Properties

Label 230.2.a
Level $230$
Weight $2$
Character orbit 230.a
Rep. character $\chi_{230}(1,\cdot)$
Character field $\Q$
Dimension $9$
Newform subspaces $4$
Sturm bound $72$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 230 = 2 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 230.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(72\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(230))\).

Total New Old
Modular forms 40 9 31
Cusp forms 33 9 24
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(23\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(2\)\(0\)\(2\)\(2\)\(0\)\(2\)\(0\)\(0\)\(0\)
\(+\)\(+\)\(-\)\(-\)\(7\)\(2\)\(5\)\(6\)\(2\)\(4\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(7\)\(2\)\(5\)\(6\)\(2\)\(4\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(+\)\(4\)\(0\)\(4\)\(3\)\(0\)\(3\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(6\)\(3\)\(3\)\(5\)\(3\)\(2\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(4\)\(0\)\(4\)\(3\)\(0\)\(3\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(5\)\(0\)\(5\)\(4\)\(0\)\(4\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(5\)\(2\)\(3\)\(4\)\(2\)\(2\)\(1\)\(0\)\(1\)
Plus space\(+\)\(15\)\(0\)\(15\)\(12\)\(0\)\(12\)\(3\)\(0\)\(3\)
Minus space\(-\)\(25\)\(9\)\(16\)\(21\)\(9\)\(12\)\(4\)\(0\)\(4\)

Trace form

\( 9 q + q^{2} + 4 q^{3} + 9 q^{4} - q^{5} + 8 q^{7} + q^{8} + 17 q^{9} - q^{10} + 4 q^{12} + 6 q^{13} + 4 q^{15} + 9 q^{16} - 6 q^{17} - 3 q^{18} + 8 q^{19} - q^{20} - 16 q^{21} + 8 q^{22} - q^{23}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(230))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 23
230.2.a.a 230.a 1.a $2$ $1.837$ \(\Q(\sqrt{21}) \) None 230.2.a.a \(-2\) \(-1\) \(-2\) \(1\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-\beta q^{3}+q^{4}-q^{5}+\beta q^{6}+(1+\cdots)q^{7}+\cdots\)
230.2.a.b 230.a 1.a $2$ $1.837$ \(\Q(\sqrt{13}) \) None 230.2.a.b \(-2\) \(3\) \(2\) \(3\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+(1+\beta )q^{3}+q^{4}+q^{5}+(-1+\cdots)q^{6}+\cdots\)
230.2.a.c 230.a 1.a $2$ $1.837$ \(\Q(\sqrt{5}) \) None 230.2.a.c \(2\) \(1\) \(2\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+\beta q^{3}+q^{4}+q^{5}+\beta q^{6}+(1+\cdots)q^{7}+\cdots\)
230.2.a.d 230.a 1.a $3$ $1.837$ 3.3.1101.1 None 230.2.a.d \(3\) \(1\) \(-3\) \(3\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+\beta _{1}q^{3}+q^{4}-q^{5}+\beta _{1}q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(230))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(230)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(115))\)\(^{\oplus 2}\)