Properties

Label 230.2.a
Level $230$
Weight $2$
Character orbit 230.a
Rep. character $\chi_{230}(1,\cdot)$
Character field $\Q$
Dimension $9$
Newform subspaces $4$
Sturm bound $72$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 230 = 2 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 230.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(72\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(230))\).

Total New Old
Modular forms 40 9 31
Cusp forms 33 9 24
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(23\)FrickeDim.
\(+\)\(+\)\(-\)\(-\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(3\)
\(-\)\(-\)\(-\)\(-\)\(2\)
Plus space\(+\)\(0\)
Minus space\(-\)\(9\)

Trace form

\( 9q + q^{2} + 4q^{3} + 9q^{4} - q^{5} + 8q^{7} + q^{8} + 17q^{9} + O(q^{10}) \) \( 9q + q^{2} + 4q^{3} + 9q^{4} - q^{5} + 8q^{7} + q^{8} + 17q^{9} - q^{10} + 4q^{12} + 6q^{13} + 4q^{15} + 9q^{16} - 6q^{17} - 3q^{18} + 8q^{19} - q^{20} - 16q^{21} + 8q^{22} - q^{23} + 9q^{25} - 14q^{26} - 8q^{27} + 8q^{28} - 10q^{29} - 4q^{30} + 4q^{31} + q^{32} - 24q^{33} - 6q^{34} + 17q^{36} + 10q^{37} - 8q^{38} - 16q^{39} - q^{40} - 26q^{41} - 32q^{42} + 24q^{43} - 13q^{45} - q^{46} - 24q^{47} + 4q^{48} + 13q^{49} + q^{50} - 32q^{51} + 6q^{52} - 22q^{53} - 24q^{54} - 12q^{55} - 48q^{57} - 26q^{58} - 28q^{59} + 4q^{60} + 10q^{61} - 16q^{63} + 9q^{64} - 6q^{65} - 8q^{66} + 24q^{67} - 6q^{68} - 4q^{69} - 4q^{70} - 12q^{71} - 3q^{72} + 2q^{73} - 6q^{74} + 4q^{75} + 8q^{76} - 8q^{77} + 16q^{78} + 24q^{79} - q^{80} + 33q^{81} + 10q^{82} + 8q^{83} - 16q^{84} + 14q^{85} + 24q^{86} + 16q^{87} + 8q^{88} + 18q^{89} - 13q^{90} + 16q^{91} - q^{92} + 40q^{93} + 8q^{94} - 12q^{95} + 10q^{97} + 25q^{98} + 8q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(230))\) into newform subspaces

Label Dim. \(A\) Field CM Traces A-L signs $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\) 2 5 23
230.2.a.a \(2\) \(1.837\) \(\Q(\sqrt{21}) \) None \(-2\) \(-1\) \(-2\) \(1\) \(+\) \(+\) \(-\) \(q-q^{2}-\beta q^{3}+q^{4}-q^{5}+\beta q^{6}+(1+\cdots)q^{7}+\cdots\)
230.2.a.b \(2\) \(1.837\) \(\Q(\sqrt{13}) \) None \(-2\) \(3\) \(2\) \(3\) \(+\) \(-\) \(+\) \(q-q^{2}+(1+\beta )q^{3}+q^{4}+q^{5}+(-1+\cdots)q^{6}+\cdots\)
230.2.a.c \(2\) \(1.837\) \(\Q(\sqrt{5}) \) None \(2\) \(1\) \(2\) \(1\) \(-\) \(-\) \(-\) \(q+q^{2}+\beta q^{3}+q^{4}+q^{5}+\beta q^{6}+(1+\cdots)q^{7}+\cdots\)
230.2.a.d \(3\) \(1.837\) 3.3.1101.1 None \(3\) \(1\) \(-3\) \(3\) \(-\) \(+\) \(+\) \(q+q^{2}+\beta _{1}q^{3}+q^{4}-q^{5}+\beta _{1}q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(230))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(230)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(115))\)\(^{\oplus 2}\)