Defining parameters
Level: | \( N \) | \(=\) | \( 23 \) |
Weight: | \( k \) | \(=\) | \( 31 \) |
Character orbit: | \([\chi]\) | \(=\) | 23.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 23 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(62\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{31}(23, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 61 | 61 | 0 |
Cusp forms | 59 | 59 | 0 |
Eisenstein series | 2 | 2 | 0 |
Trace form
Decomposition of \(S_{31}^{\mathrm{new}}(23, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
23.31.b.a | $1$ | $131.133$ | \(\Q\) | \(\Q(\sqrt{-23}) \) | \(-50407\) | \(19799482\) | \(0\) | \(0\) | \(q-50407q^{2}+19799482q^{3}+1467123825q^{4}+\cdots\) |
23.31.b.b | $2$ | $131.133$ | \(\Q(\sqrt{69}) \) | \(\Q(\sqrt{-23}) \) | \(50407\) | \(-19799482\) | \(0\) | \(0\) | \(q+(29570-8733\beta )q^{2}+(-12065545+\cdots)q^{3}+\cdots\) |
23.31.b.c | $56$ | $131.133$ | None | \(-48952\) | \(10327710\) | \(0\) | \(0\) |