Defining parameters
| Level: | \( N \) | \(=\) | \( 230 = 2 \cdot 5 \cdot 23 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 230.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 4 \) | ||
| Sturm bound: | \(72\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(230))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 40 | 9 | 31 |
| Cusp forms | 33 | 9 | 24 |
| Eisenstein series | 7 | 0 | 7 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(5\) | \(23\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(2\) | \(0\) | \(2\) | \(2\) | \(0\) | \(2\) | \(0\) | \(0\) | \(0\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(7\) | \(2\) | \(5\) | \(6\) | \(2\) | \(4\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(7\) | \(2\) | \(5\) | \(6\) | \(2\) | \(4\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(4\) | \(0\) | \(4\) | \(3\) | \(0\) | \(3\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(6\) | \(3\) | \(3\) | \(5\) | \(3\) | \(2\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(4\) | \(0\) | \(4\) | \(3\) | \(0\) | \(3\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(5\) | \(0\) | \(5\) | \(4\) | \(0\) | \(4\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(5\) | \(2\) | \(3\) | \(4\) | \(2\) | \(2\) | \(1\) | \(0\) | \(1\) | |||
| Plus space | \(+\) | \(15\) | \(0\) | \(15\) | \(12\) | \(0\) | \(12\) | \(3\) | \(0\) | \(3\) | |||||
| Minus space | \(-\) | \(25\) | \(9\) | \(16\) | \(21\) | \(9\) | \(12\) | \(4\) | \(0\) | \(4\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(230))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 5 | 23 | |||||||
| 230.2.a.a | $2$ | $1.837$ | \(\Q(\sqrt{21}) \) | None | \(-2\) | \(-1\) | \(-2\) | \(1\) | $+$ | $+$ | $-$ | \(q-q^{2}-\beta q^{3}+q^{4}-q^{5}+\beta q^{6}+(1+\cdots)q^{7}+\cdots\) | |
| 230.2.a.b | $2$ | $1.837$ | \(\Q(\sqrt{13}) \) | None | \(-2\) | \(3\) | \(2\) | \(3\) | $+$ | $-$ | $+$ | \(q-q^{2}+(1+\beta )q^{3}+q^{4}+q^{5}+(-1+\cdots)q^{6}+\cdots\) | |
| 230.2.a.c | $2$ | $1.837$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(1\) | \(2\) | \(1\) | $-$ | $-$ | $-$ | \(q+q^{2}+\beta q^{3}+q^{4}+q^{5}+\beta q^{6}+(1+\cdots)q^{7}+\cdots\) | |
| 230.2.a.d | $3$ | $1.837$ | 3.3.1101.1 | None | \(3\) | \(1\) | \(-3\) | \(3\) | $-$ | $+$ | $+$ | \(q+q^{2}+\beta _{1}q^{3}+q^{4}-q^{5}+\beta _{1}q^{6}+\cdots\) | |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(230))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(230)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(115))\)\(^{\oplus 2}\)