Properties

Label 230.2
Level 230
Weight 2
Dimension 485
Nonzero newspaces 6
Newform subspaces 15
Sturm bound 6336
Trace bound 1

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 230 = 2 \cdot 5 \cdot 23 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 15 \)
Sturm bound: \(6336\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(230))\).

Total New Old
Modular forms 1760 485 1275
Cusp forms 1409 485 924
Eisenstein series 351 0 351

Trace form

\( 485q + q^{2} + 4q^{3} + q^{4} + q^{5} + 4q^{6} + 8q^{7} + q^{8} + 13q^{9} + O(q^{10}) \) \( 485q + q^{2} + 4q^{3} + q^{4} + q^{5} + 4q^{6} + 8q^{7} + q^{8} + 13q^{9} + q^{10} + 12q^{11} + 4q^{12} + 14q^{13} + 8q^{14} - 18q^{15} + q^{16} - 26q^{17} - 75q^{18} - 24q^{19} - 21q^{20} - 100q^{21} - 32q^{22} - 65q^{23} + 4q^{24} - 43q^{25} - 30q^{26} - 92q^{27} - 36q^{28} - 14q^{29} - 40q^{30} - 12q^{31} + q^{32} + 4q^{33} + 18q^{34} - 14q^{35} + 13q^{36} - 50q^{37} + 20q^{38} - 32q^{39} + q^{40} - 2q^{41} + 32q^{42} - 44q^{43} + 12q^{44} - 53q^{45} + 23q^{46} - 40q^{47} + 4q^{48} - 75q^{49} + q^{50} - 16q^{51} + 14q^{52} + 10q^{53} - 4q^{54} - 76q^{55} - 36q^{56} - 140q^{57} - 58q^{58} - 160q^{59} - 18q^{60} - 114q^{61} - 100q^{62} - 116q^{63} + q^{64} - 140q^{65} - 128q^{66} - 20q^{67} - 70q^{68} - 128q^{69} - 80q^{70} - 148q^{71} - 75q^{72} - 14q^{73} - 138q^{74} - 172q^{75} + 20q^{76} - 124q^{77} - 76q^{78} - 140q^{79} - 21q^{80} - 143q^{81} - 46q^{82} - 92q^{83} - 12q^{84} - 48q^{85} - 12q^{87} + 12q^{88} + 46q^{89} + 13q^{90} + 24q^{91} + 23q^{92} + 128q^{93} + 48q^{94} + 42q^{95} + 4q^{96} + 186q^{97} + 145q^{98} + 244q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(230))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
230.2.a \(\chi_{230}(1, \cdot)\) 230.2.a.a 2 1
230.2.a.b 2
230.2.a.c 2
230.2.a.d 3
230.2.b \(\chi_{230}(139, \cdot)\) 230.2.b.a 4 1
230.2.b.b 8
230.2.e \(\chi_{230}(137, \cdot)\) 230.2.e.a 8 2
230.2.e.b 8
230.2.e.c 8
230.2.g \(\chi_{230}(31, \cdot)\) 230.2.g.a 10 10
230.2.g.b 20
230.2.g.c 20
230.2.g.d 30
230.2.j \(\chi_{230}(9, \cdot)\) 230.2.j.a 120 10
230.2.l \(\chi_{230}(7, \cdot)\) 230.2.l.a 240 20

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(230))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(230)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(115))\)\(^{\oplus 2}\)