Properties

Label 23.31.b
Level $23$
Weight $31$
Character orbit 23.b
Rep. character $\chi_{23}(22,\cdot)$
Character field $\Q$
Dimension $59$
Newform subspaces $3$
Sturm bound $62$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 23 \)
Weight: \( k \) \(=\) \( 31 \)
Character orbit: \([\chi]\) \(=\) 23.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 23 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(62\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{31}(23, [\chi])\).

Total New Old
Modular forms 61 61 0
Cusp forms 59 59 0
Eisenstein series 2 2 0

Trace form

\( 59 q - 48952 q^{2} + 10327710 q^{3} + 33767800104 q^{4} - 749726814525 q^{6} - 61701776229125 q^{8} + 3710634725393769 q^{9} + O(q^{10}) \) \( 59 q - 48952 q^{2} + 10327710 q^{3} + 33767800104 q^{4} - 749726814525 q^{6} - 61701776229125 q^{8} + 3710634725393769 q^{9} + 6137116703764203 q^{12} + 58617078084326254 q^{13} + 21886842705983044624 q^{16} - 20909733962985256341 q^{18} - 92000548241212598117 q^{23} - 1209423960683522072400 q^{24} - 10961057055780336892645 q^{25} + 2808127993053766005955 q^{26} - 3659895230794846654236 q^{27} - 31696256077143021470602 q^{29} - 86187690941416624136042 q^{31} - 34975559163035828475072 q^{32} - 143774039466185247067560 q^{35} + 1788968268273175351018419 q^{36} - 3581108647370152369341900 q^{39} + 3450235315277395543325078 q^{41} - 45483188907564462438419360 q^{46} + 2247253369881005972240582 q^{47} + 98498743870258303999111323 q^{48} - 207187415599804090439803213 q^{49} + 286376616167955534408567320 q^{50} + 102176788008668071706594307 q^{52} - 195960694440434093422499925 q^{54} + 114096042481291566296702520 q^{55} + 387383964698044021776724379 q^{58} - 950127090162227864082982642 q^{59} - 2473704971992461046293863597 q^{62} + 18849324334255651116873406739 q^{64} + 857719036012131936040114950 q^{69} - 3218856207872588007686905920 q^{70} + 13497708300802255639803693278 q^{71} + 1435053582014687317457598627 q^{72} + 6342542769935152043759142574 q^{73} - 38021078600273057821548807930 q^{75} + 135322459371608693646635563032 q^{77} + 290885795972155587588179865651 q^{78} + 116225255831199434229617263359 q^{81} - 1280965946478967863161912245 q^{82} - 287295896244371821694585243160 q^{85} + 171675186991175760954737685084 q^{87} + 240259129917236372834353006248 q^{92} + 2263262550390667374137409993036 q^{93} + 2355525655971903398658963325115 q^{94} + 422004400436441552339349905520 q^{95} - 2278759307964494995138413933525 q^{96} + 2797210593318328617237444105176 q^{98} + O(q^{100}) \)

Decomposition of \(S_{31}^{\mathrm{new}}(23, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
23.31.b.a 23.b 23.b $1$ $131.133$ \(\Q\) \(\Q(\sqrt{-23}) \) 23.31.b.a \(-50407\) \(19799482\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-50407q^{2}+19799482q^{3}+1467123825q^{4}+\cdots\)
23.31.b.b 23.b 23.b $2$ $131.133$ \(\Q(\sqrt{69}) \) \(\Q(\sqrt{-23}) \) 23.31.b.b \(50407\) \(-19799482\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+(29570-8733\beta )q^{2}+(-12065545+\cdots)q^{3}+\cdots\)
23.31.b.c 23.b 23.b $56$ $131.133$ None 23.31.b.c \(-48952\) \(10327710\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$