Defining parameters
Level: | \( N \) | \(=\) | \( 230 = 2 \cdot 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 230.e (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 115 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(230, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 80 | 24 | 56 |
Cusp forms | 64 | 24 | 40 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(230, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
230.2.e.a | $8$ | $1.837$ | 8.0.110166016.2 | None | \(0\) | \(-4\) | \(-4\) | \(0\) | \(q-\beta _{3}q^{2}+(-1-\beta _{2}-\beta _{6}-\beta _{7})q^{3}+\cdots\) |
230.2.e.b | $8$ | $1.837$ | 8.0.110166016.2 | None | \(0\) | \(-4\) | \(4\) | \(0\) | \(q-\beta _{3}q^{2}+(-1-\beta _{2}-\beta _{6}-\beta _{7})q^{3}+\cdots\) |
230.2.e.c | $8$ | $1.837$ | \(\Q(\zeta_{16})\) | None | \(0\) | \(16\) | \(0\) | \(0\) | \(q+\zeta_{16}^{6}q^{2}+(2+2\zeta_{16}^{4})q^{3}-\zeta_{16}^{4}q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(230, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(230, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 2}\)