Properties

Label 230.2.g.c.101.1
Level $230$
Weight $2$
Character 230.101
Analytic conductor $1.837$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 230 = 2 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 230.g (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.83655924649\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \( x^{20} - 9 x^{19} + 35 x^{18} - 66 x^{17} + 51 x^{16} - 52 x^{15} + 289 x^{14} - 451 x^{13} + 115 x^{12} + 604 x^{11} - 265 x^{10} + 427 x^{9} + 3056 x^{8} + 7095 x^{7} + 12236 x^{6} + \cdots + 529 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 101.1
Root \(-0.577766 + 0.371308i\) of defining polynomial
Character \(\chi\) \(=\) 230.101
Dual form 230.2.g.c.41.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.959493 - 0.281733i) q^{2} +(-0.267311 - 0.308493i) q^{3} +(0.841254 - 0.540641i) q^{4} +(0.142315 + 0.989821i) q^{5} +(-0.343396 - 0.220687i) q^{6} +(1.05127 - 2.30197i) q^{7} +(0.654861 - 0.755750i) q^{8} +(0.403232 - 2.80454i) q^{9} +O(q^{10})\) \(q+(0.959493 - 0.281733i) q^{2} +(-0.267311 - 0.308493i) q^{3} +(0.841254 - 0.540641i) q^{4} +(0.142315 + 0.989821i) q^{5} +(-0.343396 - 0.220687i) q^{6} +(1.05127 - 2.30197i) q^{7} +(0.654861 - 0.755750i) q^{8} +(0.403232 - 2.80454i) q^{9} +(0.415415 + 0.909632i) q^{10} +(0.989357 + 0.290502i) q^{11} +(-0.391661 - 0.115002i) q^{12} +(1.97230 + 4.31874i) q^{13} +(0.360150 - 2.50490i) q^{14} +(0.267311 - 0.308493i) q^{15} +(0.415415 - 0.909632i) q^{16} +(2.04153 + 1.31201i) q^{17} +(-0.403232 - 2.80454i) q^{18} +(-5.54816 + 3.56559i) q^{19} +(0.654861 + 0.755750i) q^{20} +(-0.991159 + 0.291030i) q^{21} +1.03113 q^{22} +(0.0958668 - 4.79487i) q^{23} -0.408195 q^{24} +(-0.959493 + 0.281733i) q^{25} +(3.10914 + 3.58814i) q^{26} +(-2.00316 + 1.28735i) q^{27} +(-0.360150 - 2.50490i) q^{28} +(-8.51068 - 5.46948i) q^{29} +(0.169570 - 0.371308i) q^{30} +(-1.98997 + 2.29655i) q^{31} +(0.142315 - 0.989821i) q^{32} +(-0.174848 - 0.382865i) q^{33} +(2.32847 + 0.683702i) q^{34} +(2.42815 + 0.712969i) q^{35} +(-1.17703 - 2.57733i) q^{36} +(-1.65206 + 11.4903i) q^{37} +(-4.31888 + 4.98425i) q^{38} +(0.805085 - 1.76289i) q^{39} +(0.841254 + 0.540641i) q^{40} +(0.933580 + 6.49319i) q^{41} +(-0.869017 + 0.558483i) q^{42} +(-0.689322 - 0.795520i) q^{43} +(0.989357 - 0.290502i) q^{44} +2.83338 q^{45} +(-1.25889 - 4.62766i) q^{46} +2.53259 q^{47} +(-0.391661 + 0.115002i) q^{48} +(0.390148 + 0.450255i) q^{49} +(-0.841254 + 0.540641i) q^{50} +(-0.140977 - 0.980515i) q^{51} +(3.99409 + 2.56685i) q^{52} +(-3.57090 + 7.81918i) q^{53} +(-1.55933 + 1.79956i) q^{54} +(-0.146744 + 1.02063i) q^{55} +(-1.05127 - 2.30197i) q^{56} +(2.58304 + 0.758450i) q^{57} +(-9.70687 - 2.85019i) q^{58} +(-4.89813 - 10.7254i) q^{59} +(0.0580923 - 0.404041i) q^{60} +(-1.43939 + 1.66115i) q^{61} +(-1.26235 + 2.76416i) q^{62} +(-6.03204 - 3.87656i) q^{63} +(-0.142315 - 0.989821i) q^{64} +(-3.99409 + 2.56685i) q^{65} +(-0.275631 - 0.318095i) q^{66} +(9.47782 - 2.78294i) q^{67} +2.42677 q^{68} +(-1.50481 + 1.25215i) q^{69} +2.53066 q^{70} +(3.24130 - 0.951732i) q^{71} +(-1.85547 - 2.14132i) q^{72} +(12.4083 - 7.97436i) q^{73} +(1.65206 + 11.4903i) q^{74} +(0.343396 + 0.220687i) q^{75} +(-2.73971 + 5.99912i) q^{76} +(1.70881 - 1.97207i) q^{77} +(0.275810 - 1.91830i) q^{78} +(-1.79491 - 3.93030i) q^{79} +(0.959493 + 0.281733i) q^{80} +(-7.22321 - 2.12093i) q^{81} +(2.72511 + 5.96715i) q^{82} +(0.515400 - 3.58468i) q^{83} +(-0.676473 + 0.780691i) q^{84} +(-1.00812 + 2.20747i) q^{85} +(-0.885523 - 0.569091i) q^{86} +(0.587700 + 4.08754i) q^{87} +(0.867438 - 0.557468i) q^{88} +(-3.82011 - 4.40864i) q^{89} +(2.71860 - 0.798254i) q^{90} +12.0150 q^{91} +(-2.51166 - 4.08553i) q^{92} +1.24041 q^{93} +(2.43000 - 0.713512i) q^{94} +(-4.31888 - 4.98425i) q^{95} +(-0.343396 + 0.220687i) q^{96} +(0.252252 + 1.75445i) q^{97} +(0.501196 + 0.322099i) q^{98} +(1.21366 - 2.65755i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 2 q^{2} + q^{3} - 2 q^{4} + 2 q^{5} - q^{6} - 12 q^{7} + 2 q^{8} + 17 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 20 q + 2 q^{2} + q^{3} - 2 q^{4} + 2 q^{5} - q^{6} - 12 q^{7} + 2 q^{8} + 17 q^{9} - 2 q^{10} - 3 q^{11} + q^{12} - 18 q^{13} + q^{14} - q^{15} - 2 q^{16} + 14 q^{17} - 17 q^{18} - 7 q^{19} + 2 q^{20} - 43 q^{21} - 8 q^{22} + 9 q^{23} + 10 q^{24} - 2 q^{25} - 4 q^{26} + 10 q^{27} - q^{28} - 28 q^{29} + q^{30} - 7 q^{31} + 2 q^{32} + 35 q^{33} - 3 q^{34} - 10 q^{35} - 27 q^{36} + 30 q^{37} + 40 q^{38} + 69 q^{39} - 2 q^{40} - 2 q^{41} + 10 q^{42} - 26 q^{43} - 3 q^{44} - 6 q^{45} + 2 q^{46} - 26 q^{47} + q^{48} - 8 q^{49} + 2 q^{50} + 20 q^{51} + 15 q^{52} - q^{53} + 23 q^{54} + 3 q^{55} + 12 q^{56} + 3 q^{57} - 27 q^{58} - 48 q^{59} - q^{60} - 7 q^{61} - 26 q^{62} + 8 q^{63} - 2 q^{64} - 15 q^{65} + 20 q^{66} + 7 q^{67} - 8 q^{68} + 12 q^{69} + 10 q^{70} + 19 q^{71} - 17 q^{72} + 2 q^{73} - 30 q^{74} + q^{75} - 7 q^{76} - 34 q^{77} - 14 q^{78} - 49 q^{79} + 2 q^{80} - 56 q^{81} - 31 q^{82} + 23 q^{83} + 12 q^{84} + 8 q^{85} + 37 q^{86} - 31 q^{87} + 14 q^{88} + 43 q^{89} - 5 q^{90} + 128 q^{91} - 13 q^{92} - 50 q^{93} - 7 q^{94} + 40 q^{95} - q^{96} - 7 q^{97} - 36 q^{98} - 85 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/230\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.959493 0.281733i 0.678464 0.199215i
\(3\) −0.267311 0.308493i −0.154332 0.178109i 0.673318 0.739353i \(-0.264868\pi\)
−0.827650 + 0.561244i \(0.810323\pi\)
\(4\) 0.841254 0.540641i 0.420627 0.270320i
\(5\) 0.142315 + 0.989821i 0.0636451 + 0.442662i
\(6\) −0.343396 0.220687i −0.140191 0.0900951i
\(7\) 1.05127 2.30197i 0.397344 0.870062i −0.600189 0.799858i \(-0.704908\pi\)
0.997533 0.0702034i \(-0.0223648\pi\)
\(8\) 0.654861 0.755750i 0.231528 0.267198i
\(9\) 0.403232 2.80454i 0.134411 0.934846i
\(10\) 0.415415 + 0.909632i 0.131366 + 0.287651i
\(11\) 0.989357 + 0.290502i 0.298302 + 0.0875895i 0.427459 0.904035i \(-0.359409\pi\)
−0.129157 + 0.991624i \(0.541227\pi\)
\(12\) −0.391661 0.115002i −0.113063 0.0331982i
\(13\) 1.97230 + 4.31874i 0.547018 + 1.19780i 0.958160 + 0.286231i \(0.0924026\pi\)
−0.411142 + 0.911571i \(0.634870\pi\)
\(14\) 0.360150 2.50490i 0.0962542 0.669462i
\(15\) 0.267311 0.308493i 0.0690194 0.0796527i
\(16\) 0.415415 0.909632i 0.103854 0.227408i
\(17\) 2.04153 + 1.31201i 0.495144 + 0.318210i 0.764271 0.644895i \(-0.223099\pi\)
−0.269127 + 0.963105i \(0.586735\pi\)
\(18\) −0.403232 2.80454i −0.0950426 0.661036i
\(19\) −5.54816 + 3.56559i −1.27283 + 0.818001i −0.989986 0.141163i \(-0.954916\pi\)
−0.282849 + 0.959165i \(0.591279\pi\)
\(20\) 0.654861 + 0.755750i 0.146431 + 0.168991i
\(21\) −0.991159 + 0.291030i −0.216289 + 0.0635081i
\(22\) 1.03113 0.219837
\(23\) 0.0958668 4.79487i 0.0199896 0.999800i
\(24\) −0.408195 −0.0833225
\(25\) −0.959493 + 0.281733i −0.191899 + 0.0563465i
\(26\) 3.10914 + 3.58814i 0.609752 + 0.703692i
\(27\) −2.00316 + 1.28735i −0.385508 + 0.247751i
\(28\) −0.360150 2.50490i −0.0680620 0.473381i
\(29\) −8.51068 5.46948i −1.58039 1.01566i −0.975676 0.219218i \(-0.929649\pi\)
−0.604718 0.796439i \(-0.706714\pi\)
\(30\) 0.169570 0.371308i 0.0309592 0.0677912i
\(31\) −1.98997 + 2.29655i −0.357409 + 0.412472i −0.905770 0.423770i \(-0.860707\pi\)
0.548361 + 0.836242i \(0.315252\pi\)
\(32\) 0.142315 0.989821i 0.0251579 0.174977i
\(33\) −0.174848 0.382865i −0.0304372 0.0666482i
\(34\) 2.32847 + 0.683702i 0.399330 + 0.117254i
\(35\) 2.42815 + 0.712969i 0.410432 + 0.120514i
\(36\) −1.17703 2.57733i −0.196171 0.429555i
\(37\) −1.65206 + 11.4903i −0.271597 + 1.88900i 0.160293 + 0.987069i \(0.448756\pi\)
−0.431890 + 0.901926i \(0.642153\pi\)
\(38\) −4.31888 + 4.98425i −0.700615 + 0.808552i
\(39\) 0.805085 1.76289i 0.128917 0.282288i
\(40\) 0.841254 + 0.540641i 0.133014 + 0.0854828i
\(41\) 0.933580 + 6.49319i 0.145801 + 1.01407i 0.922997 + 0.384808i \(0.125732\pi\)
−0.777196 + 0.629259i \(0.783359\pi\)
\(42\) −0.869017 + 0.558483i −0.134092 + 0.0861759i
\(43\) −0.689322 0.795520i −0.105121 0.121316i 0.700751 0.713406i \(-0.252848\pi\)
−0.805872 + 0.592090i \(0.798303\pi\)
\(44\) 0.989357 0.290502i 0.149151 0.0437948i
\(45\) 2.83338 0.422375
\(46\) −1.25889 4.62766i −0.185613 0.682311i
\(47\) 2.53259 0.369416 0.184708 0.982793i \(-0.440866\pi\)
0.184708 + 0.982793i \(0.440866\pi\)
\(48\) −0.391661 + 0.115002i −0.0565313 + 0.0165991i
\(49\) 0.390148 + 0.450255i 0.0557354 + 0.0643221i
\(50\) −0.841254 + 0.540641i −0.118971 + 0.0764582i
\(51\) −0.140977 0.980515i −0.0197407 0.137300i
\(52\) 3.99409 + 2.56685i 0.553881 + 0.355958i
\(53\) −3.57090 + 7.81918i −0.490501 + 1.07405i 0.488941 + 0.872317i \(0.337383\pi\)
−0.979441 + 0.201729i \(0.935344\pi\)
\(54\) −1.55933 + 1.79956i −0.212197 + 0.244889i
\(55\) −0.146744 + 1.02063i −0.0197870 + 0.137622i
\(56\) −1.05127 2.30197i −0.140482 0.307613i
\(57\) 2.58304 + 0.758450i 0.342133 + 0.100459i
\(58\) −9.70687 2.85019i −1.27457 0.374249i
\(59\) −4.89813 10.7254i −0.637682 1.39633i −0.901934 0.431875i \(-0.857852\pi\)
0.264252 0.964454i \(-0.414875\pi\)
\(60\) 0.0580923 0.404041i 0.00749968 0.0521614i
\(61\) −1.43939 + 1.66115i −0.184295 + 0.212688i −0.840378 0.542001i \(-0.817667\pi\)
0.656083 + 0.754689i \(0.272212\pi\)
\(62\) −1.26235 + 2.76416i −0.160319 + 0.351049i
\(63\) −6.03204 3.87656i −0.759966 0.488401i
\(64\) −0.142315 0.989821i −0.0177894 0.123728i
\(65\) −3.99409 + 2.56685i −0.495406 + 0.318378i
\(66\) −0.275631 0.318095i −0.0339279 0.0391548i
\(67\) 9.47782 2.78294i 1.15790 0.339990i 0.354283 0.935138i \(-0.384725\pi\)
0.803616 + 0.595148i \(0.202907\pi\)
\(68\) 2.42677 0.294290
\(69\) −1.50481 + 1.25215i −0.181158 + 0.150741i
\(70\) 2.53066 0.302471
\(71\) 3.24130 0.951732i 0.384672 0.112950i −0.0836783 0.996493i \(-0.526667\pi\)
0.468350 + 0.883543i \(0.344849\pi\)
\(72\) −1.85547 2.14132i −0.218669 0.252357i
\(73\) 12.4083 7.97436i 1.45229 0.933328i 0.453165 0.891427i \(-0.350295\pi\)
0.999122 0.0419016i \(-0.0133416\pi\)
\(74\) 1.65206 + 11.4903i 0.192048 + 1.33572i
\(75\) 0.343396 + 0.220687i 0.0396519 + 0.0254827i
\(76\) −2.73971 + 5.99912i −0.314266 + 0.688147i
\(77\) 1.70881 1.97207i 0.194737 0.224738i
\(78\) 0.275810 1.91830i 0.0312293 0.217205i
\(79\) −1.79491 3.93030i −0.201943 0.442193i 0.781382 0.624053i \(-0.214515\pi\)
−0.983324 + 0.181861i \(0.941788\pi\)
\(80\) 0.959493 + 0.281733i 0.107275 + 0.0314987i
\(81\) −7.22321 2.12093i −0.802579 0.235658i
\(82\) 2.72511 + 5.96715i 0.300938 + 0.658962i
\(83\) 0.515400 3.58468i 0.0565725 0.393470i −0.941787 0.336210i \(-0.890855\pi\)
0.998359 0.0572596i \(-0.0182363\pi\)
\(84\) −0.676473 + 0.780691i −0.0738092 + 0.0851804i
\(85\) −1.00812 + 2.20747i −0.109346 + 0.239434i
\(86\) −0.885523 0.569091i −0.0954884 0.0613667i
\(87\) 0.587700 + 4.08754i 0.0630081 + 0.438231i
\(88\) 0.867438 0.557468i 0.0924692 0.0594263i
\(89\) −3.82011 4.40864i −0.404931 0.467315i 0.516257 0.856434i \(-0.327325\pi\)
−0.921188 + 0.389119i \(0.872780\pi\)
\(90\) 2.71860 0.798254i 0.286566 0.0841434i
\(91\) 12.0150 1.25952
\(92\) −2.51166 4.08553i −0.261858 0.425946i
\(93\) 1.24041 0.128625
\(94\) 2.43000 0.713512i 0.250635 0.0735932i
\(95\) −4.31888 4.98425i −0.443108 0.511373i
\(96\) −0.343396 + 0.220687i −0.0350477 + 0.0225238i
\(97\) 0.252252 + 1.75445i 0.0256123 + 0.178137i 0.998612 0.0526689i \(-0.0167728\pi\)
−0.973000 + 0.230806i \(0.925864\pi\)
\(98\) 0.501196 + 0.322099i 0.0506284 + 0.0325369i
\(99\) 1.21366 2.65755i 0.121978 0.267094i
\(100\) −0.654861 + 0.755750i −0.0654861 + 0.0755750i
\(101\) 0.747543 5.19928i 0.0743833 0.517347i −0.918232 0.396043i \(-0.870383\pi\)
0.992615 0.121304i \(-0.0387077\pi\)
\(102\) −0.411509 0.901080i −0.0407455 0.0892202i
\(103\) 9.33423 + 2.74078i 0.919729 + 0.270057i 0.707131 0.707083i \(-0.249989\pi\)
0.212598 + 0.977140i \(0.431807\pi\)
\(104\) 4.55547 + 1.33761i 0.446700 + 0.131163i
\(105\) −0.429125 0.939652i −0.0418783 0.0917007i
\(106\) −1.22334 + 8.50848i −0.118821 + 0.826417i
\(107\) −6.72690 + 7.76326i −0.650314 + 0.750503i −0.981163 0.193181i \(-0.938120\pi\)
0.330849 + 0.943684i \(0.392665\pi\)
\(108\) −0.989168 + 2.16598i −0.0951828 + 0.208421i
\(109\) 3.83085 + 2.46194i 0.366929 + 0.235811i 0.711092 0.703099i \(-0.248201\pi\)
−0.344163 + 0.938910i \(0.611837\pi\)
\(110\) 0.146744 + 1.02063i 0.0139915 + 0.0973132i
\(111\) 3.98630 2.56184i 0.378363 0.243159i
\(112\) −1.65723 1.91254i −0.156593 0.180718i
\(113\) −9.09687 + 2.67108i −0.855761 + 0.251274i −0.680048 0.733167i \(-0.738041\pi\)
−0.175713 + 0.984441i \(0.556223\pi\)
\(114\) 2.69209 0.252138
\(115\) 4.75971 0.587491i 0.443845 0.0547838i
\(116\) −10.1167 −0.939309
\(117\) 12.9074 3.78994i 1.19329 0.350380i
\(118\) −7.72141 8.91098i −0.710814 0.820323i
\(119\) 5.16642 3.32026i 0.473605 0.304367i
\(120\) −0.0580923 0.404041i −0.00530307 0.0368837i
\(121\) −8.35935 5.37223i −0.759941 0.488384i
\(122\) −0.913087 + 1.99938i −0.0826670 + 0.181015i
\(123\) 1.75355 2.02371i 0.158112 0.182471i
\(124\) −0.432462 + 3.00784i −0.0388362 + 0.270112i
\(125\) −0.415415 0.909632i −0.0371558 0.0813600i
\(126\) −6.87986 2.02011i −0.612906 0.179966i
\(127\) −0.670035 0.196740i −0.0594560 0.0174579i 0.251869 0.967761i \(-0.418955\pi\)
−0.311325 + 0.950303i \(0.600773\pi\)
\(128\) −0.415415 0.909632i −0.0367178 0.0804009i
\(129\) −0.0611493 + 0.425303i −0.00538389 + 0.0374458i
\(130\) −3.10914 + 3.58814i −0.272690 + 0.314701i
\(131\) 7.21069 15.7892i 0.630001 1.37951i −0.278016 0.960576i \(-0.589677\pi\)
0.908017 0.418933i \(-0.137596\pi\)
\(132\) −0.354084 0.227556i −0.0308191 0.0198062i
\(133\) 2.37523 + 16.5201i 0.205959 + 1.43247i
\(134\) 8.30985 5.34042i 0.717862 0.461342i
\(135\) −1.55933 1.79956i −0.134205 0.154881i
\(136\) 2.32847 0.683702i 0.199665 0.0586269i
\(137\) 4.41058 0.376822 0.188411 0.982090i \(-0.439666\pi\)
0.188411 + 0.982090i \(0.439666\pi\)
\(138\) −1.09109 + 1.62538i −0.0928795 + 0.138362i
\(139\) −19.3073 −1.63762 −0.818810 0.574064i \(-0.805366\pi\)
−0.818810 + 0.574064i \(0.805366\pi\)
\(140\) 2.42815 0.712969i 0.205216 0.0602568i
\(141\) −0.676989 0.781287i −0.0570127 0.0657962i
\(142\) 2.84187 1.82636i 0.238485 0.153265i
\(143\) 0.696711 + 4.84573i 0.0582619 + 0.405221i
\(144\) −2.38359 1.53184i −0.198632 0.127653i
\(145\) 4.20262 9.20244i 0.349008 0.764221i
\(146\) 9.65908 11.1472i 0.799391 0.922547i
\(147\) 0.0346098 0.240716i 0.00285457 0.0198539i
\(148\) 4.82233 + 10.5594i 0.396393 + 0.867980i
\(149\) 20.0247 + 5.87979i 1.64049 + 0.481692i 0.966418 0.256974i \(-0.0827254\pi\)
0.674072 + 0.738665i \(0.264544\pi\)
\(150\) 0.391661 + 0.115002i 0.0319790 + 0.00938987i
\(151\) −1.79087 3.92145i −0.145739 0.319123i 0.822659 0.568536i \(-0.192490\pi\)
−0.968397 + 0.249412i \(0.919763\pi\)
\(152\) −0.938582 + 6.52798i −0.0761290 + 0.529489i
\(153\) 4.50280 5.19651i 0.364030 0.420113i
\(154\) 1.08399 2.37362i 0.0873507 0.191271i
\(155\) −2.55638 1.64288i −0.205333 0.131960i
\(156\) −0.275810 1.91830i −0.0220824 0.153587i
\(157\) 0.506429 0.325462i 0.0404174 0.0259747i −0.520276 0.853998i \(-0.674171\pi\)
0.560694 + 0.828023i \(0.310535\pi\)
\(158\) −2.82949 3.26541i −0.225102 0.259782i
\(159\) 3.36671 0.988554i 0.266997 0.0783974i
\(160\) 1.00000 0.0790569
\(161\) −10.9369 5.26140i −0.861945 0.414657i
\(162\) −7.52815 −0.591467
\(163\) 16.6314 4.88343i 1.30267 0.382500i 0.444463 0.895797i \(-0.353394\pi\)
0.858211 + 0.513297i \(0.171576\pi\)
\(164\) 4.29586 + 4.95769i 0.335451 + 0.387131i
\(165\) 0.354084 0.227556i 0.0275654 0.0177152i
\(166\) −0.515400 3.58468i −0.0400028 0.278225i
\(167\) −10.9546 7.04011i −0.847694 0.544780i 0.0431609 0.999068i \(-0.486257\pi\)
−0.890855 + 0.454288i \(0.849894\pi\)
\(168\) −0.429125 + 0.939652i −0.0331077 + 0.0724957i
\(169\) −6.24834 + 7.21097i −0.480642 + 0.554690i
\(170\) −0.345366 + 2.40207i −0.0264884 + 0.184231i
\(171\) 7.76262 + 16.9978i 0.593623 + 1.29985i
\(172\) −1.00998 0.296558i −0.0770106 0.0226124i
\(173\) 5.92954 + 1.74107i 0.450814 + 0.132371i 0.499255 0.866455i \(-0.333607\pi\)
−0.0484407 + 0.998826i \(0.515425\pi\)
\(174\) 1.71549 + 3.75640i 0.130051 + 0.284772i
\(175\) −0.360150 + 2.50490i −0.0272248 + 0.189353i
\(176\) 0.675243 0.779272i 0.0508984 0.0587399i
\(177\) −1.99939 + 4.37806i −0.150284 + 0.329075i
\(178\) −4.90742 3.15381i −0.367827 0.236388i
\(179\) 0.440239 + 3.06193i 0.0329050 + 0.228859i 0.999637 0.0269310i \(-0.00857343\pi\)
−0.966732 + 0.255790i \(0.917664\pi\)
\(180\) 2.38359 1.53184i 0.177662 0.114177i
\(181\) 11.0450 + 12.7466i 0.820969 + 0.947449i 0.999333 0.0365154i \(-0.0116258\pi\)
−0.178364 + 0.983965i \(0.557080\pi\)
\(182\) 11.5283 3.38502i 0.854537 0.250915i
\(183\) 0.897218 0.0663242
\(184\) −3.56094 3.21243i −0.262516 0.236823i
\(185\) −11.6085 −0.853472
\(186\) 1.19017 0.349464i 0.0872672 0.0256240i
\(187\) 1.63866 + 1.89112i 0.119831 + 0.138292i
\(188\) 2.13055 1.36922i 0.155386 0.0998606i
\(189\) 0.857574 + 5.96456i 0.0623793 + 0.433858i
\(190\) −5.54816 3.56559i −0.402506 0.258675i
\(191\) 4.22197 9.24482i 0.305491 0.668932i −0.693164 0.720780i \(-0.743784\pi\)
0.998655 + 0.0518482i \(0.0165112\pi\)
\(192\) −0.267311 + 0.308493i −0.0192915 + 0.0222636i
\(193\) 0.178942 1.24457i 0.0128805 0.0895858i −0.982367 0.186962i \(-0.940136\pi\)
0.995248 + 0.0973761i \(0.0310450\pi\)
\(194\) 0.736319 + 1.61231i 0.0528646 + 0.115757i
\(195\) 1.85952 + 0.546005i 0.133163 + 0.0391002i
\(196\) 0.571640 + 0.167849i 0.0408314 + 0.0119892i
\(197\) −8.86137 19.4037i −0.631346 1.38246i −0.906972 0.421190i \(-0.861612\pi\)
0.275626 0.961265i \(-0.411115\pi\)
\(198\) 0.415782 2.89183i 0.0295484 0.205513i
\(199\) −11.7526 + 13.5632i −0.833119 + 0.961470i −0.999698 0.0245576i \(-0.992182\pi\)
0.166580 + 0.986028i \(0.446728\pi\)
\(200\) −0.415415 + 0.909632i −0.0293743 + 0.0643207i
\(201\) −3.39204 2.17993i −0.239256 0.153761i
\(202\) −0.747543 5.19928i −0.0525969 0.365820i
\(203\) −21.5376 + 13.8414i −1.51164 + 0.971475i
\(204\) −0.648704 0.748644i −0.0454184 0.0524156i
\(205\) −6.29424 + 1.84816i −0.439609 + 0.129081i
\(206\) 9.72829 0.677802
\(207\) −13.4087 2.20231i −0.931972 0.153071i
\(208\) 4.74779 0.329200
\(209\) −6.52492 + 1.91589i −0.451338 + 0.132525i
\(210\) −0.676473 0.780691i −0.0466811 0.0538728i
\(211\) −9.38372 + 6.03055i −0.646002 + 0.415160i −0.822203 0.569194i \(-0.807255\pi\)
0.176201 + 0.984354i \(0.443619\pi\)
\(212\) 1.22334 + 8.50848i 0.0840190 + 0.584365i
\(213\) −1.16004 0.745512i −0.0794846 0.0510816i
\(214\) −4.26725 + 9.34398i −0.291704 + 0.638742i
\(215\) 0.689322 0.795520i 0.0470114 0.0542540i
\(216\) −0.338874 + 2.35692i −0.0230575 + 0.160368i
\(217\) 3.19458 + 6.99515i 0.216862 + 0.474862i
\(218\) 4.36928 + 1.28294i 0.295925 + 0.0868914i
\(219\) −5.77693 1.69626i −0.390369 0.114623i
\(220\) 0.428345 + 0.937945i 0.0288790 + 0.0632362i
\(221\) −1.63972 + 11.4045i −0.110300 + 0.767152i
\(222\) 3.10307 3.58114i 0.208265 0.240350i
\(223\) −8.41536 + 18.4271i −0.563534 + 1.23397i 0.386635 + 0.922233i \(0.373637\pi\)
−0.950169 + 0.311735i \(0.899090\pi\)
\(224\) −2.12892 1.36818i −0.142245 0.0914152i
\(225\) 0.403232 + 2.80454i 0.0268821 + 0.186969i
\(226\) −7.97585 + 5.12577i −0.530546 + 0.340961i
\(227\) −13.1297 15.1524i −0.871446 1.00570i −0.999902 0.0139869i \(-0.995548\pi\)
0.128456 0.991715i \(-0.458998\pi\)
\(228\) 2.58304 0.758450i 0.171066 0.0502296i
\(229\) 10.9126 0.721123 0.360561 0.932735i \(-0.382585\pi\)
0.360561 + 0.932735i \(0.382585\pi\)
\(230\) 4.40139 1.90466i 0.290219 0.125589i
\(231\) −1.06516 −0.0700821
\(232\) −9.70687 + 2.85019i −0.637287 + 0.187124i
\(233\) −6.05991 6.99351i −0.396998 0.458160i 0.521695 0.853132i \(-0.325300\pi\)
−0.918693 + 0.394972i \(0.870754\pi\)
\(234\) 11.3168 7.27285i 0.739800 0.475441i
\(235\) 0.360425 + 2.50681i 0.0235115 + 0.163526i
\(236\) −9.91916 6.37465i −0.645682 0.414955i
\(237\) −0.732672 + 1.60433i −0.0475922 + 0.104212i
\(238\) 4.02172 4.64131i 0.260689 0.300852i
\(239\) 0.736356 5.12147i 0.0476309 0.331280i −0.952048 0.305948i \(-0.901027\pi\)
0.999679 0.0253322i \(-0.00806434\pi\)
\(240\) −0.169570 0.371308i −0.0109457 0.0239678i
\(241\) 4.84965 + 1.42399i 0.312393 + 0.0917270i 0.434171 0.900830i \(-0.357041\pi\)
−0.121778 + 0.992557i \(0.538859\pi\)
\(242\) −9.53427 2.79951i −0.612886 0.179960i
\(243\) 4.24406 + 9.29319i 0.272256 + 0.596158i
\(244\) −0.312810 + 2.17564i −0.0200256 + 0.139281i
\(245\) −0.390148 + 0.450255i −0.0249256 + 0.0287657i
\(246\) 1.11238 2.43576i 0.0709225 0.155299i
\(247\) −26.3415 16.9286i −1.67607 1.07714i
\(248\) 0.432462 + 3.00784i 0.0274614 + 0.190998i
\(249\) −1.24362 + 0.799228i −0.0788114 + 0.0506490i
\(250\) −0.654861 0.755750i −0.0414170 0.0477978i
\(251\) −1.77009 + 0.519746i −0.111727 + 0.0328061i −0.337118 0.941462i \(-0.609452\pi\)
0.225391 + 0.974268i \(0.427634\pi\)
\(252\) −7.17031 −0.451687
\(253\) 1.48776 4.71599i 0.0935350 0.296492i
\(254\) −0.698322 −0.0438166
\(255\) 0.950472 0.279084i 0.0595209 0.0174769i
\(256\) −0.654861 0.755750i −0.0409288 0.0472343i
\(257\) 8.01581 5.15145i 0.500012 0.321339i −0.266209 0.963915i \(-0.585771\pi\)
0.766221 + 0.642577i \(0.222135\pi\)
\(258\) 0.0611493 + 0.425303i 0.00380699 + 0.0264782i
\(259\) 24.7136 + 15.8824i 1.53563 + 0.986887i
\(260\) −1.97230 + 4.31874i −0.122317 + 0.267837i
\(261\) −18.7711 + 21.6631i −1.16190 + 1.34091i
\(262\) 2.47027 17.1811i 0.152614 1.06145i
\(263\) 6.11013 + 13.3793i 0.376767 + 0.825005i 0.999107 + 0.0422575i \(0.0134550\pi\)
−0.622340 + 0.782747i \(0.713818\pi\)
\(264\) −0.403851 0.118581i −0.0248553 0.00729818i
\(265\) −8.24778 2.42177i −0.506657 0.148768i
\(266\) 6.93326 + 15.1817i 0.425106 + 0.930851i
\(267\) −0.338879 + 2.35696i −0.0207391 + 0.144243i
\(268\) 6.46868 7.46525i 0.395137 0.456013i
\(269\) −4.00237 + 8.76396i −0.244029 + 0.534348i −0.991525 0.129918i \(-0.958529\pi\)
0.747496 + 0.664266i \(0.231256\pi\)
\(270\) −2.00316 1.28735i −0.121908 0.0783457i
\(271\) 3.79840 + 26.4184i 0.230736 + 1.60481i 0.694933 + 0.719074i \(0.255434\pi\)
−0.464197 + 0.885732i \(0.653657\pi\)
\(272\) 2.04153 1.31201i 0.123786 0.0795525i
\(273\) −3.21175 3.70656i −0.194384 0.224331i
\(274\) 4.23192 1.24261i 0.255660 0.0750685i
\(275\) −1.03113 −0.0621792
\(276\) −0.588967 + 1.86694i −0.0354516 + 0.112376i
\(277\) −1.68097 −0.101000 −0.0505000 0.998724i \(-0.516081\pi\)
−0.0505000 + 0.998724i \(0.516081\pi\)
\(278\) −18.5252 + 5.43949i −1.11107 + 0.326239i
\(279\) 5.63834 + 6.50699i 0.337558 + 0.389563i
\(280\) 2.12892 1.36818i 0.127228 0.0817642i
\(281\) −0.998755 6.94649i −0.0595807 0.414393i −0.997683 0.0680346i \(-0.978327\pi\)
0.938102 0.346358i \(-0.112582\pi\)
\(282\) −0.869680 0.558909i −0.0517887 0.0332826i
\(283\) 9.62071 21.0664i 0.571892 1.25227i −0.373892 0.927472i \(-0.621977\pi\)
0.945784 0.324796i \(-0.105296\pi\)
\(284\) 2.21221 2.55303i 0.131271 0.151494i
\(285\) −0.383125 + 2.66469i −0.0226944 + 0.157843i
\(286\) 2.03369 + 4.45316i 0.120255 + 0.263321i
\(287\) 15.9286 + 4.67705i 0.940234 + 0.276078i
\(288\) −2.71860 0.798254i −0.160195 0.0470376i
\(289\) −4.61558 10.1067i −0.271505 0.594512i
\(290\) 1.43975 10.0137i 0.0845451 0.588024i
\(291\) 0.473806 0.546801i 0.0277750 0.0320541i
\(292\) 6.12730 13.4169i 0.358573 0.785166i
\(293\) −14.8423 9.53857i −0.867096 0.557249i 0.0297668 0.999557i \(-0.490524\pi\)
−0.896863 + 0.442308i \(0.854160\pi\)
\(294\) −0.0346098 0.240716i −0.00201848 0.0140389i
\(295\) 9.91916 6.37465i 0.577516 0.371147i
\(296\) 7.60193 + 8.77310i 0.441853 + 0.509926i
\(297\) −2.35582 + 0.691730i −0.136698 + 0.0401382i
\(298\) 20.8701 1.20897
\(299\) 20.8969 9.04291i 1.20850 0.522965i
\(300\) 0.408195 0.0235672
\(301\) −2.55593 + 0.750488i −0.147321 + 0.0432574i
\(302\) −2.82313 3.25806i −0.162453 0.187480i
\(303\) −1.80377 + 1.15921i −0.103624 + 0.0665950i
\(304\) 0.938582 + 6.52798i 0.0538314 + 0.374405i
\(305\) −1.84908 1.18833i −0.105878 0.0680438i
\(306\) 2.85638 6.25460i 0.163288 0.357552i
\(307\) −9.19148 + 10.6075i −0.524585 + 0.605404i −0.954773 0.297336i \(-0.903902\pi\)
0.430188 + 0.902740i \(0.358447\pi\)
\(308\) 0.371360 2.58286i 0.0211602 0.147172i
\(309\) −1.64963 3.61219i −0.0938442 0.205490i
\(310\) −2.91568 0.856120i −0.165599 0.0486244i
\(311\) 26.1540 + 7.67951i 1.48306 + 0.435465i 0.920319 0.391169i \(-0.127929\pi\)
0.562739 + 0.826635i \(0.309748\pi\)
\(312\) −0.805085 1.76289i −0.0455789 0.0998039i
\(313\) 2.79580 19.4452i 0.158028 1.09911i −0.744234 0.667919i \(-0.767185\pi\)
0.902262 0.431189i \(-0.141906\pi\)
\(314\) 0.394221 0.454956i 0.0222472 0.0256746i
\(315\) 2.97865 6.52234i 0.167828 0.367492i
\(316\) −3.63485 2.33598i −0.204476 0.131409i
\(317\) −1.77153 12.3213i −0.0994991 0.692031i −0.977122 0.212680i \(-0.931781\pi\)
0.877623 0.479352i \(-0.159128\pi\)
\(318\) 2.95182 1.89702i 0.165530 0.106380i
\(319\) −6.83121 7.88364i −0.382475 0.441399i
\(320\) 0.959493 0.281733i 0.0536373 0.0157493i
\(321\) 4.19309 0.234036
\(322\) −11.9761 1.96701i −0.667405 0.109617i
\(323\) −16.0048 −0.890533
\(324\) −7.22321 + 2.12093i −0.401289 + 0.117829i
\(325\) −3.10914 3.58814i −0.172464 0.199034i
\(326\) 14.5819 9.37123i 0.807618 0.519024i
\(327\) −0.264537 1.83989i −0.0146289 0.101746i
\(328\) 5.51859 + 3.54659i 0.304713 + 0.195827i
\(329\) 2.66244 5.82993i 0.146785 0.321415i
\(330\) 0.275631 0.318095i 0.0151730 0.0175106i
\(331\) 3.49835 24.3316i 0.192287 1.33738i −0.633650 0.773620i \(-0.718444\pi\)
0.825937 0.563763i \(-0.190647\pi\)
\(332\) −1.50444 3.29427i −0.0825671 0.180797i
\(333\) 31.5588 + 9.26651i 1.72941 + 0.507802i
\(334\) −12.4943 3.66866i −0.683658 0.200740i
\(335\) 4.10345 + 8.98529i 0.224195 + 0.490919i
\(336\) −0.147012 + 1.02249i −0.00802014 + 0.0557813i
\(337\) −6.18993 + 7.14356i −0.337187 + 0.389135i −0.898868 0.438219i \(-0.855609\pi\)
0.561681 + 0.827354i \(0.310155\pi\)
\(338\) −3.96367 + 8.67924i −0.215595 + 0.472088i
\(339\) 3.25570 + 2.09231i 0.176826 + 0.113639i
\(340\) 0.345366 + 2.40207i 0.0187301 + 0.130271i
\(341\) −2.63594 + 1.69402i −0.142744 + 0.0917362i
\(342\) 12.2370 + 14.1223i 0.661702 + 0.763644i
\(343\) 18.4437 5.41555i 0.995864 0.292412i
\(344\) −1.05262 −0.0567537
\(345\) −1.45356 1.31130i −0.0782571 0.0705979i
\(346\) 6.17987 0.332232
\(347\) 18.1903 5.34116i 0.976507 0.286728i 0.245725 0.969340i \(-0.420974\pi\)
0.730782 + 0.682611i \(0.239156\pi\)
\(348\) 2.70430 + 3.12093i 0.144966 + 0.167299i
\(349\) 11.4867 7.38205i 0.614869 0.395152i −0.195811 0.980642i \(-0.562734\pi\)
0.810680 + 0.585489i \(0.199098\pi\)
\(350\) 0.360150 + 2.50490i 0.0192508 + 0.133892i
\(351\) −9.51056 6.11207i −0.507636 0.326238i
\(352\) 0.428345 0.937945i 0.0228309 0.0499926i
\(353\) 6.67824 7.70710i 0.355447 0.410208i −0.549662 0.835387i \(-0.685244\pi\)
0.905109 + 0.425179i \(0.139789\pi\)
\(354\) −0.684961 + 4.76401i −0.0364053 + 0.253204i
\(355\) 1.40333 + 3.07286i 0.0744810 + 0.163091i
\(356\) −5.59717 1.64348i −0.296649 0.0871041i
\(357\) −2.40532 0.706265i −0.127303 0.0373795i
\(358\) 1.28505 + 2.81387i 0.0679171 + 0.148718i
\(359\) −4.75234 + 33.0533i −0.250819 + 1.74449i 0.342500 + 0.939518i \(0.388726\pi\)
−0.593319 + 0.804968i \(0.702183\pi\)
\(360\) 1.85547 2.14132i 0.0977917 0.112858i
\(361\) 10.1758 22.2819i 0.535568 1.17273i
\(362\) 14.1888 + 9.11856i 0.745744 + 0.479261i
\(363\) 0.577250 + 4.01486i 0.0302978 + 0.210726i
\(364\) 10.1077 6.49581i 0.529786 0.340473i
\(365\) 9.65908 + 11.1472i 0.505580 + 0.583470i
\(366\) 0.860874 0.252775i 0.0449986 0.0132128i
\(367\) −30.7937 −1.60742 −0.803710 0.595021i \(-0.797144\pi\)
−0.803710 + 0.595021i \(0.797144\pi\)
\(368\) −4.32175 2.07907i −0.225287 0.108379i
\(369\) 18.5869 0.967593
\(370\) −11.1382 + 3.27048i −0.579050 + 0.170024i
\(371\) 14.2455 + 16.4402i 0.739589 + 0.853532i
\(372\) 1.04350 0.670617i 0.0541030 0.0347699i
\(373\) 0.954017 + 6.63534i 0.0493972 + 0.343565i 0.999500 + 0.0316271i \(0.0100689\pi\)
−0.950103 + 0.311938i \(0.899022\pi\)
\(374\) 2.10508 + 1.35285i 0.108851 + 0.0699542i
\(375\) −0.169570 + 0.371308i −0.00875658 + 0.0191742i
\(376\) 1.65849 1.91400i 0.0855302 0.0987071i
\(377\) 6.83564 47.5429i 0.352053 2.44858i
\(378\) 2.50325 + 5.48135i 0.128753 + 0.281930i
\(379\) −34.9309 10.2566i −1.79428 0.526848i −0.797235 0.603669i \(-0.793705\pi\)
−0.997045 + 0.0768204i \(0.975523\pi\)
\(380\) −6.32796 1.85806i −0.324618 0.0953163i
\(381\) 0.118415 + 0.259292i 0.00606657 + 0.0132839i
\(382\) 1.44638 10.0598i 0.0740033 0.514704i
\(383\) −10.9586 + 12.6469i −0.559959 + 0.646227i −0.963174 0.268878i \(-0.913347\pi\)
0.403215 + 0.915105i \(0.367893\pi\)
\(384\) −0.169570 + 0.371308i −0.00865336 + 0.0189482i
\(385\) 2.19519 + 1.41076i 0.111877 + 0.0718991i
\(386\) −0.178942 1.24457i −0.00910789 0.0633467i
\(387\) −2.50902 + 1.61245i −0.127541 + 0.0819654i
\(388\) 1.16073 + 1.33956i 0.0589273 + 0.0680058i
\(389\) 36.1575 10.6168i 1.83326 0.538293i 0.833362 0.552728i \(-0.186413\pi\)
0.999896 + 0.0144348i \(0.00459489\pi\)
\(390\) 1.93802 0.0981357
\(391\) 6.48665 9.66311i 0.328044 0.488685i
\(392\) 0.595773 0.0300911
\(393\) −6.79836 + 1.99618i −0.342932 + 0.100694i
\(394\) −13.9691 16.1212i −0.703752 0.812173i
\(395\) 3.63485 2.33598i 0.182889 0.117536i
\(396\) −0.415782 2.89183i −0.0208938 0.145320i
\(397\) 13.2434 + 8.51103i 0.664668 + 0.427156i 0.829000 0.559249i \(-0.188910\pi\)
−0.164332 + 0.986405i \(0.552547\pi\)
\(398\) −7.45533 + 16.3249i −0.373702 + 0.818293i
\(399\) 4.46141 5.14874i 0.223350 0.257760i
\(400\) −0.142315 + 0.989821i −0.00711574 + 0.0494911i
\(401\) −12.2142 26.7453i −0.609947 1.33560i −0.922610 0.385733i \(-0.873948\pi\)
0.312663 0.949864i \(-0.398779\pi\)
\(402\) −3.86880 1.13598i −0.192958 0.0566576i
\(403\) −13.8430 4.06468i −0.689570 0.202476i
\(404\) −2.18207 4.77806i −0.108562 0.237717i
\(405\) 1.07137 7.45153i 0.0532367 0.370269i
\(406\) −16.7656 + 19.3486i −0.832064 + 0.960253i
\(407\) −4.97243 + 10.8881i −0.246474 + 0.539703i
\(408\) −0.833344 0.535558i −0.0412567 0.0265141i
\(409\) 3.42196 + 23.8003i 0.169205 + 1.17685i 0.880532 + 0.473987i \(0.157185\pi\)
−0.711327 + 0.702861i \(0.751905\pi\)
\(410\) −5.51859 + 3.54659i −0.272544 + 0.175153i
\(411\) −1.17900 1.36064i −0.0581557 0.0671152i
\(412\) 9.33423 2.74078i 0.459864 0.135028i
\(413\) −29.8388 −1.46827
\(414\) −13.4861 + 1.66458i −0.662803 + 0.0818097i
\(415\) 3.62154 0.177775
\(416\) 4.55547 1.33761i 0.223350 0.0655815i
\(417\) 5.16105 + 5.95617i 0.252738 + 0.291675i
\(418\) −5.72085 + 3.67656i −0.279816 + 0.179827i
\(419\) 0.582282 + 4.04986i 0.0284463 + 0.197849i 0.999089 0.0426781i \(-0.0135890\pi\)
−0.970643 + 0.240527i \(0.922680\pi\)
\(420\) −0.869017 0.558483i −0.0424037 0.0272512i
\(421\) 5.13166 11.2368i 0.250102 0.547646i −0.742389 0.669969i \(-0.766307\pi\)
0.992490 + 0.122323i \(0.0390344\pi\)
\(422\) −7.30461 + 8.42997i −0.355583 + 0.410365i
\(423\) 1.02122 7.10273i 0.0496534 0.345347i
\(424\) 3.57090 + 7.81918i 0.173418 + 0.379733i
\(425\) −2.32847 0.683702i −0.112948 0.0331644i
\(426\) −1.32308 0.388493i −0.0641036 0.0188225i
\(427\) 2.31071 + 5.05975i 0.111823 + 0.244858i
\(428\) −1.46190 + 10.1677i −0.0706634 + 0.491475i
\(429\) 1.30864 1.51025i 0.0631817 0.0729155i
\(430\) 0.437276 0.957500i 0.0210873 0.0461748i
\(431\) 1.61269 + 1.03641i 0.0776806 + 0.0499223i 0.578905 0.815395i \(-0.303480\pi\)
−0.501224 + 0.865318i \(0.667117\pi\)
\(432\) 0.338874 + 2.35692i 0.0163041 + 0.113397i
\(433\) 9.19095 5.90666i 0.441689 0.283856i −0.300835 0.953676i \(-0.597265\pi\)
0.742523 + 0.669820i \(0.233629\pi\)
\(434\) 5.03594 + 5.81178i 0.241733 + 0.278974i
\(435\) −3.96230 + 1.16344i −0.189978 + 0.0557825i
\(436\) 4.55374 0.218084
\(437\) 16.5646 + 26.9445i 0.792394 + 1.28893i
\(438\) −6.02081 −0.287686
\(439\) 13.0839 3.84179i 0.624462 0.183358i 0.0458323 0.998949i \(-0.485406\pi\)
0.578629 + 0.815591i \(0.303588\pi\)
\(440\) 0.675243 + 0.779272i 0.0321910 + 0.0371504i
\(441\) 1.42008 0.912628i 0.0676227 0.0434585i
\(442\) 1.63972 + 11.4045i 0.0779937 + 0.542458i
\(443\) −1.63213 1.04890i −0.0775446 0.0498349i 0.501294 0.865277i \(-0.332858\pi\)
−0.578839 + 0.815442i \(0.696494\pi\)
\(444\) 1.96845 4.31031i 0.0934187 0.204558i
\(445\) 3.82011 4.40864i 0.181090 0.208990i
\(446\) −2.88297 + 20.0515i −0.136513 + 0.949467i
\(447\) −3.53896 7.74924i −0.167387 0.366526i
\(448\) −2.42815 0.712969i −0.114719 0.0336846i
\(449\) 5.00104 + 1.46844i 0.236014 + 0.0692999i 0.397600 0.917559i \(-0.369843\pi\)
−0.161587 + 0.986858i \(0.551661\pi\)
\(450\) 1.17703 + 2.57733i 0.0554856 + 0.121496i
\(451\) −0.962638 + 6.69530i −0.0453289 + 0.315269i
\(452\) −6.20868 + 7.16519i −0.292032 + 0.337022i
\(453\) −0.731024 + 1.60072i −0.0343465 + 0.0752084i
\(454\) −16.8667 10.8396i −0.791595 0.508728i
\(455\) 1.70992 + 11.8927i 0.0801621 + 0.557540i
\(456\) 2.26473 1.45546i 0.106056 0.0681579i
\(457\) −5.50734 6.35581i −0.257622 0.297312i 0.612174 0.790723i \(-0.290295\pi\)
−0.869796 + 0.493411i \(0.835750\pi\)
\(458\) 10.4705 3.07443i 0.489256 0.143658i
\(459\) −5.77853 −0.269719
\(460\) 3.68650 3.06752i 0.171884 0.143024i
\(461\) −35.9115 −1.67257 −0.836283 0.548297i \(-0.815276\pi\)
−0.836283 + 0.548297i \(0.815276\pi\)
\(462\) −1.02201 + 0.300089i −0.0475482 + 0.0139614i
\(463\) −2.26820 2.61764i −0.105412 0.121652i 0.700592 0.713562i \(-0.252919\pi\)
−0.806004 + 0.591910i \(0.798374\pi\)
\(464\) −8.51068 + 5.46948i −0.395099 + 0.253914i
\(465\) 0.176529 + 1.22779i 0.00818634 + 0.0569372i
\(466\) −7.78474 5.00295i −0.360621 0.231757i
\(467\) −9.84617 + 21.5601i −0.455626 + 0.997683i 0.532836 + 0.846218i \(0.321126\pi\)
−0.988463 + 0.151464i \(0.951601\pi\)
\(468\) 8.80936 10.1665i 0.407213 0.469949i
\(469\) 3.55754 24.7432i 0.164272 1.14254i
\(470\) 1.05207 + 2.30372i 0.0485286 + 0.106263i
\(471\) −0.235777 0.0692303i −0.0108640 0.00318997i
\(472\) −11.3133 3.32189i −0.520737 0.152902i
\(473\) −0.450886 0.987302i −0.0207318 0.0453962i
\(474\) −0.251002 + 1.74576i −0.0115289 + 0.0801854i
\(475\) 4.31888 4.98425i 0.198164 0.228693i
\(476\) 2.55120 5.58636i 0.116934 0.256050i
\(477\) 20.4893 + 13.1677i 0.938139 + 0.602905i
\(478\) −0.736356 5.12147i −0.0336801 0.234251i
\(479\) −9.95638 + 6.39857i −0.454918 + 0.292358i −0.747963 0.663740i \(-0.768968\pi\)
0.293045 + 0.956099i \(0.405332\pi\)
\(480\) −0.267311 0.308493i −0.0122010 0.0140807i
\(481\) −52.8820 + 15.5276i −2.41121 + 0.707996i
\(482\) 5.05439 0.230221
\(483\) 1.30044 + 4.78038i 0.0591718 + 0.217515i
\(484\) −9.93678 −0.451672
\(485\) −1.70069 + 0.499368i −0.0772244 + 0.0226751i
\(486\) 6.69034 + 7.72106i 0.303480 + 0.350234i
\(487\) 22.1370 14.2266i 1.00312 0.644667i 0.0675178 0.997718i \(-0.478492\pi\)
0.935604 + 0.353051i \(0.114856\pi\)
\(488\) 0.312810 + 2.17564i 0.0141602 + 0.0984865i
\(489\) −5.95227 3.82529i −0.269171 0.172986i
\(490\) −0.247493 + 0.541934i −0.0111806 + 0.0244821i
\(491\) −15.0887 + 17.4133i −0.680943 + 0.785850i −0.986047 0.166469i \(-0.946763\pi\)
0.305104 + 0.952319i \(0.401309\pi\)
\(492\) 0.381083 2.65049i 0.0171806 0.119493i
\(493\) −10.1988 22.3323i −0.459331 1.00579i
\(494\) −30.0438 8.82166i −1.35173 0.396905i
\(495\) 2.80322 + 0.823100i 0.125995 + 0.0369956i
\(496\) 1.26235 + 2.76416i 0.0566812 + 0.124115i
\(497\) 1.21664 8.46190i 0.0545736 0.379568i
\(498\) −0.968079 + 1.11722i −0.0433807 + 0.0500640i
\(499\) −15.1736 + 33.2256i −0.679265 + 1.48738i 0.184155 + 0.982897i \(0.441045\pi\)
−0.863420 + 0.504485i \(0.831682\pi\)
\(500\) −0.841254 0.540641i −0.0376220 0.0241782i
\(501\) 0.756465 + 5.26133i 0.0337963 + 0.235059i
\(502\) −1.55196 + 0.997385i −0.0692674 + 0.0445155i
\(503\) −1.18260 1.36480i −0.0527296 0.0608532i 0.728772 0.684756i \(-0.240091\pi\)
−0.781502 + 0.623903i \(0.785546\pi\)
\(504\) −6.87986 + 2.02011i −0.306453 + 0.0899828i
\(505\) 5.25274 0.233744
\(506\) 0.0988507 4.94411i 0.00439445 0.219793i
\(507\) 3.89479 0.172974
\(508\) −0.670035 + 0.196740i −0.0297280 + 0.00872893i
\(509\) −2.56500 2.96017i −0.113692 0.131207i 0.696051 0.717992i \(-0.254939\pi\)
−0.809743 + 0.586785i \(0.800393\pi\)
\(510\) 0.833344 0.535558i 0.0369011 0.0237149i
\(511\) −5.31215 36.9468i −0.234996 1.63443i
\(512\) −0.841254 0.540641i −0.0371785 0.0238932i
\(513\) 6.52367 14.2849i 0.288027 0.630692i
\(514\) 6.23978 7.20109i 0.275225 0.317627i
\(515\) −1.38448 + 9.62927i −0.0610075 + 0.424316i
\(516\) 0.178494 + 0.390847i 0.00785776 + 0.0172061i
\(517\) 2.50563 + 0.735720i 0.110198 + 0.0323569i
\(518\) 28.1871 + 8.27648i 1.23847 + 0.363647i
\(519\) −1.04792 2.29463i −0.0459987 0.100723i
\(520\) −0.675681 + 4.69946i −0.0296306 + 0.206085i
\(521\) 4.99849 5.76857i 0.218988 0.252726i −0.635617 0.772005i \(-0.719254\pi\)
0.854605 + 0.519279i \(0.173800\pi\)
\(522\) −11.9076 + 26.0740i −0.521181 + 1.14123i
\(523\) −5.03652 3.23678i −0.220232 0.141534i 0.425873 0.904783i \(-0.359967\pi\)
−0.646105 + 0.763248i \(0.723603\pi\)
\(524\) −2.47027 17.1811i −0.107914 0.750561i
\(525\) 0.869017 0.558483i 0.0379270 0.0243742i
\(526\) 9.63202 + 11.1159i 0.419976 + 0.484678i
\(527\) −7.07570 + 2.07761i −0.308222 + 0.0905022i
\(528\) −0.420901 −0.0183173
\(529\) −22.9816 0.919338i −0.999201 0.0399712i
\(530\) −8.59598 −0.373385
\(531\) −32.0549 + 9.41216i −1.39106 + 0.408453i
\(532\) 10.9296 + 12.6134i 0.473858 + 0.546862i
\(533\) −26.2011 + 16.8384i −1.13490 + 0.729353i
\(534\) 0.338879 + 2.35696i 0.0146647 + 0.101995i
\(535\) −8.64158 5.55361i −0.373608 0.240103i
\(536\) 4.10345 8.98529i 0.177242 0.388105i
\(537\) 0.826904 0.954299i 0.0356836 0.0411810i
\(538\) −1.37115 + 9.53656i −0.0591145 + 0.411150i
\(539\) 0.255196 + 0.558802i 0.0109921 + 0.0240693i
\(540\) −2.28470 0.670850i −0.0983180 0.0288688i
\(541\) 19.7447 + 5.79755i 0.848889 + 0.249256i 0.677112 0.735880i \(-0.263231\pi\)
0.171777 + 0.985136i \(0.445049\pi\)
\(542\) 11.0875 + 24.2782i 0.476248 + 1.04284i
\(543\) 0.979796 6.81463i 0.0420471 0.292444i
\(544\) 1.58920 1.83403i 0.0681364 0.0786336i
\(545\) −1.89169 + 4.14222i −0.0810311 + 0.177433i
\(546\) −4.12591 2.65156i −0.176573 0.113476i
\(547\) −1.44612 10.0580i −0.0618315 0.430048i −0.997100 0.0761075i \(-0.975751\pi\)
0.935268 0.353940i \(-0.115158\pi\)
\(548\) 3.71042 2.38454i 0.158501 0.101863i
\(549\) 4.07834 + 4.70665i 0.174059 + 0.200875i
\(550\) −0.989357 + 0.290502i −0.0421863 + 0.0123870i
\(551\) 66.7205 2.84239
\(552\) −0.0391324 + 1.95725i −0.00166558 + 0.0833059i
\(553\) −10.9343 −0.464976
\(554\) −1.61288 + 0.473585i −0.0685248 + 0.0201207i
\(555\) 3.10307 + 3.58114i 0.131718 + 0.152011i
\(556\) −16.2423 + 10.4383i −0.688827 + 0.442682i
\(557\) 5.40342 + 37.5816i 0.228950 + 1.59238i 0.702544 + 0.711640i \(0.252047\pi\)
−0.473594 + 0.880743i \(0.657044\pi\)
\(558\) 7.24318 + 4.65491i 0.306628 + 0.197058i
\(559\) 2.07609 4.54601i 0.0878093 0.192276i
\(560\) 1.65723 1.91254i 0.0700307 0.0808197i
\(561\) 0.145365 1.01103i 0.00613731 0.0426859i
\(562\) −2.91535 6.38373i −0.122977 0.269281i
\(563\) 19.8149 + 5.81819i 0.835100 + 0.245208i 0.671206 0.741270i \(-0.265776\pi\)
0.163894 + 0.986478i \(0.447595\pi\)
\(564\) −0.991915 0.291252i −0.0417671 0.0122639i
\(565\) −3.93851 8.62414i −0.165694 0.362820i
\(566\) 3.29591 22.9235i 0.138537 0.963549i
\(567\) −12.4759 + 14.3979i −0.523937 + 0.604656i
\(568\) 1.40333 3.07286i 0.0588824 0.128934i
\(569\) −5.75989 3.70165i −0.241467 0.155181i 0.414311 0.910136i \(-0.364023\pi\)
−0.655778 + 0.754954i \(0.727659\pi\)
\(570\) 0.383125 + 2.66469i 0.0160473 + 0.111612i
\(571\) 12.9553 8.32584i 0.542161 0.348426i −0.240723 0.970594i \(-0.577384\pi\)
0.782883 + 0.622168i \(0.213748\pi\)
\(572\) 3.20591 + 3.69982i 0.134046 + 0.154697i
\(573\) −3.98054 + 1.16879i −0.166290 + 0.0488270i
\(574\) 16.6010 0.692913
\(575\) 1.25889 + 4.62766i 0.0524993 + 0.192987i
\(576\) −2.83338 −0.118057
\(577\) 20.1770 5.92449i 0.839978 0.246640i 0.166680 0.986011i \(-0.446695\pi\)
0.673298 + 0.739371i \(0.264877\pi\)
\(578\) −7.27600 8.39695i −0.302642 0.349267i
\(579\) −0.431774 + 0.277484i −0.0179439 + 0.0115318i
\(580\) −1.43975 10.0137i −0.0597824 0.415796i
\(581\) −7.71000 4.95491i −0.319865 0.205564i
\(582\) 0.300562 0.658139i 0.0124587 0.0272807i
\(583\) −5.80438 + 6.69861i −0.240393 + 0.277428i
\(584\) 2.09912 14.5997i 0.0868622 0.604140i
\(585\) 5.58827 + 12.2366i 0.231047 + 0.505922i
\(586\) −16.9284 4.97063i −0.699306 0.205335i
\(587\) 33.2978 + 9.77712i 1.37435 + 0.403545i 0.883798 0.467868i \(-0.154978\pi\)
0.490550 + 0.871413i \(0.336796\pi\)
\(588\) −0.101025 0.221215i −0.00416622 0.00912275i
\(589\) 2.85213 19.8370i 0.117520 0.817371i
\(590\) 7.72141 8.91098i 0.317886 0.366859i
\(591\) −3.61717 + 7.92049i −0.148790 + 0.325806i
\(592\) 9.76567 + 6.27601i 0.401366 + 0.257943i
\(593\) 2.72637 + 18.9623i 0.111959 + 0.778690i 0.966011 + 0.258502i \(0.0832290\pi\)
−0.854052 + 0.520188i \(0.825862\pi\)
\(594\) −2.06551 + 1.32742i −0.0847487 + 0.0544647i
\(595\) 4.02172 + 4.64131i 0.164874 + 0.190275i
\(596\) 20.0247 5.87979i 0.820245 0.240846i
\(597\) 7.32576 0.299823
\(598\) 17.5027 14.5639i 0.715740 0.595564i
\(599\) 20.8106 0.850296 0.425148 0.905124i \(-0.360222\pi\)
0.425148 + 0.905124i \(0.360222\pi\)
\(600\) 0.391661 0.115002i 0.0159895 0.00469493i
\(601\) −17.9111 20.6705i −0.730608 0.843166i 0.261932 0.965086i \(-0.415640\pi\)
−0.992540 + 0.121920i \(0.961095\pi\)
\(602\) −2.24096 + 1.44018i −0.0913346 + 0.0586972i
\(603\) −3.98310 27.7031i −0.162204 1.12816i
\(604\) −3.62667 2.33072i −0.147567 0.0948357i
\(605\) 4.12789 9.03881i 0.167823 0.367480i
\(606\) −1.40412 + 1.62044i −0.0570383 + 0.0658257i
\(607\) −3.62123 + 25.1862i −0.146981 + 1.02228i 0.774144 + 0.633010i \(0.218181\pi\)
−0.921125 + 0.389267i \(0.872728\pi\)
\(608\) 2.73971 + 5.99912i 0.111110 + 0.243297i
\(609\) 10.0272 + 2.94426i 0.406324 + 0.119307i
\(610\) −2.10898 0.619251i −0.0853899 0.0250727i
\(611\) 4.99503 + 10.9376i 0.202077 + 0.442487i
\(612\) 0.978552 6.80598i 0.0395556 0.275115i
\(613\) 6.91879 7.98471i 0.279447 0.322499i −0.598623 0.801031i \(-0.704285\pi\)
0.878070 + 0.478531i \(0.158831\pi\)
\(614\) −5.83067 + 12.7674i −0.235307 + 0.515250i
\(615\) 2.25266 + 1.44770i 0.0908362 + 0.0583769i
\(616\) −0.371360 2.58286i −0.0149625 0.104067i
\(617\) 13.8438 8.89685i 0.557329 0.358174i −0.231454 0.972846i \(-0.574348\pi\)
0.788783 + 0.614672i \(0.210712\pi\)
\(618\) −2.60048 3.00111i −0.104607 0.120723i
\(619\) −5.67153 + 1.66531i −0.227958 + 0.0669345i −0.393717 0.919232i \(-0.628811\pi\)
0.165759 + 0.986166i \(0.446993\pi\)
\(620\) −3.03877 −0.122040
\(621\) 5.98065 + 9.72830i 0.239995 + 0.390383i
\(622\) 27.2582 1.09295
\(623\) −14.1645 + 4.15908i −0.567489 + 0.166630i
\(624\) −1.26914 1.46466i −0.0508061 0.0586334i
\(625\) 0.841254 0.540641i 0.0336501 0.0216256i
\(626\) −2.79580 19.4452i −0.111743 0.777187i
\(627\) 2.33522 + 1.50076i 0.0932598 + 0.0599345i
\(628\) 0.250077 0.547592i 0.00997915 0.0218513i
\(629\) −18.4482 + 21.2903i −0.735577 + 0.848901i
\(630\) 1.02044 7.09732i 0.0406553 0.282764i
\(631\) −14.9100 32.6484i −0.593558 1.29971i −0.933268 0.359181i \(-0.883056\pi\)
0.339710 0.940530i \(-0.389671\pi\)
\(632\) −4.14573 1.21730i −0.164908 0.0484215i
\(633\) 4.36876 + 1.28278i 0.173643 + 0.0509861i
\(634\) −5.17107 11.3231i −0.205370 0.449697i
\(635\) 0.0993816 0.691214i 0.00394384 0.0274300i
\(636\) 2.29780 2.65180i 0.0911137 0.105151i
\(637\) −1.17504 + 2.57299i −0.0465569 + 0.101945i
\(638\) −8.77558 5.63972i −0.347429 0.223279i
\(639\) −1.36217 9.47412i −0.0538867 0.374790i
\(640\) 0.841254 0.540641i 0.0332535 0.0213707i
\(641\) 10.0417 + 11.5888i 0.396625 + 0.457730i 0.918575 0.395246i \(-0.129341\pi\)
−0.521950 + 0.852976i \(0.674795\pi\)
\(642\) 4.02324 1.18133i 0.158785 0.0466234i
\(643\) −44.1108 −1.73956 −0.869779 0.493441i \(-0.835739\pi\)
−0.869779 + 0.493441i \(0.835739\pi\)
\(644\) −12.0452 + 1.48674i −0.474647 + 0.0585857i
\(645\) −0.429676 −0.0169185
\(646\) −15.3565 + 4.50909i −0.604195 + 0.177408i
\(647\) 18.4318 + 21.2714i 0.724628 + 0.836265i 0.991855 0.127368i \(-0.0406531\pi\)
−0.267228 + 0.963633i \(0.586108\pi\)
\(648\) −6.33308 + 4.07003i −0.248787 + 0.159886i
\(649\) −1.73025 12.0342i −0.0679183 0.472382i
\(650\) −3.99409 2.56685i −0.156661 0.100680i
\(651\) 1.30401 2.85539i 0.0511082 0.111911i
\(652\) 11.3511 13.0998i 0.444542 0.513029i
\(653\) 0.964492 6.70819i 0.0377435 0.262512i −0.962208 0.272314i \(-0.912211\pi\)
0.999952 + 0.00980218i \(0.00312018\pi\)
\(654\) −0.772179 1.69084i −0.0301946 0.0661170i
\(655\) 16.6547 + 4.89026i 0.650752 + 0.191078i
\(656\) 6.29424 + 1.84816i 0.245749 + 0.0721584i
\(657\) −17.3609 38.0152i −0.677315 1.48311i
\(658\) 0.912112 6.34387i 0.0355578 0.247310i
\(659\) 28.3768 32.7486i 1.10540 1.27570i 0.147361 0.989083i \(-0.452922\pi\)
0.958044 0.286622i \(-0.0925324\pi\)
\(660\) 0.174848 0.382865i 0.00680597 0.0149030i
\(661\) −4.86213 3.12470i −0.189115 0.121537i 0.442657 0.896691i \(-0.354036\pi\)
−0.631772 + 0.775154i \(0.717672\pi\)
\(662\) −3.49835 24.3316i −0.135967 0.945673i
\(663\) 3.95654 2.54271i 0.153659 0.0987509i
\(664\) −2.37161 2.73698i −0.0920362 0.106215i
\(665\) −16.0139 + 4.70211i −0.620992 + 0.182340i
\(666\) 32.8912 1.27451
\(667\) −27.0414 + 40.2833i −1.04705 + 1.55978i
\(668\) −13.0218 −0.503828
\(669\) 7.93415 2.32968i 0.306752 0.0900705i
\(670\) 6.46868 + 7.46525i 0.249907 + 0.288408i
\(671\) −1.90664 + 1.22532i −0.0736049 + 0.0473030i
\(672\) 0.147012 + 1.02249i 0.00567110 + 0.0394433i
\(673\) 25.5224 + 16.4023i 0.983817 + 0.632261i 0.930490 0.366317i \(-0.119381\pi\)
0.0533264 + 0.998577i \(0.483018\pi\)
\(674\) −3.92662 + 8.59810i −0.151248 + 0.331187i
\(675\) 1.55933 1.79956i 0.0600185 0.0692650i
\(676\) −1.35789 + 9.44436i −0.0522267 + 0.363245i
\(677\) 11.5180 + 25.2210i 0.442675 + 0.969322i 0.991100 + 0.133122i \(0.0425003\pi\)
−0.548425 + 0.836200i \(0.684772\pi\)
\(678\) 3.71330 + 1.09032i 0.142608 + 0.0418736i
\(679\) 4.30387 + 1.26373i 0.165167 + 0.0484975i
\(680\) 1.00812 + 2.20747i 0.0386596 + 0.0846527i
\(681\) −1.16472 + 8.10083i −0.0446323 + 0.310424i
\(682\) −2.05191 + 2.36803i −0.0785717 + 0.0906765i
\(683\) 5.26022 11.5183i 0.201277 0.440734i −0.781897 0.623408i \(-0.785748\pi\)
0.983174 + 0.182673i \(0.0584750\pi\)
\(684\) 15.7200 + 10.1026i 0.601070 + 0.386284i
\(685\) 0.627691 + 4.36569i 0.0239829 + 0.166804i
\(686\) 16.1708 10.3924i 0.617405 0.396782i
\(687\) −2.91705 3.36646i −0.111292 0.128438i
\(688\) −1.00998 + 0.296558i −0.0385053 + 0.0113062i
\(689\) −40.8119 −1.55481
\(690\) −1.76412 0.848665i −0.0671588 0.0323081i
\(691\) 43.7840 1.66562 0.832811 0.553557i \(-0.186730\pi\)
0.832811 + 0.553557i \(0.186730\pi\)
\(692\) 5.92954 1.74107i 0.225407 0.0661855i
\(693\) −4.84170 5.58762i −0.183921 0.212256i
\(694\) 15.9487 10.2496i 0.605404 0.389070i
\(695\) −2.74771 19.1107i −0.104227 0.724912i
\(696\) 3.47402 + 2.23262i 0.131682 + 0.0846272i
\(697\) −6.61322 + 14.4809i −0.250494 + 0.548505i
\(698\) 8.94164 10.3192i 0.338446 0.390588i
\(699\) −0.537571 + 3.73889i −0.0203328 + 0.141418i
\(700\) 1.05127 + 2.30197i 0.0397344 + 0.0870062i
\(701\) −45.9463 13.4910i −1.73537 0.509550i −0.747422 0.664350i \(-0.768709\pi\)
−0.987946 + 0.154800i \(0.950527\pi\)
\(702\) −10.8473 3.18505i −0.409404 0.120212i
\(703\) −31.8038 69.6406i −1.19950 2.62655i
\(704\) 0.146744 1.02063i 0.00553064 0.0384664i
\(705\) 0.676989 0.781287i 0.0254969 0.0294250i
\(706\) 4.23638 9.27639i 0.159438 0.349121i
\(707\) −11.1827 7.18668i −0.420568 0.270283i
\(708\) 0.684961 + 4.76401i 0.0257424 + 0.179042i
\(709\) 5.42468 3.48623i 0.203728 0.130928i −0.434799 0.900528i \(-0.643180\pi\)
0.638527 + 0.769600i \(0.279544\pi\)
\(710\) 2.21221 + 2.55303i 0.0830228 + 0.0958134i
\(711\) −11.7464 + 3.44906i −0.440525 + 0.129350i
\(712\) −5.83347 −0.218618
\(713\) 10.8209 + 9.76182i 0.405245 + 0.365583i
\(714\) −2.50687 −0.0938171
\(715\) −4.69726 + 1.37924i −0.175667 + 0.0515806i
\(716\) 2.02576 + 2.33785i 0.0757061 + 0.0873695i
\(717\) −1.77678 + 1.14186i −0.0663549 + 0.0426437i
\(718\) 4.75234 + 33.0533i 0.177356 + 1.23354i
\(719\) −22.4326 14.4166i −0.836595 0.537647i 0.0507722 0.998710i \(-0.483832\pi\)
−0.887367 + 0.461063i \(0.847468\pi\)
\(720\) 1.17703 2.57733i 0.0438652 0.0960514i
\(721\) 16.1220 18.6058i 0.600415 0.692916i
\(722\) 3.48607 24.2461i 0.129738 0.902348i
\(723\) −0.857075 1.87673i −0.0318750 0.0697964i
\(724\) 16.1830 + 4.75176i 0.601437 + 0.176598i
\(725\) 9.70687 + 2.85019i 0.360504 + 0.105854i
\(726\) 1.68498 + 3.68960i 0.0625356 + 0.136934i
\(727\) −5.88570 + 40.9359i −0.218288 + 1.51823i 0.526065 + 0.850444i \(0.323667\pi\)
−0.744354 + 0.667785i \(0.767242\pi\)
\(728\) 7.86817 9.08035i 0.291614 0.336540i
\(729\) −7.64952 + 16.7501i −0.283315 + 0.620374i
\(730\) 12.4083 + 7.97436i 0.459253 + 0.295144i
\(731\) −0.363540 2.52848i −0.0134460 0.0935192i
\(732\) 0.754788 0.485073i 0.0278978 0.0179288i
\(733\) 17.3205 + 19.9889i 0.639746 + 0.738306i 0.979330 0.202269i \(-0.0648317\pi\)
−0.339584 + 0.940576i \(0.610286\pi\)
\(734\) −29.5464 + 8.67560i −1.09058 + 0.320222i
\(735\) 0.243192 0.00897026
\(736\) −4.73243 0.777273i −0.174440 0.0286506i
\(737\) 10.1854 0.375184
\(738\) 17.8340 5.23652i 0.656477 0.192759i
\(739\) 23.9019 + 27.5842i 0.879244 + 1.01470i 0.999758 + 0.0219902i \(0.00700026\pi\)
−0.120514 + 0.992712i \(0.538454\pi\)
\(740\) −9.76567 + 6.27601i −0.358993 + 0.230711i
\(741\) 1.81899 + 12.6514i 0.0668224 + 0.464760i
\(742\) 18.3002 + 11.7608i 0.671821 + 0.431753i
\(743\) −4.61887 + 10.1139i −0.169450 + 0.371043i −0.975237 0.221162i \(-0.929015\pi\)
0.805787 + 0.592205i \(0.201742\pi\)
\(744\) 0.812297 0.937441i 0.0297803 0.0343682i
\(745\) −2.97013 + 20.6577i −0.108817 + 0.756840i
\(746\) 2.78476 + 6.09778i 0.101957 + 0.223256i
\(747\) −9.84555 2.89091i −0.360230 0.105773i
\(748\) 2.40095 + 0.704982i 0.0877873 + 0.0257767i
\(749\) 10.7990 + 23.6464i 0.394585 + 0.864021i
\(750\) −0.0580923 + 0.404041i −0.00212123 + 0.0147535i
\(751\) −24.6564 + 28.4550i −0.899724 + 1.03834i 0.0993392 + 0.995054i \(0.468327\pi\)
−0.999063 + 0.0432828i \(0.986218\pi\)
\(752\) 1.05207 2.30372i 0.0383652 0.0840081i
\(753\) 0.633504 + 0.407128i 0.0230862 + 0.0148366i
\(754\) −6.83564 47.5429i −0.248939 1.73141i
\(755\) 3.62667 2.33072i 0.131988 0.0848236i
\(756\) 3.94612 + 4.55407i 0.143519 + 0.165630i
\(757\) 17.7351 5.20751i 0.644595 0.189270i 0.0569346 0.998378i \(-0.481867\pi\)
0.587660 + 0.809108i \(0.300049\pi\)
\(758\) −36.4056 −1.32231
\(759\) −1.85255 + 0.801672i −0.0672433 + 0.0290988i
\(760\) −6.59511 −0.239230
\(761\) 10.3736 3.04598i 0.376044 0.110417i −0.0882481 0.996099i \(-0.528127\pi\)
0.464292 + 0.885682i \(0.346309\pi\)
\(762\) 0.186669 + 0.215428i 0.00676231 + 0.00780412i
\(763\) 9.69456 6.23032i 0.350967 0.225553i
\(764\) −1.44638 10.0598i −0.0523282 0.363951i
\(765\) 5.78443 + 3.71743i 0.209137 + 0.134404i
\(766\) −6.95166 + 15.2220i −0.251174 + 0.549994i
\(767\) 36.6596 42.3075i 1.32370 1.52763i
\(768\) −0.0580923 + 0.404041i −0.00209622 + 0.0145796i