Properties

Label 230.2
Level 230
Weight 2
Dimension 485
Nonzero newspaces 6
Newform subspaces 15
Sturm bound 6336
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 230 = 2 \cdot 5 \cdot 23 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 15 \)
Sturm bound: \(6336\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(230))\).

Total New Old
Modular forms 1760 485 1275
Cusp forms 1409 485 924
Eisenstein series 351 0 351

Trace form

\( 485 q + q^{2} + 4 q^{3} + q^{4} + q^{5} + 4 q^{6} + 8 q^{7} + q^{8} + 13 q^{9} + q^{10} + 12 q^{11} + 4 q^{12} + 14 q^{13} + 8 q^{14} - 18 q^{15} + q^{16} - 26 q^{17} - 75 q^{18} - 24 q^{19} - 21 q^{20}+ \cdots + 244 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(230))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
230.2.a \(\chi_{230}(1, \cdot)\) 230.2.a.a 2 1
230.2.a.b 2
230.2.a.c 2
230.2.a.d 3
230.2.b \(\chi_{230}(139, \cdot)\) 230.2.b.a 4 1
230.2.b.b 8
230.2.e \(\chi_{230}(137, \cdot)\) 230.2.e.a 8 2
230.2.e.b 8
230.2.e.c 8
230.2.g \(\chi_{230}(31, \cdot)\) 230.2.g.a 10 10
230.2.g.b 20
230.2.g.c 20
230.2.g.d 30
230.2.j \(\chi_{230}(9, \cdot)\) 230.2.j.a 120 10
230.2.l \(\chi_{230}(7, \cdot)\) 230.2.l.a 240 20

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(230))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(230)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(115))\)\(^{\oplus 2}\)