Properties

Label 230.2.g.b.141.2
Level $230$
Weight $2$
Character 230.141
Analytic conductor $1.837$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 230 = 2 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 230.g (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.83655924649\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \( x^{20} - 5 x^{19} + 12 x^{18} + 16 x^{17} - 49 x^{16} + 59 x^{15} - 197 x^{14} + 42 x^{13} + 1625 x^{12} - 5910 x^{11} + 14651 x^{10} - 22501 x^{9} + 26003 x^{8} - 19607 x^{7} + \cdots + 529 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 141.2
Root \(-0.905632 - 1.98306i\) of defining polynomial
Character \(\chi\) \(=\) 230.141
Dual form 230.2.g.b.31.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.142315 + 0.989821i) q^{2} +(1.40549 - 3.07760i) q^{3} +(-0.959493 + 0.281733i) q^{4} +(-0.654861 + 0.755750i) q^{5} +(3.24630 + 0.953198i) q^{6} +(2.97617 - 1.91267i) q^{7} +(-0.415415 - 0.909632i) q^{8} +(-5.53162 - 6.38383i) q^{9} +O(q^{10})\) \(q+(0.142315 + 0.989821i) q^{2} +(1.40549 - 3.07760i) q^{3} +(-0.959493 + 0.281733i) q^{4} +(-0.654861 + 0.755750i) q^{5} +(3.24630 + 0.953198i) q^{6} +(2.97617 - 1.91267i) q^{7} +(-0.415415 - 0.909632i) q^{8} +(-5.53162 - 6.38383i) q^{9} +(-0.841254 - 0.540641i) q^{10} +(-0.474502 + 3.30023i) q^{11} +(-0.481500 + 3.34891i) q^{12} +(-2.04439 - 1.31385i) q^{13} +(2.31676 + 2.67368i) q^{14} +(1.40549 + 3.07760i) q^{15} +(0.841254 - 0.540641i) q^{16} +(4.17723 + 1.22655i) q^{17} +(5.53162 - 6.38383i) q^{18} +(-1.70877 + 0.501740i) q^{19} +(0.415415 - 0.909632i) q^{20} +(-1.70344 - 11.8477i) q^{21} -3.33417 q^{22} +(4.72437 + 0.824821i) q^{23} -3.38334 q^{24} +(-0.142315 - 0.989821i) q^{25} +(1.00953 - 2.21057i) q^{26} +(-17.6826 + 5.19209i) q^{27} +(-2.31676 + 2.67368i) q^{28} +(4.26170 + 1.25135i) q^{29} +(-2.84625 + 1.82917i) q^{30} +(0.962566 + 2.10773i) q^{31} +(0.654861 + 0.755750i) q^{32} +(9.48988 + 6.09877i) q^{33} +(-0.619580 + 4.30927i) q^{34} +(-0.503479 + 3.50177i) q^{35} +(7.10608 + 4.56680i) q^{36} +(2.47799 + 2.85975i) q^{37} +(-0.739816 - 1.61997i) q^{38} +(-6.91689 + 4.44521i) q^{39} +(0.959493 + 0.281733i) q^{40} +(-5.45570 + 6.29621i) q^{41} +(11.4847 - 3.37221i) q^{42} +(-1.86625 + 4.08651i) q^{43} +(-0.474502 - 3.30023i) q^{44} +8.44702 q^{45} +(-0.144077 + 4.79367i) q^{46} -6.54226 q^{47} +(-0.481500 - 3.34891i) q^{48} +(2.29140 - 5.01746i) q^{49} +(0.959493 - 0.281733i) q^{50} +(9.64588 - 11.1319i) q^{51} +(2.33174 + 0.684660i) q^{52} +(-6.75825 + 4.34326i) q^{53} +(-7.65574 - 16.7637i) q^{54} +(-2.18342 - 2.51980i) q^{55} +(-2.97617 - 1.91267i) q^{56} +(-0.857508 + 5.96410i) q^{57} +(-0.632108 + 4.39641i) q^{58} +(11.7107 + 7.52602i) q^{59} +(-2.21562 - 2.55696i) q^{60} +(-4.41893 - 9.67611i) q^{61} +(-1.94929 + 1.25273i) q^{62} +(-28.6732 - 8.41922i) q^{63} +(-0.654861 + 0.755750i) q^{64} +(2.33174 - 0.684660i) q^{65} +(-4.68615 + 10.2612i) q^{66} +(0.522775 + 3.63598i) q^{67} -4.35358 q^{68} +(9.17853 - 13.3804i) q^{69} -3.53778 q^{70} +(-1.28444 - 8.93348i) q^{71} +(-3.50902 + 7.68368i) q^{72} +(-2.35015 + 0.690068i) q^{73} +(-2.47799 + 2.85975i) q^{74} +(-3.24630 - 0.953198i) q^{75} +(1.49820 - 0.962832i) q^{76} +(4.90006 + 10.7296i) q^{77} +(-5.38434 - 6.21386i) q^{78} +(-1.93484 - 1.24344i) q^{79} +(-0.142315 + 0.989821i) q^{80} +(-5.26722 + 36.6343i) q^{81} +(-7.00855 - 4.50412i) q^{82} +(0.921369 + 1.06332i) q^{83} +(4.97233 + 10.8879i) q^{84} +(-3.66247 + 2.35373i) q^{85} +(-4.31051 - 1.26568i) q^{86} +(9.84093 - 11.3570i) q^{87} +(3.19911 - 0.939344i) q^{88} +(6.81581 - 14.9245i) q^{89} +(1.20214 + 8.36104i) q^{90} -8.59744 q^{91} +(-4.76538 + 0.539599i) q^{92} +7.83961 q^{93} +(-0.931060 - 6.47567i) q^{94} +(0.739816 - 1.61997i) q^{95} +(3.24630 - 0.953198i) q^{96} +(7.51574 - 8.67363i) q^{97} +(5.29248 + 1.55401i) q^{98} +(23.6929 - 15.2265i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 2 q^{2} - 3 q^{3} - 2 q^{4} - 2 q^{5} + 3 q^{6} + 19 q^{7} + 2 q^{8} - 27 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 20 q + 2 q^{2} - 3 q^{3} - 2 q^{4} - 2 q^{5} + 3 q^{6} + 19 q^{7} + 2 q^{8} - 27 q^{9} + 2 q^{10} + 7 q^{11} + 8 q^{12} + 8 q^{13} + 3 q^{14} - 3 q^{15} - 2 q^{16} + 8 q^{17} + 27 q^{18} - q^{19} - 2 q^{20} - 31 q^{21} - 18 q^{22} - 9 q^{23} - 8 q^{24} - 2 q^{25} - 8 q^{26} - 18 q^{27} - 3 q^{28} + 20 q^{29} + 3 q^{30} - 17 q^{31} + 2 q^{32} + 17 q^{33} + 3 q^{34} - 3 q^{35} + 17 q^{36} + 6 q^{37} - 21 q^{38} - 75 q^{39} + 2 q^{40} - 2 q^{41} + 42 q^{42} - 18 q^{43} + 7 q^{44} + 28 q^{45} - 2 q^{46} + 42 q^{47} + 8 q^{48} - 19 q^{49} + 2 q^{50} + 26 q^{51} + 19 q^{52} + 19 q^{53} - 26 q^{54} - 15 q^{55} - 19 q^{56} + 7 q^{57} - 9 q^{58} + 25 q^{59} - 3 q^{60} - 49 q^{61} - 38 q^{62} - 87 q^{63} - 2 q^{64} + 19 q^{65} - 6 q^{66} + 19 q^{67} - 36 q^{68} + 36 q^{69} + 14 q^{70} + 7 q^{71} - 17 q^{72} - 10 q^{73} - 6 q^{74} - 3 q^{75} - q^{76} - 29 q^{77} - 2 q^{78} - 33 q^{79} - 2 q^{80} + 72 q^{81} + 2 q^{82} - 41 q^{83} + 13 q^{84} - 14 q^{85} - 48 q^{86} - 16 q^{87} - 7 q^{88} + 55 q^{89} + 5 q^{90} + 13 q^{92} + 10 q^{93} + 13 q^{94} + 21 q^{95} + 3 q^{96} - 9 q^{97} + 41 q^{98} + 59 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/230\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(1\) \(e\left(\frac{8}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.142315 + 0.989821i 0.100632 + 0.699909i
\(3\) 1.40549 3.07760i 0.811461 1.77685i 0.210463 0.977602i \(-0.432503\pi\)
0.600998 0.799250i \(-0.294770\pi\)
\(4\) −0.959493 + 0.281733i −0.479746 + 0.140866i
\(5\) −0.654861 + 0.755750i −0.292863 + 0.337981i
\(6\) 3.24630 + 0.953198i 1.32529 + 0.389142i
\(7\) 2.97617 1.91267i 1.12489 0.722922i 0.160401 0.987052i \(-0.448721\pi\)
0.964487 + 0.264130i \(0.0850849\pi\)
\(8\) −0.415415 0.909632i −0.146871 0.321603i
\(9\) −5.53162 6.38383i −1.84387 2.12794i
\(10\) −0.841254 0.540641i −0.266028 0.170966i
\(11\) −0.474502 + 3.30023i −0.143068 + 0.995057i 0.784160 + 0.620559i \(0.213094\pi\)
−0.927228 + 0.374498i \(0.877815\pi\)
\(12\) −0.481500 + 3.34891i −0.138997 + 0.966746i
\(13\) −2.04439 1.31385i −0.567013 0.364397i 0.225509 0.974241i \(-0.427596\pi\)
−0.792521 + 0.609844i \(0.791232\pi\)
\(14\) 2.31676 + 2.67368i 0.619179 + 0.714571i
\(15\) 1.40549 + 3.07760i 0.362896 + 0.794632i
\(16\) 0.841254 0.540641i 0.210313 0.135160i
\(17\) 4.17723 + 1.22655i 1.01313 + 0.297481i 0.745833 0.666133i \(-0.232052\pi\)
0.267295 + 0.963615i \(0.413870\pi\)
\(18\) 5.53162 6.38383i 1.30382 1.50468i
\(19\) −1.70877 + 0.501740i −0.392019 + 0.115107i −0.471801 0.881705i \(-0.656396\pi\)
0.0797820 + 0.996812i \(0.474578\pi\)
\(20\) 0.415415 0.909632i 0.0928896 0.203400i
\(21\) −1.70344 11.8477i −0.371722 2.58538i
\(22\) −3.33417 −0.710847
\(23\) 4.72437 + 0.824821i 0.985099 + 0.171987i
\(24\) −3.38334 −0.690622
\(25\) −0.142315 0.989821i −0.0284630 0.197964i
\(26\) 1.00953 2.21057i 0.197985 0.433528i
\(27\) −17.6826 + 5.19209i −3.40302 + 0.999218i
\(28\) −2.31676 + 2.67368i −0.437826 + 0.505278i
\(29\) 4.26170 + 1.25135i 0.791378 + 0.232370i 0.652349 0.757919i \(-0.273784\pi\)
0.139029 + 0.990288i \(0.455602\pi\)
\(30\) −2.84625 + 1.82917i −0.519652 + 0.333960i
\(31\) 0.962566 + 2.10773i 0.172882 + 0.378559i 0.976162 0.217043i \(-0.0696411\pi\)
−0.803280 + 0.595601i \(0.796914\pi\)
\(32\) 0.654861 + 0.755750i 0.115764 + 0.133599i
\(33\) 9.48988 + 6.09877i 1.65198 + 1.06166i
\(34\) −0.619580 + 4.30927i −0.106257 + 0.739034i
\(35\) −0.503479 + 3.50177i −0.0851035 + 0.591908i
\(36\) 7.10608 + 4.56680i 1.18435 + 0.761134i
\(37\) 2.47799 + 2.85975i 0.407379 + 0.470140i 0.921951 0.387307i \(-0.126595\pi\)
−0.514572 + 0.857447i \(0.672049\pi\)
\(38\) −0.739816 1.61997i −0.120014 0.262794i
\(39\) −6.91689 + 4.44521i −1.10759 + 0.711804i
\(40\) 0.959493 + 0.281733i 0.151709 + 0.0445458i
\(41\) −5.45570 + 6.29621i −0.852036 + 0.983303i −0.999984 0.00569272i \(-0.998188\pi\)
0.147947 + 0.988995i \(0.452733\pi\)
\(42\) 11.4847 3.37221i 1.77213 0.520343i
\(43\) −1.86625 + 4.08651i −0.284600 + 0.623187i −0.996899 0.0786889i \(-0.974927\pi\)
0.712299 + 0.701876i \(0.247654\pi\)
\(44\) −0.474502 3.30023i −0.0715338 0.497529i
\(45\) 8.44702 1.25921
\(46\) −0.144077 + 4.79367i −0.0212431 + 0.706788i
\(47\) −6.54226 −0.954286 −0.477143 0.878826i \(-0.658328\pi\)
−0.477143 + 0.878826i \(0.658328\pi\)
\(48\) −0.481500 3.34891i −0.0694986 0.483373i
\(49\) 2.29140 5.01746i 0.327342 0.716779i
\(50\) 0.959493 0.281733i 0.135693 0.0398430i
\(51\) 9.64588 11.1319i 1.35069 1.55878i
\(52\) 2.33174 + 0.684660i 0.323354 + 0.0949452i
\(53\) −6.75825 + 4.34326i −0.928317 + 0.596593i −0.915059 0.403319i \(-0.867856\pi\)
−0.0132574 + 0.999912i \(0.504220\pi\)
\(54\) −7.65574 16.7637i −1.04181 2.28126i
\(55\) −2.18342 2.51980i −0.294412 0.339769i
\(56\) −2.97617 1.91267i −0.397708 0.255591i
\(57\) −0.857508 + 5.96410i −0.113580 + 0.789964i
\(58\) −0.632108 + 4.39641i −0.0829999 + 0.577277i
\(59\) 11.7107 + 7.52602i 1.52461 + 0.979805i 0.990969 + 0.134092i \(0.0428116\pi\)
0.533637 + 0.845713i \(0.320825\pi\)
\(60\) −2.21562 2.55696i −0.286035 0.330102i
\(61\) −4.41893 9.67611i −0.565786 1.23890i −0.949011 0.315244i \(-0.897914\pi\)
0.383224 0.923655i \(-0.374814\pi\)
\(62\) −1.94929 + 1.25273i −0.247559 + 0.159097i
\(63\) −28.6732 8.41922i −3.61249 1.06072i
\(64\) −0.654861 + 0.755750i −0.0818576 + 0.0944687i
\(65\) 2.33174 0.684660i 0.289216 0.0849216i
\(66\) −4.68615 + 10.2612i −0.576825 + 1.26307i
\(67\) 0.522775 + 3.63598i 0.0638671 + 0.444205i 0.996515 + 0.0834168i \(0.0265833\pi\)
−0.932648 + 0.360788i \(0.882508\pi\)
\(68\) −4.35358 −0.527950
\(69\) 9.17853 13.3804i 1.10497 1.61081i
\(70\) −3.53778 −0.422846
\(71\) −1.28444 8.93348i −0.152435 1.06021i −0.912122 0.409920i \(-0.865557\pi\)
0.759687 0.650289i \(-0.225352\pi\)
\(72\) −3.50902 + 7.68368i −0.413542 + 0.905530i
\(73\) −2.35015 + 0.690068i −0.275065 + 0.0807663i −0.416356 0.909202i \(-0.636693\pi\)
0.141291 + 0.989968i \(0.454875\pi\)
\(74\) −2.47799 + 2.85975i −0.288060 + 0.332439i
\(75\) −3.24630 0.953198i −0.374850 0.110066i
\(76\) 1.49820 0.962832i 0.171855 0.110444i
\(77\) 4.90006 + 10.7296i 0.558413 + 1.22275i
\(78\) −5.38434 6.21386i −0.609657 0.703582i
\(79\) −1.93484 1.24344i −0.217686 0.139898i 0.427254 0.904132i \(-0.359481\pi\)
−0.644940 + 0.764234i \(0.723117\pi\)
\(80\) −0.142315 + 0.989821i −0.0159113 + 0.110665i
\(81\) −5.26722 + 36.6343i −0.585247 + 4.07048i
\(82\) −7.00855 4.50412i −0.773965 0.497397i
\(83\) 0.921369 + 1.06332i 0.101133 + 0.116714i 0.804060 0.594548i \(-0.202669\pi\)
−0.702926 + 0.711263i \(0.748124\pi\)
\(84\) 4.97233 + 10.8879i 0.542525 + 1.18796i
\(85\) −3.66247 + 2.35373i −0.397250 + 0.255297i
\(86\) −4.31051 1.26568i −0.464814 0.136482i
\(87\) 9.84093 11.3570i 1.05506 1.21760i
\(88\) 3.19911 0.939344i 0.341026 0.100134i
\(89\) 6.81581 14.9245i 0.722474 1.58200i −0.0879306 0.996127i \(-0.528025\pi\)
0.810405 0.585871i \(-0.199247\pi\)
\(90\) 1.20214 + 8.36104i 0.126716 + 0.881331i
\(91\) −8.59744 −0.901256
\(92\) −4.76538 + 0.539599i −0.496825 + 0.0562571i
\(93\) 7.83961 0.812930
\(94\) −0.931060 6.47567i −0.0960315 0.667914i
\(95\) 0.739816 1.61997i 0.0759035 0.166206i
\(96\) 3.24630 0.953198i 0.331324 0.0972854i
\(97\) 7.51574 8.67363i 0.763108 0.880673i −0.232662 0.972558i \(-0.574744\pi\)
0.995770 + 0.0918844i \(0.0292890\pi\)
\(98\) 5.29248 + 1.55401i 0.534622 + 0.156979i
\(99\) 23.6929 15.2265i 2.38122 1.53032i
\(100\) 0.415415 + 0.909632i 0.0415415 + 0.0909632i
\(101\) −4.98657 5.75481i −0.496182 0.572625i 0.451325 0.892360i \(-0.350952\pi\)
−0.947507 + 0.319735i \(0.896406\pi\)
\(102\) 12.3914 + 7.96346i 1.22693 + 0.788500i
\(103\) 1.45754 10.1374i 0.143616 0.998869i −0.782775 0.622305i \(-0.786196\pi\)
0.926391 0.376564i \(-0.122894\pi\)
\(104\) −0.345850 + 2.40544i −0.0339134 + 0.235873i
\(105\) 10.0694 + 6.47122i 0.982675 + 0.631527i
\(106\) −5.26085 6.07135i −0.510979 0.589701i
\(107\) −0.662403 1.45046i −0.0640369 0.140221i 0.874908 0.484290i \(-0.160922\pi\)
−0.938944 + 0.344069i \(0.888195\pi\)
\(108\) 15.5036 9.96354i 1.49183 0.958742i
\(109\) −5.70566 1.67533i −0.546503 0.160468i −0.00318548 0.999995i \(-0.501014\pi\)
−0.543318 + 0.839527i \(0.682832\pi\)
\(110\) 2.18342 2.51980i 0.208181 0.240253i
\(111\) 12.2840 3.60689i 1.16594 0.342351i
\(112\) 1.46965 3.21808i 0.138869 0.304080i
\(113\) 1.03394 + 7.19123i 0.0972651 + 0.676494i 0.978867 + 0.204499i \(0.0655566\pi\)
−0.881602 + 0.471994i \(0.843534\pi\)
\(114\) −6.02543 −0.564333
\(115\) −3.71716 + 3.03030i −0.346627 + 0.282577i
\(116\) −4.44162 −0.412394
\(117\) 2.92140 + 20.3188i 0.270084 + 1.87847i
\(118\) −5.78281 + 12.6626i −0.532351 + 1.16569i
\(119\) 14.7782 4.33926i 1.35471 0.397779i
\(120\) 2.21562 2.55696i 0.202257 0.233418i
\(121\) −0.111955 0.0328728i −0.0101777 0.00298844i
\(122\) 8.94874 5.75101i 0.810181 0.520672i
\(123\) 11.7093 + 25.6397i 1.05579 + 2.31185i
\(124\) −1.51739 1.75116i −0.136266 0.157259i
\(125\) 0.841254 + 0.540641i 0.0752440 + 0.0483564i
\(126\) 4.25290 29.5796i 0.378878 2.63516i
\(127\) −0.907193 + 6.30967i −0.0805004 + 0.559892i 0.909158 + 0.416450i \(0.136726\pi\)
−0.989659 + 0.143442i \(0.954183\pi\)
\(128\) −0.841254 0.540641i −0.0743570 0.0477863i
\(129\) 9.95364 + 11.4871i 0.876369 + 1.01138i
\(130\) 1.00953 + 2.21057i 0.0885418 + 0.193879i
\(131\) −8.42656 + 5.41542i −0.736232 + 0.473147i −0.854249 0.519864i \(-0.825983\pi\)
0.118017 + 0.993012i \(0.462346\pi\)
\(132\) −10.8237 3.17812i −0.942082 0.276620i
\(133\) −4.12593 + 4.76158i −0.357764 + 0.412881i
\(134\) −3.52457 + 1.03491i −0.304476 + 0.0894023i
\(135\) 7.65574 16.7637i 0.658901 1.44279i
\(136\) −0.619580 4.30927i −0.0531285 0.369517i
\(137\) 7.61920 0.650952 0.325476 0.945550i \(-0.394475\pi\)
0.325476 + 0.945550i \(0.394475\pi\)
\(138\) 14.5505 + 7.18087i 1.23862 + 0.611276i
\(139\) −15.1421 −1.28434 −0.642170 0.766563i \(-0.721966\pi\)
−0.642170 + 0.766563i \(0.721966\pi\)
\(140\) −0.503479 3.50177i −0.0425518 0.295954i
\(141\) −9.19509 + 20.1344i −0.774366 + 1.69563i
\(142\) 8.65976 2.54273i 0.726711 0.213382i
\(143\) 5.30608 6.12355i 0.443717 0.512077i
\(144\) −8.10485 2.37980i −0.675405 0.198317i
\(145\) −3.73653 + 2.40132i −0.310302 + 0.199419i
\(146\) −1.01751 2.22803i −0.0842094 0.184393i
\(147\) −12.2212 14.1040i −1.00799 1.16328i
\(148\) −3.18330 2.04578i −0.261665 0.168162i
\(149\) −0.638482 + 4.44074i −0.0523065 + 0.363800i 0.946811 + 0.321791i \(0.104285\pi\)
−0.999117 + 0.0420088i \(0.986624\pi\)
\(150\) 0.481500 3.34891i 0.0393143 0.273437i
\(151\) −7.89187 5.07180i −0.642231 0.412737i 0.178589 0.983924i \(-0.442847\pi\)
−0.820820 + 0.571187i \(0.806483\pi\)
\(152\) 1.16625 + 1.34592i 0.0945951 + 0.109169i
\(153\) −15.2768 33.4515i −1.23506 2.70440i
\(154\) −9.92306 + 6.37717i −0.799623 + 0.513887i
\(155\) −2.22326 0.652808i −0.178577 0.0524348i
\(156\) 5.38434 6.21386i 0.431093 0.497507i
\(157\) −2.71487 + 0.797157i −0.216670 + 0.0636200i −0.388266 0.921547i \(-0.626926\pi\)
0.171596 + 0.985167i \(0.445108\pi\)
\(158\) 0.955431 2.09210i 0.0760100 0.166439i
\(159\) 3.86815 + 26.9036i 0.306764 + 2.13359i
\(160\) −1.00000 −0.0790569
\(161\) 15.6382 6.58135i 1.23246 0.518683i
\(162\) −37.0111 −2.90786
\(163\) −1.01255 7.04242i −0.0793088 0.551605i −0.990275 0.139124i \(-0.955571\pi\)
0.910966 0.412481i \(-0.135338\pi\)
\(164\) 3.46085 7.57821i 0.270247 0.591759i
\(165\) −10.8237 + 3.17812i −0.842624 + 0.247417i
\(166\) −0.921369 + 1.06332i −0.0715121 + 0.0825294i
\(167\) −3.82944 1.12442i −0.296331 0.0870106i 0.130188 0.991489i \(-0.458442\pi\)
−0.426519 + 0.904479i \(0.640260\pi\)
\(168\) −10.0694 + 6.47122i −0.776873 + 0.499266i
\(169\) −2.94706 6.45315i −0.226697 0.496396i
\(170\) −2.85099 3.29022i −0.218661 0.252348i
\(171\) 12.6553 + 8.13306i 0.967774 + 0.621951i
\(172\) 0.639348 4.44676i 0.0487498 0.339062i
\(173\) 3.61524 25.1445i 0.274861 1.91170i −0.119658 0.992815i \(-0.538180\pi\)
0.394519 0.918888i \(-0.370911\pi\)
\(174\) 12.6420 + 8.12449i 0.958384 + 0.615916i
\(175\) −2.31676 2.67368i −0.175130 0.202111i
\(176\) 1.38506 + 3.03287i 0.104403 + 0.228611i
\(177\) 39.6214 25.4631i 2.97813 1.91393i
\(178\) 15.7426 + 4.62245i 1.17996 + 0.346467i
\(179\) −12.8875 + 14.8730i −0.963257 + 1.11166i 0.0304372 + 0.999537i \(0.490310\pi\)
−0.993695 + 0.112122i \(0.964235\pi\)
\(180\) −8.10485 + 2.37980i −0.604100 + 0.177380i
\(181\) 3.53497 7.74051i 0.262752 0.575348i −0.731569 0.681768i \(-0.761212\pi\)
0.994321 + 0.106420i \(0.0339388\pi\)
\(182\) −1.22354 8.50993i −0.0906950 0.630798i
\(183\) −35.9900 −2.66045
\(184\) −1.21229 4.64008i −0.0893713 0.342071i
\(185\) −3.78399 −0.278205
\(186\) 1.11569 + 7.75982i 0.0818066 + 0.568977i
\(187\) −6.02999 + 13.2038i −0.440957 + 0.965560i
\(188\) 6.27725 1.84317i 0.457815 0.134427i
\(189\) −42.6958 + 49.2736i −3.10566 + 3.58413i
\(190\) 1.70877 + 0.501740i 0.123967 + 0.0364000i
\(191\) −16.2244 + 10.4268i −1.17396 + 0.754457i −0.974266 0.225402i \(-0.927631\pi\)
−0.199692 + 0.979859i \(0.563994\pi\)
\(192\) 1.40549 + 3.07760i 0.101433 + 0.222107i
\(193\) 9.11317 + 10.5172i 0.655980 + 0.757041i 0.982115 0.188282i \(-0.0602918\pi\)
−0.326135 + 0.945323i \(0.605746\pi\)
\(194\) 9.65494 + 6.20485i 0.693184 + 0.445483i
\(195\) 1.17013 8.13843i 0.0837947 0.582805i
\(196\) −0.784997 + 5.45977i −0.0560712 + 0.389984i
\(197\) 5.73032 + 3.68265i 0.408269 + 0.262378i 0.728617 0.684922i \(-0.240164\pi\)
−0.320348 + 0.947300i \(0.603800\pi\)
\(198\) 18.4434 + 21.2848i 1.31071 + 1.51264i
\(199\) −9.16447 20.0674i −0.649652 1.42254i −0.891858 0.452315i \(-0.850598\pi\)
0.242206 0.970225i \(-0.422129\pi\)
\(200\) −0.841254 + 0.540641i −0.0594856 + 0.0382291i
\(201\) 11.9248 + 3.50145i 0.841113 + 0.246973i
\(202\) 4.98657 5.75481i 0.350854 0.404907i
\(203\) 15.0770 4.42700i 1.05820 0.310714i
\(204\) −6.11893 + 13.3986i −0.428411 + 0.938088i
\(205\) −1.18564 8.24628i −0.0828084 0.575945i
\(206\) 10.2417 0.713570
\(207\) −20.8679 34.7222i −1.45042 2.41336i
\(208\) −2.43018 −0.168502
\(209\) −0.845044 5.87741i −0.0584529 0.406549i
\(210\) −4.97233 + 10.8879i −0.343123 + 0.751335i
\(211\) −2.89011 + 0.848613i −0.198963 + 0.0584209i −0.379696 0.925111i \(-0.623971\pi\)
0.180732 + 0.983532i \(0.442153\pi\)
\(212\) 5.26085 6.07135i 0.361317 0.416982i
\(213\) −29.2989 8.60294i −2.00753 0.589464i
\(214\) 1.34143 0.862082i 0.0916980 0.0589307i
\(215\) −1.86625 4.08651i −0.127277 0.278698i
\(216\) 12.0685 + 13.9278i 0.821159 + 0.947668i
\(217\) 6.89615 + 4.43189i 0.468141 + 0.300856i
\(218\) 0.846281 5.88601i 0.0573174 0.398651i
\(219\) −1.17937 + 8.20272i −0.0796946 + 0.554288i
\(220\) 2.80488 + 1.80259i 0.189105 + 0.121530i
\(221\) −6.92841 7.99581i −0.466055 0.537856i
\(222\) 5.31837 + 11.6456i 0.356946 + 0.781602i
\(223\) −1.69953 + 1.09222i −0.113809 + 0.0731407i −0.596307 0.802756i \(-0.703366\pi\)
0.482498 + 0.875897i \(0.339730\pi\)
\(224\) 3.39448 + 0.996709i 0.226803 + 0.0665954i
\(225\) −5.53162 + 6.38383i −0.368775 + 0.425589i
\(226\) −6.97089 + 2.04684i −0.463696 + 0.136154i
\(227\) −5.14764 + 11.2718i −0.341661 + 0.748132i −0.999989 0.00459808i \(-0.998536\pi\)
0.658329 + 0.752730i \(0.271264\pi\)
\(228\) −0.857508 5.96410i −0.0567898 0.394982i
\(229\) 26.1155 1.72576 0.862880 0.505409i \(-0.168658\pi\)
0.862880 + 0.505409i \(0.168658\pi\)
\(230\) −3.52846 3.24807i −0.232660 0.214171i
\(231\) 39.9085 2.62578
\(232\) −0.632108 4.39641i −0.0414999 0.288638i
\(233\) 5.86662 12.8461i 0.384335 0.841577i −0.614286 0.789083i \(-0.710556\pi\)
0.998621 0.0524933i \(-0.0167168\pi\)
\(234\) −19.6962 + 5.78333i −1.28758 + 0.378068i
\(235\) 4.28427 4.94431i 0.279475 0.322531i
\(236\) −13.3567 3.92188i −0.869446 0.255292i
\(237\) −6.54621 + 4.20700i −0.425222 + 0.273274i
\(238\) 6.39824 + 14.0102i 0.414736 + 0.908146i
\(239\) −3.26621 3.76940i −0.211273 0.243822i 0.640215 0.768196i \(-0.278845\pi\)
−0.851489 + 0.524373i \(0.824300\pi\)
\(240\) 2.84625 + 1.82917i 0.183725 + 0.118073i
\(241\) 0.239778 1.66769i 0.0154454 0.107425i −0.980640 0.195818i \(-0.937264\pi\)
0.996086 + 0.0883925i \(0.0281730\pi\)
\(242\) 0.0166054 0.115493i 0.00106744 0.00742419i
\(243\) 58.8320 + 37.8090i 3.77408 + 2.42545i
\(244\) 6.96601 + 8.03920i 0.445953 + 0.514657i
\(245\) 2.29140 + 5.01746i 0.146392 + 0.320553i
\(246\) −23.7123 + 15.2390i −1.51184 + 0.971603i
\(247\) 4.15261 + 1.21932i 0.264224 + 0.0775832i
\(248\) 1.51739 1.75116i 0.0963544 0.111199i
\(249\) 4.56744 1.34112i 0.289450 0.0849901i
\(250\) −0.415415 + 0.909632i −0.0262732 + 0.0575302i
\(251\) 3.36584 + 23.4099i 0.212450 + 1.47762i 0.764940 + 0.644102i \(0.222769\pi\)
−0.552490 + 0.833519i \(0.686322\pi\)
\(252\) 29.8837 1.88250
\(253\) −4.96382 + 15.2001i −0.312073 + 0.955624i
\(254\) −6.37455 −0.399975
\(255\) 2.09625 + 14.5797i 0.131272 + 0.913019i
\(256\) 0.415415 0.909632i 0.0259634 0.0568520i
\(257\) −15.6685 + 4.60068i −0.977372 + 0.286982i −0.731139 0.682228i \(-0.761011\pi\)
−0.246233 + 0.969211i \(0.579193\pi\)
\(258\) −9.95364 + 11.4871i −0.619687 + 0.715157i
\(259\) 12.8447 + 3.77154i 0.798130 + 0.234352i
\(260\) −2.04439 + 1.31385i −0.126788 + 0.0814816i
\(261\) −15.5857 34.1280i −0.964732 2.11247i
\(262\) −6.55952 7.57009i −0.405249 0.467682i
\(263\) 1.27661 + 0.820427i 0.0787191 + 0.0505897i 0.579408 0.815037i \(-0.303284\pi\)
−0.500689 + 0.865627i \(0.666920\pi\)
\(264\) 1.60540 11.1658i 0.0988057 0.687209i
\(265\) 1.14329 7.95177i 0.0702319 0.488474i
\(266\) −5.30029 3.40629i −0.324982 0.208853i
\(267\) −36.3522 41.9526i −2.22472 2.56746i
\(268\) −1.52597 3.34141i −0.0932136 0.204109i
\(269\) −17.3777 + 11.1680i −1.05954 + 0.680924i −0.949743 0.313031i \(-0.898656\pi\)
−0.109795 + 0.993954i \(0.535019\pi\)
\(270\) 17.6826 + 5.19209i 1.07613 + 0.315980i
\(271\) 7.56829 8.73427i 0.459741 0.530569i −0.477789 0.878475i \(-0.658562\pi\)
0.937530 + 0.347906i \(0.113107\pi\)
\(272\) 4.17723 1.22655i 0.253282 0.0743703i
\(273\) −12.0836 + 26.4595i −0.731334 + 1.60140i
\(274\) 1.08433 + 7.54165i 0.0655065 + 0.455608i
\(275\) 3.33417 0.201058
\(276\) −5.03703 + 15.4243i −0.303194 + 0.928435i
\(277\) 1.27581 0.0766562 0.0383281 0.999265i \(-0.487797\pi\)
0.0383281 + 0.999265i \(0.487797\pi\)
\(278\) −2.15495 14.9880i −0.129245 0.898921i
\(279\) 8.13082 17.8040i 0.486779 1.06590i
\(280\) 3.39448 0.996709i 0.202859 0.0595648i
\(281\) −3.58023 + 4.13181i −0.213579 + 0.246483i −0.852423 0.522853i \(-0.824868\pi\)
0.638844 + 0.769336i \(0.279413\pi\)
\(282\) −21.2381 6.23607i −1.26471 0.371352i
\(283\) −0.279134 + 0.179389i −0.0165928 + 0.0106635i −0.548911 0.835881i \(-0.684957\pi\)
0.532318 + 0.846544i \(0.321321\pi\)
\(284\) 3.74926 + 8.20974i 0.222478 + 0.487159i
\(285\) −3.94582 4.55371i −0.233730 0.269739i
\(286\) 6.81635 + 4.38060i 0.403059 + 0.259031i
\(287\) −4.19452 + 29.1736i −0.247595 + 1.72206i
\(288\) 1.20214 8.36104i 0.0708365 0.492679i
\(289\) 1.64355 + 1.05625i 0.0966796 + 0.0621322i
\(290\) −2.90864 3.35675i −0.170801 0.197115i
\(291\) −16.1306 35.3211i −0.945594 2.07056i
\(292\) 2.06054 1.32423i 0.120584 0.0774947i
\(293\) 15.4125 + 4.52552i 0.900409 + 0.264384i 0.698999 0.715123i \(-0.253629\pi\)
0.201410 + 0.979507i \(0.435448\pi\)
\(294\) 12.2212 14.1040i 0.712753 0.822561i
\(295\) −13.3567 + 3.92188i −0.777656 + 0.228340i
\(296\) 1.57193 3.44204i 0.0913664 0.200065i
\(297\) −8.74466 60.8204i −0.507416 3.52916i
\(298\) −4.48641 −0.259891
\(299\) −8.57478 7.89338i −0.495892 0.456486i
\(300\) 3.38334 0.195337
\(301\) 2.26187 + 15.7317i 0.130372 + 0.906759i
\(302\) 3.89704 8.53333i 0.224250 0.491038i
\(303\) −24.7196 + 7.25832i −1.42010 + 0.416980i
\(304\) −1.16625 + 1.34592i −0.0668889 + 0.0771939i
\(305\) 10.2065 + 2.99690i 0.584423 + 0.171602i
\(306\) 30.9369 19.8820i 1.76855 1.13658i
\(307\) 13.5141 + 29.5917i 0.771288 + 1.68888i 0.723797 + 0.690013i \(0.242395\pi\)
0.0474912 + 0.998872i \(0.484877\pi\)
\(308\) −7.72446 8.91450i −0.440142 0.507951i
\(309\) −29.1503 18.7338i −1.65830 1.06573i
\(310\) 0.329761 2.29353i 0.0187291 0.130264i
\(311\) 0.282669 1.96601i 0.0160287 0.111482i −0.980236 0.197830i \(-0.936611\pi\)
0.996265 + 0.0863480i \(0.0275197\pi\)
\(312\) 6.91689 + 4.44521i 0.391592 + 0.251661i
\(313\) 2.53433 + 2.92477i 0.143249 + 0.165318i 0.822840 0.568273i \(-0.192388\pi\)
−0.679591 + 0.733591i \(0.737843\pi\)
\(314\) −1.17541 2.57379i −0.0663321 0.145247i
\(315\) 25.1398 16.1564i 1.41647 0.910308i
\(316\) 2.20678 + 0.647969i 0.124141 + 0.0364511i
\(317\) 1.36805 1.57881i 0.0768373 0.0886750i −0.716029 0.698070i \(-0.754042\pi\)
0.792867 + 0.609395i \(0.208588\pi\)
\(318\) −26.0793 + 7.65756i −1.46245 + 0.429415i
\(319\) −6.15192 + 13.4708i −0.344442 + 0.754222i
\(320\) −0.142315 0.989821i −0.00795564 0.0553327i
\(321\) −5.39493 −0.301116
\(322\) 8.73991 + 14.5424i 0.487056 + 0.810414i
\(323\) −7.75334 −0.431407
\(324\) −5.26722 36.6343i −0.292624 2.03524i
\(325\) −1.00953 + 2.21057i −0.0559987 + 0.122620i
\(326\) 6.82664 2.00448i 0.378093 0.111018i
\(327\) −13.1753 + 15.2051i −0.728594 + 0.840842i
\(328\) 7.99361 + 2.34714i 0.441373 + 0.129599i
\(329\) −19.4709 + 12.5132i −1.07346 + 0.689874i
\(330\) −4.68615 10.2612i −0.257964 0.564862i
\(331\) −8.39176 9.68461i −0.461253 0.532314i 0.476705 0.879063i \(-0.341831\pi\)
−0.937958 + 0.346749i \(0.887286\pi\)
\(332\) −1.18362 0.760665i −0.0649595 0.0417469i
\(333\) 4.54887 31.6381i 0.249277 1.73376i
\(334\) 0.567993 3.95048i 0.0310792 0.216161i
\(335\) −3.09023 1.98597i −0.168837 0.108505i
\(336\) −7.83838 9.04598i −0.427619 0.493498i
\(337\) 4.78442 + 10.4764i 0.260624 + 0.570687i 0.994030 0.109103i \(-0.0347980\pi\)
−0.733406 + 0.679791i \(0.762071\pi\)
\(338\) 5.96806 3.83544i 0.324620 0.208620i
\(339\) 23.5849 + 6.92515i 1.28096 + 0.376123i
\(340\) 2.85099 3.29022i 0.154617 0.178437i
\(341\) −7.41272 + 2.17657i −0.401422 + 0.117868i
\(342\) −6.24924 + 13.6839i −0.337920 + 0.739942i
\(343\) 0.747204 + 5.19692i 0.0403452 + 0.280607i
\(344\) 4.49249 0.242219
\(345\) 4.10160 + 15.6990i 0.220823 + 0.845205i
\(346\) 25.4031 1.36568
\(347\) 0.612508 + 4.26009i 0.0328812 + 0.228694i 0.999635 0.0270152i \(-0.00860026\pi\)
−0.966754 + 0.255709i \(0.917691\pi\)
\(348\) −6.24266 + 13.6695i −0.334642 + 0.732763i
\(349\) 9.23442 2.71147i 0.494307 0.145142i −0.0250720 0.999686i \(-0.507982\pi\)
0.519379 + 0.854544i \(0.326163\pi\)
\(350\) 2.31676 2.67368i 0.123836 0.142914i
\(351\) 42.9719 + 12.6177i 2.29367 + 0.673482i
\(352\) −2.80488 + 1.80259i −0.149501 + 0.0960782i
\(353\) −12.0667 26.4224i −0.642245 1.40632i −0.898181 0.439627i \(-0.855111\pi\)
0.255935 0.966694i \(-0.417617\pi\)
\(354\) 30.8427 + 35.5943i 1.63927 + 1.89182i
\(355\) 7.59260 + 4.87947i 0.402974 + 0.258975i
\(356\) −2.33499 + 16.2402i −0.123754 + 0.860730i
\(357\) 7.41608 51.5800i 0.392501 2.72990i
\(358\) −16.5557 10.6397i −0.874994 0.562325i
\(359\) 16.2996 + 18.8108i 0.860262 + 0.992796i 0.999997 + 0.00260652i \(0.000829684\pi\)
−0.139734 + 0.990189i \(0.544625\pi\)
\(360\) −3.50902 7.68368i −0.184941 0.404965i
\(361\) −13.3157 + 8.55746i −0.700825 + 0.450393i
\(362\) 8.16480 + 2.39740i 0.429132 + 0.126005i
\(363\) −0.258521 + 0.298349i −0.0135688 + 0.0156592i
\(364\) 8.24918 2.42218i 0.432375 0.126957i
\(365\) 1.01751 2.22803i 0.0532587 0.116620i
\(366\) −5.12191 35.6236i −0.267726 1.86208i
\(367\) 32.1217 1.67674 0.838369 0.545104i \(-0.183510\pi\)
0.838369 + 0.545104i \(0.183510\pi\)
\(368\) 4.42032 1.86030i 0.230425 0.0969750i
\(369\) 70.3728 3.66346
\(370\) −0.538518 3.74548i −0.0279962 0.194718i
\(371\) −11.8065 + 25.8526i −0.612962 + 1.34220i
\(372\) −7.52205 + 2.20867i −0.390000 + 0.114514i
\(373\) −13.5420 + 15.6283i −0.701180 + 0.809205i −0.988912 0.148506i \(-0.952554\pi\)
0.287731 + 0.957711i \(0.407099\pi\)
\(374\) −13.9276 4.08951i −0.720179 0.211464i
\(375\) 2.84625 1.82917i 0.146980 0.0944581i
\(376\) 2.71775 + 5.95105i 0.140157 + 0.306902i
\(377\) −7.06851 8.15749i −0.364047 0.420132i
\(378\) −54.8483 35.2489i −2.82109 1.81301i
\(379\) 3.70937 25.7992i 0.190537 1.32522i −0.640052 0.768331i \(-0.721087\pi\)
0.830590 0.556885i \(-0.188004\pi\)
\(380\) −0.253450 + 1.76278i −0.0130017 + 0.0904288i
\(381\) 18.1436 + 11.6602i 0.929523 + 0.597368i
\(382\) −12.6297 14.5754i −0.646189 0.745742i
\(383\) 4.54089 + 9.94317i 0.232029 + 0.508072i 0.989454 0.144850i \(-0.0462700\pi\)
−0.757425 + 0.652922i \(0.773543\pi\)
\(384\) −2.84625 + 1.82917i −0.145247 + 0.0933446i
\(385\) −11.3178 3.32320i −0.576807 0.169366i
\(386\) −9.11317 + 10.5172i −0.463848 + 0.535309i
\(387\) 36.4110 10.6912i 1.85087 0.543465i
\(388\) −4.76766 + 10.4397i −0.242041 + 0.529996i
\(389\) −4.61944 32.1289i −0.234215 1.62900i −0.679545 0.733634i \(-0.737823\pi\)
0.445330 0.895367i \(-0.353086\pi\)
\(390\) 8.22212 0.416343
\(391\) 18.7231 + 9.24013i 0.946869 + 0.467293i
\(392\) −5.51592 −0.278596
\(393\) 4.82303 + 33.5449i 0.243290 + 1.69212i
\(394\) −2.82966 + 6.19609i −0.142556 + 0.312155i
\(395\) 2.20678 0.647969i 0.111035 0.0326029i
\(396\) −18.4434 + 21.2848i −0.926814 + 1.06960i
\(397\) −13.2937 3.90337i −0.667189 0.195904i −0.0694383 0.997586i \(-0.522121\pi\)
−0.597751 + 0.801682i \(0.703939\pi\)
\(398\) 18.5589 11.9271i 0.930273 0.597850i
\(399\) 8.85526 + 19.3903i 0.443318 + 0.970730i
\(400\) −0.654861 0.755750i −0.0327430 0.0377875i
\(401\) −13.9669 8.97599i −0.697474 0.448239i 0.143262 0.989685i \(-0.454241\pi\)
−0.840736 + 0.541445i \(0.817877\pi\)
\(402\) −1.76873 + 12.3018i −0.0882160 + 0.613556i
\(403\) 0.801376 5.57369i 0.0399194 0.277645i
\(404\) 6.40590 + 4.11682i 0.318705 + 0.204819i
\(405\) −24.2371 27.9711i −1.20435 1.38989i
\(406\) 6.52762 + 14.2935i 0.323960 + 0.709374i
\(407\) −10.6136 + 6.82098i −0.526099 + 0.338103i
\(408\) −14.1330 4.14983i −0.699689 0.205447i
\(409\) 19.9343 23.0055i 0.985690 1.13755i −0.00480359 0.999988i \(-0.501529\pi\)
0.990494 0.137558i \(-0.0439255\pi\)
\(410\) 7.99361 2.34714i 0.394776 0.115917i
\(411\) 10.7087 23.4488i 0.528222 1.15665i
\(412\) 1.45754 + 10.1374i 0.0718078 + 0.499434i
\(413\) 49.2480 2.42333
\(414\) 31.3989 25.5970i 1.54317 1.25802i
\(415\) −1.40697 −0.0690654
\(416\) −0.345850 2.40544i −0.0169567 0.117936i
\(417\) −21.2822 + 46.6014i −1.04219 + 2.28208i
\(418\) 5.69733 1.67289i 0.278665 0.0818235i
\(419\) −12.8289 + 14.8054i −0.626735 + 0.723291i −0.976971 0.213371i \(-0.931556\pi\)
0.350236 + 0.936661i \(0.386101\pi\)
\(420\) −11.4847 3.37221i −0.560396 0.164547i
\(421\) 3.33622 2.14406i 0.162597 0.104495i −0.456812 0.889563i \(-0.651009\pi\)
0.619409 + 0.785069i \(0.287372\pi\)
\(422\) −1.25128 2.73992i −0.0609114 0.133377i
\(423\) 36.1893 + 41.7647i 1.75958 + 2.03067i
\(424\) 6.75825 + 4.34326i 0.328210 + 0.210927i
\(425\) 0.619580 4.30927i 0.0300540 0.209030i
\(426\) 4.34571 30.2250i 0.210550 1.46441i
\(427\) −31.6587 20.3458i −1.53207 0.984604i
\(428\) 1.04421 + 1.20509i 0.0504739 + 0.0582500i
\(429\) −11.3882 24.9366i −0.549826 1.20395i
\(430\) 3.77932 2.42882i 0.182255 0.117128i
\(431\) 4.81999 + 1.41528i 0.232171 + 0.0681715i 0.395748 0.918359i \(-0.370485\pi\)
−0.163578 + 0.986530i \(0.552303\pi\)
\(432\) −12.0685 + 13.9278i −0.580647 + 0.670102i
\(433\) −3.65110 + 1.07206i −0.175461 + 0.0515199i −0.368283 0.929714i \(-0.620054\pi\)
0.192822 + 0.981234i \(0.438236\pi\)
\(434\) −3.40535 + 7.45668i −0.163462 + 0.357932i
\(435\) 2.13864 + 14.8746i 0.102540 + 0.713181i
\(436\) 5.94654 0.284788
\(437\) −8.48670 + 0.960976i −0.405974 + 0.0459697i
\(438\) −8.28707 −0.395971
\(439\) 3.35462 + 23.3319i 0.160107 + 1.11357i 0.898428 + 0.439120i \(0.144710\pi\)
−0.738321 + 0.674449i \(0.764381\pi\)
\(440\) −1.38506 + 3.03287i −0.0660303 + 0.144586i
\(441\) −44.7057 + 13.1268i −2.12884 + 0.625085i
\(442\) 6.92841 7.99581i 0.329551 0.380322i
\(443\) −2.67495 0.785437i −0.127091 0.0373172i 0.217569 0.976045i \(-0.430187\pi\)
−0.344659 + 0.938728i \(0.612006\pi\)
\(444\) −10.7702 + 6.92158i −0.511131 + 0.328484i
\(445\) 6.81581 + 14.9245i 0.323100 + 0.707491i
\(446\) −1.32298 1.52680i −0.0626447 0.0722959i
\(447\) 12.7694 + 8.20642i 0.603974 + 0.388150i
\(448\) −0.503479 + 3.50177i −0.0237872 + 0.165443i
\(449\) −2.77765 + 19.3190i −0.131086 + 0.911720i 0.813057 + 0.582184i \(0.197802\pi\)
−0.944143 + 0.329536i \(0.893108\pi\)
\(450\) −7.10608 4.56680i −0.334984 0.215281i
\(451\) −18.1902 20.9926i −0.856543 0.988504i
\(452\) −3.01806 6.60864i −0.141958 0.310844i
\(453\) −26.7009 + 17.1596i −1.25452 + 0.806230i
\(454\) −11.8896 3.49110i −0.558007 0.163846i
\(455\) 5.63012 6.49751i 0.263944 0.304608i
\(456\) 5.78135 1.69756i 0.270737 0.0794955i
\(457\) 1.32739 2.90658i 0.0620927 0.135964i −0.876042 0.482235i \(-0.839825\pi\)
0.938134 + 0.346271i \(0.112552\pi\)
\(458\) 3.71662 + 25.8497i 0.173666 + 1.20788i
\(459\) −80.2328 −3.74495
\(460\) 2.71286 3.95479i 0.126488 0.184393i
\(461\) −13.2998 −0.619436 −0.309718 0.950829i \(-0.600235\pi\)
−0.309718 + 0.950829i \(0.600235\pi\)
\(462\) 5.67957 + 39.5023i 0.264237 + 1.83781i
\(463\) 8.20700 17.9708i 0.381412 0.835175i −0.617410 0.786642i \(-0.711818\pi\)
0.998822 0.0485337i \(-0.0154548\pi\)
\(464\) 4.26170 1.25135i 0.197844 0.0580924i
\(465\) −5.13386 + 5.92478i −0.238077 + 0.274755i
\(466\) 13.5503 + 3.97872i 0.627704 + 0.184310i
\(467\) −6.84846 + 4.40124i −0.316909 + 0.203665i −0.689418 0.724363i \(-0.742134\pi\)
0.372509 + 0.928028i \(0.378497\pi\)
\(468\) −8.52753 18.6727i −0.394185 0.863145i
\(469\) 8.51029 + 9.82140i 0.392969 + 0.453510i
\(470\) 5.50370 + 3.53701i 0.253867 + 0.163150i
\(471\) −1.36239 + 9.47566i −0.0627758 + 0.436616i
\(472\) 1.98110 13.7789i 0.0911876 0.634224i
\(473\) −12.6009 8.09810i −0.579390 0.372351i
\(474\) −5.09580 5.88087i −0.234058 0.270117i
\(475\) 0.739816 + 1.61997i 0.0339451 + 0.0743294i
\(476\) −12.9570 + 8.32697i −0.593884 + 0.381666i
\(477\) 65.1107 + 19.1182i 2.98121 + 0.875364i
\(478\) 3.26621 3.76940i 0.149393 0.172409i
\(479\) −5.28119 + 1.55070i −0.241304 + 0.0708532i −0.400148 0.916450i \(-0.631041\pi\)
0.158844 + 0.987304i \(0.449223\pi\)
\(480\) −1.40549 + 3.07760i −0.0641516 + 0.140472i
\(481\) −1.30869 9.10217i −0.0596713 0.415023i
\(482\) 1.68484 0.0767423
\(483\) 1.72454 57.3780i 0.0784694 2.61079i
\(484\) 0.116681 0.00530368
\(485\) 1.63333 + 11.3600i 0.0741655 + 0.515833i
\(486\) −29.0515 + 63.6140i −1.31780 + 2.88559i
\(487\) 28.7103 8.43010i 1.30099 0.382004i 0.443391 0.896328i \(-0.353775\pi\)
0.857596 + 0.514324i \(0.171957\pi\)
\(488\) −6.96601 + 8.03920i −0.315336 + 0.363918i
\(489\) −23.0969 6.78185i −1.04448 0.306686i
\(490\) −4.64029 + 2.98213i −0.209627 + 0.134719i
\(491\) 12.2961 + 26.9247i 0.554916 + 1.21510i 0.954448 + 0.298377i \(0.0964453\pi\)
−0.399532 + 0.916719i \(0.630827\pi\)
\(492\) −18.4585 21.3022i −0.832173 0.960379i
\(493\) 16.2673 + 10.4543i 0.732642 + 0.470840i
\(494\) −0.615927 + 4.28387i −0.0277119 + 0.192740i
\(495\) −4.00812 + 27.8771i −0.180152 + 1.25298i
\(496\) 1.94929 + 1.25273i 0.0875255 + 0.0562492i
\(497\) −20.9095 24.1309i −0.937920 1.08242i
\(498\) 1.97748 + 4.33009i 0.0886132 + 0.194036i
\(499\) −17.1162 + 10.9999i −0.766227 + 0.492424i −0.864437 0.502742i \(-0.832325\pi\)
0.0982098 + 0.995166i \(0.468688\pi\)
\(500\) −0.959493 0.281733i −0.0429098 0.0125995i
\(501\) −8.84277 + 10.2051i −0.395066 + 0.455930i
\(502\) −22.6926 + 6.66316i −1.01282 + 0.297391i
\(503\) 2.90113 6.35260i 0.129355 0.283248i −0.833862 0.551973i \(-0.813875\pi\)
0.963217 + 0.268725i \(0.0866023\pi\)
\(504\) 4.25290 + 29.5796i 0.189439 + 1.31758i
\(505\) 7.61470 0.338850
\(506\) −15.7518 2.75009i −0.700255 0.122257i
\(507\) −24.0023 −1.06598
\(508\) −0.907193 6.30967i −0.0402502 0.279946i
\(509\) 15.5440 34.0367i 0.688978 1.50865i −0.163865 0.986483i \(-0.552396\pi\)
0.852843 0.522168i \(-0.174877\pi\)
\(510\) −14.1330 + 4.14983i −0.625821 + 0.183758i
\(511\) −5.67460 + 6.54883i −0.251029 + 0.289703i
\(512\) 0.959493 + 0.281733i 0.0424040 + 0.0124509i
\(513\) 27.6105 17.7442i 1.21903 0.783424i
\(514\) −6.78371 14.8542i −0.299216 0.655193i
\(515\) 6.70686 + 7.74013i 0.295539 + 0.341071i
\(516\) −12.7867 8.21754i −0.562905 0.361757i
\(517\) 3.10431 21.5910i 0.136527 0.949569i
\(518\) −1.90516 + 13.2507i −0.0837080 + 0.582202i
\(519\) −72.3036 46.4667i −3.17377 2.03966i
\(520\) −1.59143 1.83660i −0.0697887 0.0805404i
\(521\) 2.54875 + 5.58099i 0.111663 + 0.244507i 0.957211 0.289392i \(-0.0934532\pi\)
−0.845548 + 0.533900i \(0.820726\pi\)
\(522\) 31.5625 20.2840i 1.38145 0.887806i
\(523\) 32.7567 + 9.61823i 1.43235 + 0.420576i 0.903664 0.428242i \(-0.140867\pi\)
0.528686 + 0.848818i \(0.322685\pi\)
\(524\) 6.55952 7.57009i 0.286554 0.330701i
\(525\) −11.4847 + 3.37221i −0.501233 + 0.147175i
\(526\) −0.630396 + 1.38037i −0.0274866 + 0.0601872i
\(527\) 1.43564 + 9.98510i 0.0625375 + 0.434958i
\(528\) 11.2806 0.490927
\(529\) 21.6393 + 7.79352i 0.940841 + 0.338849i
\(530\) 8.03354 0.348955
\(531\) −16.7344 116.390i −0.726212 5.05091i
\(532\) 2.61731 5.73111i 0.113475 0.248475i
\(533\) 19.4259 5.70395i 0.841428 0.247066i
\(534\) 36.3522 41.9526i 1.57311 1.81547i
\(535\) 1.52997 + 0.449238i 0.0661462 + 0.0194223i
\(536\) 3.09023 1.98597i 0.133478 0.0857809i
\(537\) 27.6597 + 60.5664i 1.19361 + 2.61363i
\(538\) −13.5274 15.6115i −0.583208 0.673058i
\(539\) 15.4715 + 9.94293i 0.666404 + 0.428272i
\(540\) −2.62274 + 18.2416i −0.112865 + 0.784992i
\(541\) 0.736079 5.11954i 0.0316465 0.220106i −0.967861 0.251486i \(-0.919081\pi\)
0.999508 + 0.0313794i \(0.00999000\pi\)
\(542\) 9.72245 + 6.24824i 0.417615 + 0.268385i
\(543\) −18.8538 21.7584i −0.809094 0.933744i
\(544\) 1.80854 + 3.96016i 0.0775407 + 0.169790i
\(545\) 5.00255 3.21494i 0.214286 0.137713i
\(546\) −27.9098 8.19506i −1.19443 0.350716i
\(547\) 0.343860 0.396836i 0.0147024 0.0169675i −0.748351 0.663303i \(-0.769154\pi\)
0.763053 + 0.646336i \(0.223699\pi\)
\(548\) −7.31057 + 2.14658i −0.312292 + 0.0916972i
\(549\) −37.3268 + 81.7343i −1.59307 + 3.48833i
\(550\) 0.474502 + 3.30023i 0.0202328 + 0.140722i
\(551\) −7.91011 −0.336982
\(552\) −15.9842 2.79065i −0.680331 0.118778i
\(553\) −8.13670 −0.346008
\(554\) 0.181567 + 1.26283i 0.00771405 + 0.0536524i
\(555\) −5.31837 + 11.6456i −0.225752 + 0.494329i
\(556\) 14.5288 4.26603i 0.616157 0.180920i
\(557\) 5.14454 5.93712i 0.217981 0.251564i −0.636218 0.771509i \(-0.719502\pi\)
0.854200 + 0.519945i \(0.174048\pi\)
\(558\) 18.7799 + 5.51428i 0.795017 + 0.233438i
\(559\) 9.18441 5.90246i 0.388459 0.249648i
\(560\) 1.46965 + 3.21808i 0.0621040 + 0.135989i
\(561\) 32.1610 + 37.1158i 1.35784 + 1.56703i
\(562\) −4.59927 2.95577i −0.194009 0.124682i
\(563\) 1.28394 8.92997i 0.0541114 0.376353i −0.944714 0.327896i \(-0.893660\pi\)
0.998825 0.0484572i \(-0.0154305\pi\)
\(564\) 3.15010 21.9094i 0.132643 0.922552i
\(565\) −6.11185 3.92785i −0.257128 0.165246i
\(566\) −0.217288 0.250763i −0.00913328 0.0105404i
\(567\) 54.3933 + 119.105i 2.28430 + 5.00192i
\(568\) −7.59260 + 4.87947i −0.318579 + 0.204738i
\(569\) −34.9157 10.2522i −1.46374 0.429793i −0.549682 0.835374i \(-0.685251\pi\)
−0.914059 + 0.405581i \(0.867069\pi\)
\(570\) 3.94582 4.55371i 0.165272 0.190734i
\(571\) 23.0743 6.77521i 0.965628 0.283534i 0.239348 0.970934i \(-0.423066\pi\)
0.726279 + 0.687400i \(0.241248\pi\)
\(572\) −3.36595 + 7.37040i −0.140737 + 0.308172i
\(573\) 9.28622 + 64.5870i 0.387937 + 2.69816i
\(574\) −29.4736 −1.23020
\(575\) 0.144077 4.79367i 0.00600845 0.199910i
\(576\) 8.44702 0.351959
\(577\) 1.51041 + 10.5051i 0.0628791 + 0.437333i 0.996805 + 0.0798681i \(0.0254499\pi\)
−0.933926 + 0.357465i \(0.883641\pi\)
\(578\) −0.811594 + 1.77714i −0.0337579 + 0.0739194i
\(579\) 45.1761 13.2649i 1.87745 0.551270i
\(580\) 2.90864 3.35675i 0.120775 0.139381i
\(581\) 4.77593 + 1.40234i 0.198139 + 0.0581788i
\(582\) 32.6660 20.9932i 1.35405 0.870194i
\(583\) −11.1270 24.3647i −0.460832 1.00908i
\(584\) 1.60400 + 1.85111i 0.0663739 + 0.0765995i
\(585\) −17.2690 11.0981i −0.713987 0.458851i
\(586\) −2.28603 + 15.8997i −0.0944350 + 0.656810i
\(587\) −4.57225 + 31.8007i −0.188717 + 1.31256i 0.646617 + 0.762814i \(0.276183\pi\)
−0.835335 + 0.549742i \(0.814726\pi\)
\(588\) 15.6997 + 10.0896i 0.647444 + 0.416087i
\(589\) −2.70233 3.11866i −0.111348 0.128502i
\(590\) −5.78281 12.6626i −0.238075 0.521311i
\(591\) 19.3877 12.4597i 0.797501 0.512523i
\(592\) 3.63071 + 1.06607i 0.149221 + 0.0438154i
\(593\) −15.2607 + 17.6118i −0.626682 + 0.723229i −0.976961 0.213416i \(-0.931541\pi\)
0.350280 + 0.936645i \(0.386086\pi\)
\(594\) 58.9569 17.3113i 2.41903 0.710291i
\(595\) −6.39824 + 14.0102i −0.262302 + 0.574362i
\(596\) −0.638482 4.44074i −0.0261533 0.181900i
\(597\) −74.6399 −3.05481
\(598\) 6.59272 9.61085i 0.269596 0.393017i
\(599\) 9.23034 0.377141 0.188571 0.982060i \(-0.439615\pi\)
0.188571 + 0.982060i \(0.439615\pi\)
\(600\) 0.481500 + 3.34891i 0.0196572 + 0.136719i
\(601\) 16.2641 35.6133i 0.663425 1.45270i −0.215871 0.976422i \(-0.569259\pi\)
0.879296 0.476276i \(-0.158014\pi\)
\(602\) −15.2497 + 4.47770i −0.621530 + 0.182498i
\(603\) 20.3197 23.4501i 0.827481 0.954964i
\(604\) 9.00108 + 2.64296i 0.366249 + 0.107540i
\(605\) 0.0981583 0.0630825i 0.00399070 0.00256467i
\(606\) −10.7024 23.4350i −0.434756 0.951982i
\(607\) 0.419175 + 0.483753i 0.0170138 + 0.0196349i 0.764193 0.644988i \(-0.223138\pi\)
−0.747179 + 0.664623i \(0.768592\pi\)
\(608\) −1.49820 0.962832i −0.0607599 0.0390480i
\(609\) 7.56604 52.6230i 0.306592 2.13239i
\(610\) −1.51386 + 10.5291i −0.0612943 + 0.426312i
\(611\) 13.3749 + 8.59556i 0.541092 + 0.347739i
\(612\) 24.0824 + 27.7925i 0.973472 + 1.12345i
\(613\) −1.91972 4.20361i −0.0775369 0.169782i 0.866894 0.498493i \(-0.166113\pi\)
−0.944431 + 0.328711i \(0.893386\pi\)
\(614\) −27.3672 + 17.5878i −1.10445 + 0.709787i
\(615\) −27.0451 7.94117i −1.09057 0.320219i
\(616\) 7.72446 8.91450i 0.311227 0.359175i
\(617\) 23.3444 6.85452i 0.939809 0.275953i 0.224271 0.974527i \(-0.428000\pi\)
0.715538 + 0.698574i \(0.246182\pi\)
\(618\) 14.3946 31.5197i 0.579034 1.26791i
\(619\) −5.29251 36.8102i −0.212724 1.47953i −0.764007 0.645208i \(-0.776771\pi\)
0.551283 0.834318i \(-0.314138\pi\)
\(620\) 2.31712 0.0930578
\(621\) −87.8218 + 9.94434i −3.52417 + 0.399053i
\(622\) 1.98622 0.0796404
\(623\) −8.26069 57.4544i −0.330958 2.30186i
\(624\) −3.41559 + 7.47910i −0.136733 + 0.299404i
\(625\) −0.959493 + 0.281733i −0.0383797 + 0.0112693i
\(626\) −2.53433 + 2.92477i −0.101292 + 0.116897i
\(627\) −19.2760 5.65995i −0.769810 0.226037i
\(628\) 2.38031 1.52973i 0.0949847 0.0610430i
\(629\) 6.84352 + 14.9852i 0.272869 + 0.597500i
\(630\) 19.5697 + 22.5846i 0.779675 + 0.899793i
\(631\) 30.7487 + 19.7610i 1.22409 + 0.786672i 0.982960 0.183822i \(-0.0588470\pi\)
0.241126 + 0.970494i \(0.422483\pi\)
\(632\) −0.327316 + 2.27653i −0.0130199 + 0.0905556i
\(633\) −1.45034 + 10.0873i −0.0576457 + 0.400935i
\(634\) 1.75744 + 1.12944i 0.0697967 + 0.0448556i
\(635\) −4.17444 4.81756i −0.165658 0.191179i
\(636\) −11.2911 24.7240i −0.447721 0.980371i
\(637\) −11.2767 + 7.24710i −0.446799 + 0.287141i
\(638\) −14.2092 4.17221i −0.562549 0.165179i
\(639\) −49.9248 + 57.6163i −1.97499 + 2.27926i
\(640\) 0.959493 0.281733i 0.0379273 0.0111365i
\(641\) 4.62164 10.1200i 0.182544 0.399715i −0.796133 0.605122i \(-0.793124\pi\)
0.978677 + 0.205407i \(0.0658517\pi\)
\(642\) −0.767779 5.34002i −0.0303018 0.210754i
\(643\) −9.80294 −0.386590 −0.193295 0.981141i \(-0.561917\pi\)
−0.193295 + 0.981141i \(0.561917\pi\)
\(644\) −13.1505 + 10.7205i −0.518203 + 0.422448i
\(645\) −15.1996 −0.598485
\(646\) −1.10341 7.67442i −0.0434133 0.301946i
\(647\) 10.5963 23.2027i 0.416584 0.912191i −0.578733 0.815517i \(-0.696452\pi\)
0.995316 0.0966734i \(-0.0308202\pi\)
\(648\) 35.5119 10.4272i 1.39504 0.409620i
\(649\) −30.3944 + 35.0770i −1.19308 + 1.37689i
\(650\) −2.33174 0.684660i −0.0914582 0.0268546i
\(651\) 23.3321 14.9946i 0.914455 0.587685i
\(652\) 2.95561 + 6.47189i 0.115751 + 0.253459i
\(653\) −27.8364 32.1249i −1.08932 1.25715i −0.964249 0.264999i \(-0.914629\pi\)
−0.125074 0.992147i \(-0.539917\pi\)
\(654\) −16.9253 10.8773i −0.661833 0.425334i
\(655\) 1.42552 9.91471i 0.0556997 0.387400i
\(656\) −1.18564 + 8.24628i −0.0462913 + 0.321963i
\(657\) 17.4054 + 11.1858i 0.679051 + 0.436399i
\(658\) −15.1568 17.4919i −0.590874 0.681905i
\(659\) −13.8736 30.3789i −0.540437 1.18339i −0.961106 0.276179i \(-0.910932\pi\)
0.420669 0.907214i \(-0.361795\pi\)
\(660\) 9.48988 6.09877i 0.369393 0.237394i
\(661\) 28.1443 + 8.26392i 1.09469 + 0.321429i 0.778739 0.627348i \(-0.215859\pi\)
0.315947 + 0.948777i \(0.397678\pi\)
\(662\) 8.39176 9.68461i 0.326155 0.376403i
\(663\) −34.3457 + 10.0848i −1.33388 + 0.391662i
\(664\) 0.584476 1.27982i 0.0226821 0.0496668i
\(665\) −0.896650 6.23634i −0.0347706 0.241835i
\(666\) 31.9635 1.23856
\(667\) 19.1017 + 9.42697i 0.739621 + 0.365014i
\(668\) 3.99110 0.154420
\(669\) 0.972746 + 6.76560i 0.0376085 + 0.261573i
\(670\) 1.52597 3.34141i 0.0589534 0.129090i
\(671\) 34.0302 9.99217i 1.31372 0.385743i
\(672\) 7.83838 9.04598i 0.302372 0.348956i
\(673\) 37.1884 + 10.9195i 1.43351 + 0.420916i 0.904053 0.427421i \(-0.140578\pi\)
0.529456 + 0.848337i \(0.322396\pi\)
\(674\) −9.68889 + 6.22667i −0.373202 + 0.239843i
\(675\) 7.65574 + 16.7637i 0.294670 + 0.645236i
\(676\) 4.64574 + 5.36147i 0.178682 + 0.206211i
\(677\) −5.19887 3.34111i −0.199809 0.128409i 0.436911 0.899505i \(-0.356073\pi\)
−0.636719 + 0.771096i \(0.719709\pi\)
\(678\) −3.49818 + 24.3304i −0.134347 + 0.934403i
\(679\) 5.77836 40.1893i 0.221753 1.54233i
\(680\) 3.66247 + 2.35373i 0.140449 + 0.0902612i
\(681\) 27.4550 + 31.6847i 1.05208 + 1.21416i
\(682\) −3.20936 7.02752i −0.122893 0.269097i
\(683\) −11.9685 + 7.69168i −0.457961 + 0.294314i −0.749209 0.662334i \(-0.769566\pi\)
0.291248 + 0.956648i \(0.405930\pi\)
\(684\) −14.4340 4.23821i −0.551898 0.162052i
\(685\) −4.98951 + 5.75821i −0.190640 + 0.220010i
\(686\) −5.03769 + 1.47920i −0.192340 + 0.0564760i
\(687\) 36.7051 80.3730i 1.40039 3.06642i
\(688\) 0.639348 + 4.44676i 0.0243749 + 0.169531i
\(689\) 19.5229 0.743764
\(690\) −14.9555 + 6.29405i −0.569345 + 0.239610i
\(691\) −18.7466 −0.713153 −0.356576 0.934266i \(-0.616056\pi\)
−0.356576 + 0.934266i \(0.616056\pi\)
\(692\) 3.61524 + 25.1445i 0.137431 + 0.955851i
\(693\) 41.3909 90.6334i 1.57231 3.44288i
\(694\) −4.12956 + 1.21255i −0.156756 + 0.0460277i
\(695\) 9.91599 11.4437i 0.376135 0.434083i
\(696\) −14.4188 4.23374i −0.546543 0.160480i
\(697\) −30.5123 + 19.6091i −1.15574 + 0.742746i
\(698\) 3.99806 + 8.75454i 0.151329 + 0.331364i
\(699\) −31.2897 36.1102i −1.18348 1.36581i
\(700\) 2.97617 + 1.91267i 0.112489 + 0.0722922i
\(701\) −6.53534 + 45.4543i −0.246836 + 1.71678i 0.369441 + 0.929254i \(0.379549\pi\)
−0.616277 + 0.787530i \(0.711360\pi\)
\(702\) −6.37372 + 44.3302i −0.240560 + 1.67313i
\(703\) −5.66916 3.64335i −0.213816 0.137411i
\(704\) −2.18342 2.51980i −0.0822906 0.0949684i
\(705\) −9.19509 20.1344i −0.346307 0.758307i
\(706\) 24.4362 15.7042i 0.919667 0.591034i
\(707\) −25.8480 7.58964i −0.972112 0.285438i
\(708\) −30.8427 + 35.5943i −1.15914 + 1.33772i
\(709\) 2.24684 0.659733i 0.0843820 0.0247768i −0.239269 0.970953i \(-0.576908\pi\)
0.323651 + 0.946177i \(0.395090\pi\)
\(710\) −3.74926 + 8.20974i −0.140707 + 0.308106i
\(711\) 2.76484 + 19.2299i 0.103690 + 0.721178i
\(712\) −16.4072 −0.614887
\(713\) 2.80902 + 10.7516i 0.105199 + 0.402651i
\(714\) 52.1104 1.95018
\(715\) 1.15312 + 8.02014i 0.0431243 + 0.299936i
\(716\) 8.17527 17.9013i 0.305524 0.669005i
\(717\) −16.1913 + 4.75421i −0.604677 + 0.177549i
\(718\) −16.2996 + 18.8108i −0.608297 + 0.702012i
\(719\) −9.05495 2.65877i −0.337693 0.0991555i 0.108490 0.994098i \(-0.465399\pi\)
−0.446182 + 0.894942i \(0.647217\pi\)
\(720\) 7.10608 4.56680i 0.264828 0.170195i
\(721\) −15.0516 32.9585i −0.560552 1.22744i
\(722\) −10.3654 11.9623i −0.385759 0.445190i
\(723\) −4.79547 3.08186i −0.178346 0.114616i
\(724\) −1.21103 + 8.42288i −0.0450075 + 0.313034i
\(725\) 0.632108 4.39641i 0.0234759 0.163278i
\(726\) −0.332103 0.213430i −0.0123255 0.00792112i
\(727\) 12.8019 + 14.7741i 0.474795 + 0.547943i 0.941739 0.336344i \(-0.109191\pi\)
−0.466944 + 0.884287i \(0.654645\pi\)
\(728\) 3.57150 + 7.82050i 0.132369 + 0.289847i
\(729\) 105.642 67.8919i 3.91266 2.51452i
\(730\) 2.35015 + 0.690068i 0.0869831 + 0.0255405i
\(731\) −12.8080 + 14.7813i −0.473723 + 0.546705i
\(732\) 34.5321 10.1395i 1.27634 0.374768i
\(733\) −1.39238 + 3.04890i −0.0514289 + 0.112614i −0.933602 0.358312i \(-0.883353\pi\)
0.882173 + 0.470925i \(0.156080\pi\)
\(734\) 4.57139 + 31.7947i 0.168733 + 1.17356i
\(735\) 18.6622 0.688367
\(736\) 2.47045 + 4.11058i 0.0910619 + 0.151518i
\(737\) −12.2476 −0.451147
\(738\) 10.0151 + 69.6565i 0.368660 + 2.56409i
\(739\) −12.2408 + 26.8035i −0.450284 + 0.985984i 0.539312 + 0.842106i \(0.318684\pi\)
−0.989595 + 0.143878i \(0.954043\pi\)
\(740\) 3.63071 1.06607i 0.133468 0.0391897i
\(741\) 9.58902 11.0663i 0.352262 0.406532i
\(742\) −27.2697 8.00711i −1.00110 0.293950i
\(743\) −21.6886 + 13.9384i −0.795677 + 0.511350i −0.874202 0.485562i \(-0.838615\pi\)
0.0785257 + 0.996912i \(0.474979\pi\)
\(744\) −3.25669 7.13116i −0.119396 0.261441i
\(745\) −2.93797 3.39060i −0.107639 0.124222i
\(746\) −17.3965 11.1801i −0.636931 0.409331i
\(747\) 1.69137 11.7637i 0.0618839 0.430412i
\(748\) 2.06578 14.3678i 0.0755325 0.525340i
\(749\) −4.74568 3.04986i −0.173403 0.111439i
\(750\) 2.21562 + 2.55696i 0.0809030 + 0.0933670i
\(751\) 1.58875 + 3.47887i 0.0579741 + 0.126946i 0.936402 0.350930i \(-0.114134\pi\)
−0.878428 + 0.477875i \(0.841407\pi\)
\(752\) −5.50370 + 3.53701i −0.200699 + 0.128982i
\(753\) 76.7770 + 22.5438i 2.79791 + 0.821540i
\(754\) 7.06851 8.15749i 0.257420 0.297078i
\(755\) 9.00108 2.64296i 0.327583 0.0961870i
\(756\) 27.0844 59.3065i 0.985049 2.15696i
\(757\) −4.27139 29.7081i −0.155246 1.07976i −0.907247 0.420599i \(-0.861820\pi\)
0.752001 0.659162i \(-0.229089\pi\)
\(758\) 26.0645 0.946705
\(759\) 39.8033 + 36.6403i 1.44477 + 1.32996i
\(760\) −1.78091 −0.0646003
\(761\) −6.80297 47.3157i −0.246607 1.71519i −0.617546 0.786535i \(-0.711873\pi\)
0.370939 0.928657i \(-0.379036\pi\)
\(762\) −8.95938 + 19.6183i −0.324564 + 0.710696i
\(763\) −20.1854 + 5.92697i −0.730761 + 0.214571i
\(764\) 12.6297 14.5754i 0.456925 0.527319i
\(765\) 35.2852 + 10.3607i 1.27574 + 0.374590i
\(766\) −9.19573 + 5.90973i −0.332255 + 0.213527i
\(767\) −14.0532 30.7723i −0.507433 1.11112i
\(768\) −2.21562 2.55696i −0.0799493 0.0922664i
\(769\) 29.7917