Newspace parameters
| Level: | \( N \) | = | \( 23 \) |
| Weight: | \( k \) | = | \( 2 \) |
| Character orbit: | \([\chi]\) | = | 23.a (trivial) |
Newform invariants
| Self dual: | Yes |
| Analytic conductor: | \(0.183655924649\) |
| Analytic rank: | \(0\) |
| Dimension: | \(2\) |
| Coefficient field: | \(\Q(\sqrt{5}) \) |
| Coefficient ring: | \(\Z[a_1, a_2]\) |
| Coefficient ring index: | \( 1 \) |
| Fricke sign: | \(-1\) |
| Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1.1 |
|
−1.61803 | 2.23607 | 0.618034 | −3.23607 | −3.61803 | −1.23607 | 2.23607 | 2.00000 | 5.23607 | ||||||||||||||||||||||||
| 1.2 | 0.618034 | −2.23607 | −1.61803 | 1.23607 | −1.38197 | 3.23607 | −2.23607 | 2.00000 | 0.763932 | |||||||||||||||||||||||||
Inner twists
This newform does not admit any (nontrivial) inner twists.
Atkin-Lehner signs
| \( p \) | Sign |
|---|---|
| \(23\) | \(-1\) |
Hecke kernels
There are no other newforms in \(S_{2}^{\mathrm{new}}(\Gamma_0(23))\).