Properties

Label 23.3.b
Level 23
Weight 3
Character orbit b
Rep. character \(\chi_{23}(22,\cdot)\)
Character field \(\Q\)
Dimension 3
Newforms 1
Sturm bound 6
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 23 \)
Weight: \( k \) = \( 3 \)
Character orbit: \([\chi]\) = 23.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 23 \)
Character field: \(\Q\)
Newforms: \( 1 \)
Sturm bound: \(6\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(23, [\chi])\).

Total New Old
Modular forms 5 5 0
Cusp forms 3 3 0
Eisenstein series 2 2 0

Trace form

\( 3q + 12q^{4} - 33q^{6} - 21q^{8} + 27q^{9} + O(q^{10}) \) \( 3q + 12q^{4} - 33q^{6} - 21q^{8} + 27q^{9} + 3q^{12} + 48q^{16} + 39q^{18} - 69q^{23} - 132q^{24} + 75q^{25} + 87q^{26} - 114q^{27} - 84q^{32} + 255q^{36} - 42q^{39} + 231q^{48} + 147q^{49} - 309q^{52} - 297q^{54} - 273q^{58} + 78q^{59} + 303q^{62} - 45q^{64} - 33q^{72} + 399q^{78} + 243q^{81} - 129q^{82} + 246q^{87} - 276q^{92} - 546q^{93} - 57q^{94} - 21q^{96} + O(q^{100}) \)

Decomposition of \(S_{3}^{\mathrm{new}}(23, [\chi])\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
23.3.b.a \(3\) \(0.627\) 3.3.621.1 \(\Q(\sqrt{-23}) \) \(0\) \(0\) \(0\) \(0\) \(q+(\beta _{1}+\beta _{2})q^{2}+(-2\beta _{1}-\beta _{2})q^{3}+(4+\cdots)q^{4}+\cdots\)