Properties

Label 23.7.b
Level $23$
Weight $7$
Character orbit 23.b
Rep. character $\chi_{23}(22,\cdot)$
Character field $\Q$
Dimension $11$
Newform subspaces $3$
Sturm bound $14$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 23 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 23.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 23 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(14\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{7}(23, [\chi])\).

Total New Old
Modular forms 13 13 0
Cusp forms 11 11 0
Eisenstein series 2 2 0

Trace form

\( 11 q + 8 q^{2} + 30 q^{3} + 360 q^{4} - 285 q^{6} + 475 q^{8} + 633 q^{9} + O(q^{10}) \) \( 11 q + 8 q^{2} + 30 q^{3} + 360 q^{4} - 285 q^{6} + 475 q^{8} + 633 q^{9} + 363 q^{12} - 1106 q^{13} + 4624 q^{16} - 1461 q^{18} - 18197 q^{23} - 8400 q^{24} - 18325 q^{25} - 29789 q^{26} + 54084 q^{27} - 86122 q^{29} - 28490 q^{31} + 160128 q^{32} + 144120 q^{35} - 141837 q^{36} + 187860 q^{39} + 214454 q^{41} - 317312 q^{46} - 128218 q^{47} - 421317 q^{48} - 26845 q^{49} + 226520 q^{50} - 890013 q^{52} - 279765 q^{54} + 709080 q^{55} + 827099 q^{58} - 465970 q^{59} + 811123 q^{62} + 1350227 q^{64} - 1122330 q^{69} - 998400 q^{70} - 346786 q^{71} + 586467 q^{72} - 512786 q^{73} - 1060890 q^{75} - 642888 q^{77} + 251091 q^{78} + 484911 q^{81} + 3440075 q^{82} + 1010760 q^{85} + 69084 q^{87} - 2530392 q^{92} - 1476084 q^{93} + 4485563 q^{94} + 2074800 q^{95} - 4171125 q^{96} - 3624424 q^{98} + O(q^{100}) \)

Decomposition of \(S_{7}^{\mathrm{new}}(23, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
23.7.b.a 23.b 23.b $1$ $5.291$ \(\Q\) \(\Q(\sqrt{-23}) \) 23.7.b.a \(-7\) \(-38\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-7q^{2}-38q^{3}-15q^{4}+266q^{6}+\cdots\)
23.7.b.b 23.b 23.b $2$ $5.291$ \(\Q(\sqrt{69}) \) \(\Q(\sqrt{-23}) \) 23.7.b.b \(7\) \(38\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+(2+3\beta )q^{2}+(23-8\beta )q^{3}+(93+21\beta )q^{4}+\cdots\)
23.7.b.c 23.b 23.b $8$ $5.291$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 23.7.b.c \(8\) \(30\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(1+\beta _{1})q^{2}+(4+\beta _{3})q^{3}+(21-3\beta _{1}+\cdots)q^{4}+\cdots\)