Properties

Label 23.2.a
Level 23
Weight 2
Character orbit a
Rep. character \(\chi_{23}(1,\cdot)\)
Character field \(\Q\)
Dimension 2
Newforms 1
Sturm bound 4
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 23 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 23.a (trivial)
Character field: \(\Q\)
Newforms: \( 1 \)
Sturm bound: \(4\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(23))\).

Total New Old
Modular forms 3 3 0
Cusp forms 2 2 0
Eisenstein series 1 1 0

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators.

\(23\)Dim.
\(-\)\(2\)

Trace form

\( 2q - q^{2} - q^{4} - 2q^{5} - 5q^{6} + 2q^{7} + 4q^{9} + O(q^{10}) \) \( 2q - q^{2} - q^{4} - 2q^{5} - 5q^{6} + 2q^{7} + 4q^{9} + 6q^{10} - 6q^{11} + 5q^{12} + 6q^{13} + 4q^{14} - 10q^{15} - 3q^{16} + 6q^{17} - 2q^{18} - 4q^{19} - 4q^{20} - 10q^{21} - 2q^{22} + 2q^{23} + 10q^{24} + 2q^{25} - 3q^{26} - 6q^{28} - 6q^{29} + 10q^{30} + 9q^{32} + 10q^{33} - 8q^{34} + 8q^{35} - 2q^{36} + 2q^{37} + 2q^{38} - 10q^{40} + 2q^{41} + 8q^{44} - 4q^{45} - q^{46} - 15q^{48} - 2q^{49} - 11q^{50} + 10q^{51} - 3q^{52} - 8q^{53} + 5q^{54} - 4q^{55} - 10q^{56} + 3q^{58} + 4q^{59} + 4q^{61} + 15q^{62} + 4q^{63} + 4q^{64} - 6q^{65} + 10q^{66} - 10q^{67} + 2q^{68} - 4q^{70} + 20q^{71} + 22q^{73} - 6q^{74} + 20q^{75} + 2q^{76} - 16q^{77} - 15q^{78} - 4q^{79} + 18q^{80} - 22q^{81} - 11q^{82} - 22q^{83} + 10q^{84} - 16q^{85} + 10q^{88} - 12q^{89} + 12q^{90} + 6q^{91} - q^{92} - 30q^{93} - 5q^{94} + 4q^{95} - 5q^{96} + 22q^{97} + 11q^{98} - 12q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(23))\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces A-L signs $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\) 23
23.2.a.a \(2\) \(0.184\) \(\Q(\sqrt{5}) \) None \(-1\) \(0\) \(-2\) \(2\) \(-\) \(q-\beta q^{2}+(-1+2\beta )q^{3}+(-1+\beta )q^{4}+\cdots\)