.0115091 + 0.0804660i
$$756$$ −3.06614 + 0.900301i −0.111515 + 0.0327436i
$$757$$ 35.8431 16.3690i 1.30274 0.594940i 0.361402 0.932410i $$-0.382298\pi$$
0.941336 + 0.337470i $$0.109571\pi$$
$$758$$ 13.4927i 0.490078i
$$759$$ 0.362389 + 0.366798i 0.0131539 + 0.0133139i
$$760$$ −3.44719 5.35530i −0.125043 0.194257i
$$761$$ −11.2013 24.5275i −0.406048 0.889122i −0.996621 0.0821373i $$-0.973825\pi$$
0.590573 0.806984i $$-0.298902\pi$$
$$762$$ 1.23146 + 4.19396i 0.0446110 + 0.151931i
$$763$$ −0.638094 0.552911i −0.0231005 0.0200167i
$$764$$ 19.6820 + 12.6489i 0.712070 + 0.457619i
$$765$$ −2.15219 + 7.34960i −0.0778127 + 0.265725i
$$766$$ 5.33746 + 37.1229i 0.192850 + 1.34130i
$$767$$ 5.67473 19.3264i 0.204903 0.697835i
$$768$$ −0.368454 0.573326i −0.0132954 0.0206881i
$$769$$ 0.400659 2.78665i 0.0144481 0.100489i −0.981321 0.192376i $$-0.938381\pi$$
0.995769 + 0.0918868i $$0.0292898\pi$$
$$770$$ −0.0427416 0.295737i −0.00154030 0.0106576i
$$771$$ −4.46549 + 9.77805i −0.160821 + 0.352148i
$$772$$ 6.85746 + 0.985954i