Defining parameters
Level: | \( N \) | \(=\) | \( 230 = 2 \cdot 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 230.g (of order \(11\) and degree \(10\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 23 \) |
Character field: | \(\Q(\zeta_{11})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(230, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 400 | 80 | 320 |
Cusp forms | 320 | 80 | 240 |
Eisenstein series | 80 | 0 | 80 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(230, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
230.2.g.a | $10$ | $1.837$ | \(\Q(\zeta_{22})\) | None | \(-1\) | \(3\) | \(-1\) | \(-15\) | \(q+\zeta_{22}^{4}q^{2}+(1-\zeta_{22}+\zeta_{22}^{2}+\zeta_{22}^{4}+\cdots)q^{3}+\cdots\) |
230.2.g.b | $20$ | $1.837$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(2\) | \(-3\) | \(-2\) | \(19\) | \(q+\beta _{6}q^{2}+(\beta _{1}-\beta _{2}+\beta _{5}-\beta _{13}+\beta _{18}+\cdots)q^{3}+\cdots\) |
230.2.g.c | $20$ | $1.837$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(2\) | \(1\) | \(2\) | \(-12\) | \(q+\beta _{3}q^{2}+(\beta _{5}+\beta _{18})q^{3}+\beta _{12}q^{4}+\cdots\) |
230.2.g.d | $30$ | $1.837$ | None | \(-3\) | \(-1\) | \(3\) | \(8\) |
Decomposition of \(S_{2}^{\mathrm{old}}(230, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(230, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(46, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 2}\)