Newspace parameters
Level: | \( N \) | \(=\) | \( 230 = 2 \cdot 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 230.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(1.83655924649\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{21}) \) |
Defining polynomial: |
\( x^{2} - x - 5 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{21})\). We also show the integral \(q\)-expansion of the trace form.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−1.00000 | −2.79129 | 1.00000 | −1.00000 | 2.79129 | −1.79129 | −1.00000 | 4.79129 | 1.00000 | ||||||||||||||||||||||||
1.2 | −1.00000 | 1.79129 | 1.00000 | −1.00000 | −1.79129 | 2.79129 | −1.00000 | 0.208712 | 1.00000 | |||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(1\) |
\(5\) | \(1\) |
\(23\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 230.2.a.a | ✓ | 2 |
3.b | odd | 2 | 1 | 2070.2.a.x | 2 | ||
4.b | odd | 2 | 1 | 1840.2.a.n | 2 | ||
5.b | even | 2 | 1 | 1150.2.a.o | 2 | ||
5.c | odd | 4 | 2 | 1150.2.b.g | 4 | ||
8.b | even | 2 | 1 | 7360.2.a.bq | 2 | ||
8.d | odd | 2 | 1 | 7360.2.a.bk | 2 | ||
20.d | odd | 2 | 1 | 9200.2.a.bs | 2 | ||
23.b | odd | 2 | 1 | 5290.2.a.e | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
230.2.a.a | ✓ | 2 | 1.a | even | 1 | 1 | trivial |
1150.2.a.o | 2 | 5.b | even | 2 | 1 | ||
1150.2.b.g | 4 | 5.c | odd | 4 | 2 | ||
1840.2.a.n | 2 | 4.b | odd | 2 | 1 | ||
2070.2.a.x | 2 | 3.b | odd | 2 | 1 | ||
5290.2.a.e | 2 | 23.b | odd | 2 | 1 | ||
7360.2.a.bk | 2 | 8.d | odd | 2 | 1 | ||
7360.2.a.bq | 2 | 8.b | even | 2 | 1 | ||
9200.2.a.bs | 2 | 20.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{2} + T_{3} - 5 \)
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(230))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T + 1)^{2} \)
$3$
\( T^{2} + T - 5 \)
$5$
\( (T + 1)^{2} \)
$7$
\( T^{2} - T - 5 \)
$11$
\( T^{2} - 3T - 3 \)
$13$
\( T^{2} - 7T + 7 \)
$17$
\( T^{2} + 3T - 3 \)
$19$
\( T^{2} - 7T + 7 \)
$23$
\( (T - 1)^{2} \)
$29$
\( T^{2} - 6T - 12 \)
$31$
\( T^{2} - 7T - 35 \)
$37$
\( (T + 4)^{2} \)
$41$
\( T^{2} + 9T + 15 \)
$43$
\( T^{2} - 4T - 80 \)
$47$
\( T^{2} + 18T + 60 \)
$53$
\( (T - 6)^{2} \)
$59$
\( T^{2} + 18T + 60 \)
$61$
\( T^{2} - 7T - 35 \)
$67$
\( T^{2} - 4T - 80 \)
$71$
\( T^{2} - 3T - 45 \)
$73$
\( T^{2} + 2T - 188 \)
$79$
\( (T - 8)^{2} \)
$83$
\( (T + 6)^{2} \)
$89$
\( T^{2} - 12T - 48 \)
$97$
\( T^{2} - 7T - 119 \)
show more
show less