Properties

Label 23.7
Level 23
Weight 7
Dimension 121
Nonzero newspaces 2
Newform subspaces 4
Sturm bound 308
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 23 \)
Weight: \( k \) = \( 7 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 4 \)
Sturm bound: \(308\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{7}(\Gamma_1(23))\).

Total New Old
Modular forms 143 143 0
Cusp forms 121 121 0
Eisenstein series 22 22 0

Trace form

\( 121 q - 11 q^{2} - 11 q^{3} - 11 q^{4} - 11 q^{5} - 11 q^{6} - 11 q^{7} - 11 q^{8} - 11 q^{9} - 11 q^{10} - 11 q^{11} - 11 q^{12} - 11 q^{13} - 11 q^{14} + 10461 q^{15} - 31691 q^{16} - 11451 q^{17} + 13365 q^{18}+ \cdots - 16096091 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{7}^{\mathrm{new}}(\Gamma_1(23))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
23.7.b \(\chi_{23}(22, \cdot)\) 23.7.b.a 1 1
23.7.b.b 2
23.7.b.c 8
23.7.d \(\chi_{23}(5, \cdot)\) 23.7.d.a 110 10