Properties

Label 230.2.a.c
Level $230$
Weight $2$
Character orbit 230.a
Self dual yes
Analytic conductor $1.837$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [230,2,Mod(1,230)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(230, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("230.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 230 = 2 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 230.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.83655924649\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + \beta q^{3} + q^{4} + q^{5} + \beta q^{6} + ( - \beta + 1) q^{7} + q^{8} + (\beta - 2) q^{9} + q^{10} + ( - 3 \beta + 2) q^{11} + \beta q^{12} + ( - 5 \beta + 1) q^{13} + ( - \beta + 1) q^{14}+ \cdots + (5 \beta - 7) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + q^{3} + 2 q^{4} + 2 q^{5} + q^{6} + q^{7} + 2 q^{8} - 3 q^{9} + 2 q^{10} + q^{11} + q^{12} - 3 q^{13} + q^{14} + q^{15} + 2 q^{16} + q^{17} - 3 q^{18} - 3 q^{19} + 2 q^{20} - 2 q^{21}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.618034
1.61803
1.00000 −0.618034 1.00000 1.00000 −0.618034 1.61803 1.00000 −2.61803 1.00000
1.2 1.00000 1.61803 1.00000 1.00000 1.61803 −0.618034 1.00000 −0.381966 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 230.2.a.c 2
3.b odd 2 1 2070.2.a.u 2
4.b odd 2 1 1840.2.a.l 2
5.b even 2 1 1150.2.a.j 2
5.c odd 4 2 1150.2.b.i 4
8.b even 2 1 7360.2.a.bh 2
8.d odd 2 1 7360.2.a.bn 2
20.d odd 2 1 9200.2.a.bu 2
23.b odd 2 1 5290.2.a.o 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
230.2.a.c 2 1.a even 1 1 trivial
1150.2.a.j 2 5.b even 2 1
1150.2.b.i 4 5.c odd 4 2
1840.2.a.l 2 4.b odd 2 1
2070.2.a.u 2 3.b odd 2 1
5290.2.a.o 2 23.b odd 2 1
7360.2.a.bh 2 8.b even 2 1
7360.2.a.bn 2 8.d odd 2 1
9200.2.a.bu 2 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - T_{3} - 1 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(230))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$11$ \( T^{2} - T - 11 \) Copy content Toggle raw display
$13$ \( T^{2} + 3T - 29 \) Copy content Toggle raw display
$17$ \( T^{2} - T - 31 \) Copy content Toggle raw display
$19$ \( T^{2} + 3T - 9 \) Copy content Toggle raw display
$23$ \( (T - 1)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 14T + 44 \) Copy content Toggle raw display
$31$ \( T^{2} - 7T - 19 \) Copy content Toggle raw display
$37$ \( T^{2} - 4T - 16 \) Copy content Toggle raw display
$41$ \( T^{2} + 9T - 41 \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 6T - 36 \) Copy content Toggle raw display
$53$ \( T^{2} + 8T - 4 \) Copy content Toggle raw display
$59$ \( T^{2} + 10T - 20 \) Copy content Toggle raw display
$61$ \( T^{2} + 3T - 59 \) Copy content Toggle raw display
$67$ \( T^{2} - 20T + 80 \) Copy content Toggle raw display
$71$ \( T^{2} - 3T - 29 \) Copy content Toggle raw display
$73$ \( T^{2} - 2T - 4 \) Copy content Toggle raw display
$79$ \( T^{2} - 12T + 16 \) Copy content Toggle raw display
$83$ \( T^{2} - 4T - 76 \) Copy content Toggle raw display
$89$ \( T^{2} + 12T + 16 \) Copy content Toggle raw display
$97$ \( T^{2} - 27T + 181 \) Copy content Toggle raw display
show more
show less