Properties

Label 230.2.g
Level $230$
Weight $2$
Character orbit 230.g
Rep. character $\chi_{230}(31,\cdot)$
Character field $\Q(\zeta_{11})$
Dimension $80$
Newform subspaces $4$
Sturm bound $72$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 230 = 2 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 230.g (of order \(11\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 23 \)
Character field: \(\Q(\zeta_{11})\)
Newform subspaces: \( 4 \)
Sturm bound: \(72\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(230, [\chi])\).

Total New Old
Modular forms 400 80 320
Cusp forms 320 80 240
Eisenstein series 80 0 80

Trace form

\( 80 q - 8 q^{4} + 2 q^{5} + 4 q^{6} - 4 q^{9} + 2 q^{10} + 12 q^{11} + 8 q^{13} + 8 q^{14} - 8 q^{16} - 20 q^{17} + 16 q^{18} - 32 q^{19} + 2 q^{20} - 84 q^{21} - 40 q^{22} + 24 q^{23} + 4 q^{24} - 8 q^{25}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(230, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
230.2.g.a 230.g 23.c $10$ $1.837$ \(\Q(\zeta_{22})\) None 230.2.g.a \(-1\) \(3\) \(-1\) \(-15\) $\mathrm{SU}(2)[C_{11}]$ \(q+\zeta_{22}^{4}q^{2}+(1-\zeta_{22}+\zeta_{22}^{2}+\zeta_{22}^{4}+\cdots)q^{3}+\cdots\)
230.2.g.b 230.g 23.c $20$ $1.837$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 230.2.g.b \(2\) \(-3\) \(-2\) \(19\) $\mathrm{SU}(2)[C_{11}]$ \(q+\beta _{6}q^{2}+(\beta _{1}-\beta _{2}+\beta _{5}-\beta _{13}+\beta _{18}+\cdots)q^{3}+\cdots\)
230.2.g.c 230.g 23.c $20$ $1.837$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 230.2.g.c \(2\) \(1\) \(2\) \(-12\) $\mathrm{SU}(2)[C_{11}]$ \(q+\beta _{3}q^{2}+(\beta _{5}+\beta _{18})q^{3}+\beta _{12}q^{4}+\cdots\)
230.2.g.d 230.g 23.c $30$ $1.837$ None 230.2.g.d \(-3\) \(-1\) \(3\) \(8\) $\mathrm{SU}(2)[C_{11}]$

Decomposition of \(S_{2}^{\mathrm{old}}(230, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(230, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(46, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 2}\)