Properties

Label 23.13.b.a.22.1
Level $23$
Weight $13$
Character 23.22
Self dual yes
Analytic conductor $21.022$
Analytic rank $0$
Dimension $1$
CM discriminant -23
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [23,13,Mod(22,23)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(23, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 13, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("23.22");
 
S:= CuspForms(chi, 13);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 23 \)
Weight: \( k \) \(=\) \( 13 \)
Character orbit: \([\chi]\) \(=\) 23.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.0218577974\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 22.1
Character \(\chi\) \(=\) 23.22

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-79.0000 q^{2} -14.0000 q^{3} +2145.00 q^{4} +1106.00 q^{6} +154129. q^{8} -531245. q^{9} +O(q^{10})\) \(q-79.0000 q^{2} -14.0000 q^{3} +2145.00 q^{4} +1106.00 q^{6} +154129. q^{8} -531245. q^{9} -30030.0 q^{12} -8.48289e6 q^{13} -2.09621e7 q^{16} +4.19684e7 q^{18} +1.48036e8 q^{23} -2.15781e6 q^{24} +2.44141e8 q^{25} +6.70149e8 q^{26} +1.48776e7 q^{27} -2.44330e8 q^{29} +1.67703e9 q^{31} +1.02469e9 q^{32} -1.13952e9 q^{36} +1.18761e8 q^{39} -7.59628e9 q^{41} -1.16948e10 q^{46} +2.06069e10 q^{47} +2.93470e8 q^{48} +1.38413e10 q^{49} -1.92871e10 q^{50} -1.81958e10 q^{52} -1.17533e9 q^{54} +1.93021e10 q^{58} -1.98745e10 q^{59} -1.32485e11 q^{62} +4.90995e9 q^{64} -2.07250e9 q^{69} +1.88894e11 q^{71} -8.18803e10 q^{72} +2.23017e11 q^{73} -3.41797e9 q^{75} -9.38208e9 q^{78} +2.82117e11 q^{81} +6.00106e11 q^{82} +3.42062e9 q^{87} +3.17537e11 q^{92} -2.34784e10 q^{93} -1.62795e12 q^{94} -1.43457e10 q^{96} -1.09346e12 q^{98} +O(q^{100})\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/23\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −79.0000 −1.23438 −0.617188 0.786816i \(-0.711728\pi\)
−0.617188 + 0.786816i \(0.711728\pi\)
\(3\) −14.0000 −0.0192044 −0.00960219 0.999954i \(-0.503057\pi\)
−0.00960219 + 0.999954i \(0.503057\pi\)
\(4\) 2145.00 0.523682
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 1106.00 0.0237054
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 154129. 0.587955
\(9\) −531245. −0.999631
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) −30030.0 −0.0100570
\(13\) −8.48289e6 −1.75745 −0.878727 0.477325i \(-0.841607\pi\)
−0.878727 + 0.477325i \(0.841607\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −2.09621e7 −1.24944
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 4.19684e7 1.23392
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.48036e8 1.00000
\(24\) −2.15781e6 −0.0112913
\(25\) 2.44141e8 1.00000
\(26\) 6.70149e8 2.16936
\(27\) 1.48776e7 0.0384017
\(28\) 0 0
\(29\) −2.44330e8 −0.410761 −0.205380 0.978682i \(-0.565843\pi\)
−0.205380 + 0.978682i \(0.565843\pi\)
\(30\) 0 0
\(31\) 1.67703e9 1.88960 0.944799 0.327651i \(-0.106257\pi\)
0.944799 + 0.327651i \(0.106257\pi\)
\(32\) 1.02469e9 0.954321
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −1.13952e9 −0.523489
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 1.18761e8 0.0337508
\(40\) 0 0
\(41\) −7.59628e9 −1.59918 −0.799591 0.600545i \(-0.794950\pi\)
−0.799591 + 0.600545i \(0.794950\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −1.16948e10 −1.23438
\(47\) 2.06069e10 1.91173 0.955863 0.293813i \(-0.0949242\pi\)
0.955863 + 0.293813i \(0.0949242\pi\)
\(48\) 2.93470e8 0.0239947
\(49\) 1.38413e10 1.00000
\(50\) −1.92871e10 −1.23438
\(51\) 0 0
\(52\) −1.81958e10 −0.920346
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) −1.17533e9 −0.0474021
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 1.93021e10 0.507033
\(59\) −1.98745e10 −0.471178 −0.235589 0.971853i \(-0.575702\pi\)
−0.235589 + 0.971853i \(0.575702\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) −1.32485e11 −2.33247
\(63\) 0 0
\(64\) 4.90995e9 0.0714492
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) −2.07250e9 −0.0192044
\(70\) 0 0
\(71\) 1.88894e11 1.47458 0.737289 0.675577i \(-0.236106\pi\)
0.737289 + 0.675577i \(0.236106\pi\)
\(72\) −8.18803e10 −0.587739
\(73\) 2.23017e11 1.47367 0.736837 0.676070i \(-0.236318\pi\)
0.736837 + 0.676070i \(0.236318\pi\)
\(74\) 0 0
\(75\) −3.41797e9 −0.0192044
\(76\) 0 0
\(77\) 0 0
\(78\) −9.38208e9 −0.0416612
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 2.82117e11 0.998894
\(82\) 6.00106e11 1.97399
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 3.42062e9 0.00788841
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 3.17537e11 0.523682
\(93\) −2.34784e10 −0.0362886
\(94\) −1.62795e12 −2.35979
\(95\) 0 0
\(96\) −1.43457e10 −0.0183272
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) −1.09346e12 −1.23438
\(99\) 0 0
\(100\) 5.23682e11 0.523682
\(101\) −1.86720e12 −1.75899 −0.879496 0.475907i \(-0.842120\pi\)
−0.879496 + 0.475907i \(0.842120\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) −1.30746e12 −1.03330
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 3.19125e10 0.0201103
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −5.24088e11 −0.215108
\(117\) 4.50650e12 1.75681
\(118\) 1.57009e12 0.581610
\(119\) 0 0
\(120\) 0 0
\(121\) 3.13843e12 1.00000
\(122\) 0 0
\(123\) 1.06348e11 0.0307113
\(124\) 3.59722e12 0.989548
\(125\) 0 0
\(126\) 0 0
\(127\) −1.07527e12 −0.256269 −0.128135 0.991757i \(-0.540899\pi\)
−0.128135 + 0.991757i \(0.540899\pi\)
\(128\) −4.58503e12 −1.04252
\(129\) 0 0
\(130\) 0 0
\(131\) 9.24098e11 0.182848 0.0914240 0.995812i \(-0.470858\pi\)
0.0914240 + 0.995812i \(0.470858\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 1.63728e11 0.0237054
\(139\) 1.26304e13 1.75118 0.875588 0.483059i \(-0.160474\pi\)
0.875588 + 0.483059i \(0.160474\pi\)
\(140\) 0 0
\(141\) −2.88497e11 −0.0367135
\(142\) −1.49226e13 −1.82018
\(143\) 0 0
\(144\) 1.11360e13 1.24898
\(145\) 0 0
\(146\) −1.76184e13 −1.81907
\(147\) −1.93778e11 −0.0192044
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 2.70020e11 0.0237054
\(151\) 1.46028e13 1.23189 0.615947 0.787788i \(-0.288774\pi\)
0.615947 + 0.787788i \(0.288774\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 2.54741e11 0.0176747
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −2.22872e13 −1.23301
\(163\) −1.69054e12 −0.0901362 −0.0450681 0.998984i \(-0.514350\pi\)
−0.0450681 + 0.998984i \(0.514350\pi\)
\(164\) −1.62940e13 −0.837462
\(165\) 0 0
\(166\) 0 0
\(167\) −6.47920e12 −0.298691 −0.149346 0.988785i \(-0.547717\pi\)
−0.149346 + 0.988785i \(0.547717\pi\)
\(168\) 0 0
\(169\) 4.86614e13 2.08864
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −4.97576e13 −1.85602 −0.928010 0.372555i \(-0.878482\pi\)
−0.928010 + 0.372555i \(0.878482\pi\)
\(174\) −2.70229e11 −0.00973726
\(175\) 0 0
\(176\) 0 0
\(177\) 2.78243e11 0.00904868
\(178\) 0 0
\(179\) −5.04283e13 −1.53305 −0.766525 0.642215i \(-0.778016\pi\)
−0.766525 + 0.642215i \(0.778016\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 2.28166e13 0.587955
\(185\) 0 0
\(186\) 1.85479e12 0.0447937
\(187\) 0 0
\(188\) 4.42018e13 1.00114
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) −6.87393e10 −0.00137214
\(193\) −8.74316e13 −1.69170 −0.845852 0.533418i \(-0.820907\pi\)
−0.845852 + 0.533418i \(0.820907\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 2.96896e13 0.523682
\(197\) 1.07535e14 1.83972 0.919858 0.392250i \(-0.128303\pi\)
0.919858 + 0.392250i \(0.128303\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 3.76292e13 0.587955
\(201\) 0 0
\(202\) 1.47509e14 2.17125
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −7.86433e13 −0.999631
\(208\) 1.77819e14 2.19583
\(209\) 0 0
\(210\) 0 0
\(211\) −1.52822e13 −0.173177 −0.0865886 0.996244i \(-0.527597\pi\)
−0.0865886 + 0.996244i \(0.527597\pi\)
\(212\) 0 0
\(213\) −2.64451e12 −0.0283184
\(214\) 0 0
\(215\) 0 0
\(216\) 2.29307e12 0.0225785
\(217\) 0 0
\(218\) 0 0
\(219\) −3.12224e12 −0.0283010
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −2.44403e14 −1.98737 −0.993683 0.112222i \(-0.964203\pi\)
−0.993683 + 0.112222i \(0.964203\pi\)
\(224\) 0 0
\(225\) −1.29698e14 −0.999631
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −3.76584e13 −0.241509
\(233\) −2.59018e14 −1.61880 −0.809402 0.587255i \(-0.800208\pi\)
−0.809402 + 0.587255i \(0.800208\pi\)
\(234\) −3.56013e14 −2.16856
\(235\) 0 0
\(236\) −4.26309e13 −0.246747
\(237\) 0 0
\(238\) 0 0
\(239\) 3.55364e14 1.90672 0.953358 0.301841i \(-0.0976011\pi\)
0.953358 + 0.301841i \(0.0976011\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) −2.47936e14 −1.23438
\(243\) −1.18562e13 −0.0575848
\(244\) 0 0
\(245\) 0 0
\(246\) −8.40149e12 −0.0379093
\(247\) 0 0
\(248\) 2.58478e14 1.11100
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 8.49465e13 0.316332
\(255\) 0 0
\(256\) 3.42107e14 1.21541
\(257\) −3.90696e13 −0.135594 −0.0677970 0.997699i \(-0.521597\pi\)
−0.0677970 + 0.997699i \(0.521597\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 1.29799e14 0.410609
\(262\) −7.30037e13 −0.225703
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 6.80617e14 1.79634 0.898171 0.439647i \(-0.144896\pi\)
0.898171 + 0.439647i \(0.144896\pi\)
\(270\) 0 0
\(271\) 7.77423e14 1.96265 0.981323 0.192370i \(-0.0616172\pi\)
0.981323 + 0.192370i \(0.0616172\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) −4.44552e12 −0.0100570
\(277\) 6.27668e14 1.38948 0.694738 0.719262i \(-0.255520\pi\)
0.694738 + 0.719262i \(0.255520\pi\)
\(278\) −9.97805e14 −2.16161
\(279\) −8.90911e14 −1.88890
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 2.27912e13 0.0453183
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 4.05177e14 0.772210
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −5.44364e14 −0.953969
\(289\) 5.82622e14 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 4.78372e14 0.771736
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 1.53085e13 0.0237054
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.25577e15 −1.75745
\(300\) −7.33154e12 −0.0100570
\(301\) 0 0
\(302\) −1.15362e15 −1.52062
\(303\) 2.61409e13 0.0337804
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 8.96848e14 1.07124 0.535622 0.844458i \(-0.320077\pi\)
0.535622 + 0.844458i \(0.320077\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1.14050e15 −1.26047 −0.630236 0.776403i \(-0.717042\pi\)
−0.630236 + 0.776403i \(0.717042\pi\)
\(312\) 1.83044e13 0.0198440
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.73669e15 1.71146 0.855728 0.517426i \(-0.173110\pi\)
0.855728 + 0.517426i \(0.173110\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 6.05141e14 0.523102
\(325\) −2.07102e15 −1.75745
\(326\) 1.33553e14 0.111262
\(327\) 0 0
\(328\) −1.17081e15 −0.940248
\(329\) 0 0
\(330\) 0 0
\(331\) 2.63014e15 1.99991 0.999954 0.00955646i \(-0.00304196\pi\)
0.999954 + 0.00955646i \(0.00304196\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 5.11857e14 0.368697
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) −3.84425e15 −2.57817
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 3.93085e15 2.29103
\(347\) −3.49096e15 −1.99971 −0.999856 0.0169578i \(-0.994602\pi\)
−0.999856 + 0.0169578i \(0.994602\pi\)
\(348\) 7.33723e12 0.00413102
\(349\) −3.52370e15 −1.95005 −0.975026 0.222089i \(-0.928712\pi\)
−0.975026 + 0.222089i \(0.928712\pi\)
\(350\) 0 0
\(351\) −1.26205e14 −0.0674892
\(352\) 0 0
\(353\) 1.94229e15 1.00384 0.501922 0.864913i \(-0.332626\pi\)
0.501922 + 0.864913i \(0.332626\pi\)
\(354\) −2.19812e13 −0.0111695
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 3.98384e15 1.89236
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) 2.21331e15 1.00000
\(362\) 0 0
\(363\) −4.39380e13 −0.0192044
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) −3.10314e15 −1.24944
\(369\) 4.03549e15 1.59859
\(370\) 0 0
\(371\) 0 0
\(372\) −5.03611e13 −0.0190037
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 3.17612e15 1.12401
\(377\) 2.07263e15 0.721893
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 1.50538e13 0.00492149
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 6.41905e13 0.0200209
\(385\) 0 0
\(386\) 6.90709e15 2.08820
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 2.13334e15 0.587955
\(393\) −1.29374e13 −0.00351148
\(394\) −8.49524e15 −2.27090
\(395\) 0 0
\(396\) 0 0
\(397\) 2.64024e15 0.674373 0.337186 0.941438i \(-0.390525\pi\)
0.337186 + 0.941438i \(0.390525\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −5.11770e15 −1.24944
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) −1.42260e16 −3.32088
\(404\) −4.00515e15 −0.921151
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 3.14076e15 0.670957 0.335479 0.942048i \(-0.391102\pi\)
0.335479 + 0.942048i \(0.391102\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 6.21282e15 1.23392
\(415\) 0 0
\(416\) −8.69237e15 −1.67718
\(417\) −1.76826e14 −0.0336303
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 1.20729e15 0.213766
\(423\) −1.09473e16 −1.91102
\(424\) 0 0
\(425\) 0 0
\(426\) 2.08917e14 0.0349555
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) −3.11866e14 −0.0479806
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 2.46657e14 0.0349341
\(439\) −8.38011e14 −0.117075 −0.0585373 0.998285i \(-0.518644\pi\)
−0.0585373 + 0.998285i \(0.518644\pi\)
\(440\) 0 0
\(441\) −7.35311e15 −0.999631
\(442\) 0 0
\(443\) 5.28130e15 0.698745 0.349372 0.936984i \(-0.386395\pi\)
0.349372 + 0.936984i \(0.386395\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 1.93079e16 2.45316
\(447\) 0 0
\(448\) 0 0
\(449\) 8.58859e15 1.04820 0.524100 0.851657i \(-0.324402\pi\)
0.524100 + 0.851657i \(0.324402\pi\)
\(450\) 1.02462e16 1.23392
\(451\) 0 0
\(452\) 0 0
\(453\) −2.04439e14 −0.0236578
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.54631e16 1.61098 0.805491 0.592607i \(-0.201901\pi\)
0.805491 + 0.592607i \(0.201901\pi\)
\(462\) 0 0
\(463\) −1.58479e16 −1.60874 −0.804371 0.594128i \(-0.797497\pi\)
−0.804371 + 0.594128i \(0.797497\pi\)
\(464\) 5.12168e15 0.513221
\(465\) 0 0
\(466\) 2.04624e16 1.99821
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 9.66643e15 0.920007
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) −3.06324e15 −0.277032
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) −2.80738e16 −2.35360
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 6.73193e15 0.523682
\(485\) 0 0
\(486\) 9.36640e14 0.0710813
\(487\) −2.34979e15 −0.176139 −0.0880694 0.996114i \(-0.528070\pi\)
−0.0880694 + 0.996114i \(0.528070\pi\)
\(488\) 0 0
\(489\) 2.36675e13 0.00173101
\(490\) 0 0
\(491\) 8.36436e15 0.596958 0.298479 0.954416i \(-0.403521\pi\)
0.298479 + 0.954416i \(0.403521\pi\)
\(492\) 2.28116e14 0.0160830
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −3.51540e16 −2.36094
\(497\) 0 0
\(498\) 0 0
\(499\) −3.08763e16 −1.99996 −0.999981 0.00610007i \(-0.998058\pi\)
−0.999981 + 0.00610007i \(0.998058\pi\)
\(500\) 0 0
\(501\) 9.07088e13 0.00573618
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −6.81260e14 −0.0401111
\(508\) −2.30646e15 −0.134203
\(509\) 5.35996e15 0.308216 0.154108 0.988054i \(-0.450750\pi\)
0.154108 + 0.988054i \(0.450750\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −8.24612e15 −0.457751
\(513\) 0 0
\(514\) 3.08650e15 0.167374
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 6.96606e14 0.0356437
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) −1.02541e16 −0.506846
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 1.98219e15 0.0957541
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 2.19146e16 1.00000
\(530\) 0 0
\(531\) 1.05582e16 0.471004
\(532\) 0 0
\(533\) 6.44385e16 2.81049
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 7.05996e14 0.0294413
\(538\) −5.37687e16 −2.21736
\(539\) 0 0
\(540\) 0 0
\(541\) 4.95916e16 1.97799 0.988996 0.147939i \(-0.0472640\pi\)
0.988996 + 0.147939i \(0.0472640\pi\)
\(542\) −6.14164e16 −2.42264
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −3.72617e16 −1.39104 −0.695518 0.718508i \(-0.744825\pi\)
−0.695518 + 0.718508i \(0.744825\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) −3.19433e14 −0.0112913
\(553\) 0 0
\(554\) −4.95858e16 −1.71514
\(555\) 0 0
\(556\) 2.70923e16 0.917059
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 7.03820e16 2.33161
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) −6.18825e14 −0.0192262
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 2.91140e16 0.866986
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.61416e16 1.00000
\(576\) −2.60839e15 −0.0714228
\(577\) −6.56902e16 −1.78011 −0.890053 0.455857i \(-0.849333\pi\)
−0.890053 + 0.455857i \(0.849333\pi\)
\(578\) −4.60272e16 −1.23438
\(579\) 1.22404e15 0.0324881
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 3.43735e16 0.866455
\(585\) 0 0
\(586\) 0 0
\(587\) 7.81083e16 1.90927 0.954637 0.297772i \(-0.0962434\pi\)
0.954637 + 0.297772i \(0.0962434\pi\)
\(588\) −4.15654e14 −0.0100570
\(589\) 0 0
\(590\) 0 0
\(591\) −1.50548e15 −0.0353306
\(592\) 0 0
\(593\) −9.50505e15 −0.218588 −0.109294 0.994009i \(-0.534859\pi\)
−0.109294 + 0.994009i \(0.534859\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 9.92060e16 2.16936
\(599\) −6.60099e16 −1.42905 −0.714526 0.699609i \(-0.753358\pi\)
−0.714526 + 0.699609i \(0.753358\pi\)
\(600\) −5.26808e14 −0.0112913
\(601\) 9.41567e16 1.99804 0.999021 0.0442388i \(-0.0140862\pi\)
0.999021 + 0.0442388i \(0.0140862\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 3.13229e16 0.645120
\(605\) 0 0
\(606\) −2.06513e15 −0.0416976
\(607\) 3.62355e16 0.724439 0.362220 0.932093i \(-0.382019\pi\)
0.362220 + 0.932093i \(0.382019\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.74806e17 −3.35977
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) −7.08510e16 −1.32232
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 2.20242e15 0.0384017
\(622\) 9.00996e16 1.55590
\(623\) 0 0
\(624\) −2.48947e15 −0.0421696
\(625\) 5.96046e16 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 2.13951e14 0.00332576
\(634\) −1.37198e17 −2.11258
\(635\) 0 0
\(636\) 0 0
\(637\) −1.17414e17 −1.75745
\(638\) 0 0
\(639\) −1.00349e17 −1.47403
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −7.01249e16 −0.955975 −0.477988 0.878367i \(-0.658634\pi\)
−0.477988 + 0.878367i \(0.658634\pi\)
\(648\) 4.34824e16 0.587305
\(649\) 0 0
\(650\) 1.63611e17 2.16936
\(651\) 0 0
\(652\) −3.62620e15 −0.0472027
\(653\) −1.49916e17 −1.93361 −0.966804 0.255517i \(-0.917754\pi\)
−0.966804 + 0.255517i \(0.917754\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 1.59234e17 1.99808
\(657\) −1.18477e17 −1.47313
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) −2.07781e17 −2.46864
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −3.61696e16 −0.410761
\(668\) −1.38979e16 −0.156419
\(669\) 3.42165e15 0.0381662
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 8.28827e16 0.892018 0.446009 0.895028i \(-0.352845\pi\)
0.446009 + 0.895028i \(0.352845\pi\)
\(674\) 0 0
\(675\) 3.63223e15 0.0384017
\(676\) 1.04379e17 1.09378
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.73218e17 1.70636 0.853178 0.521620i \(-0.174672\pi\)
0.853178 + 0.521620i \(0.174672\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 1.71085e17 1.57160 0.785801 0.618479i \(-0.212251\pi\)
0.785801 + 0.618479i \(0.212251\pi\)
\(692\) −1.06730e17 −0.971964
\(693\) 0 0
\(694\) 2.75786e17 2.46840
\(695\) 0 0
\(696\) 5.27217e14 0.00463803
\(697\) 0 0
\(698\) 2.78372e17 2.40710
\(699\) 3.62625e15 0.0310881
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 9.97021e15 0.0833070
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −1.53441e17 −1.23912
\(707\) 0 0
\(708\) 5.96832e14 0.00473863
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 2.48260e17 1.88960
\(714\) 0 0
\(715\) 0 0
\(716\) −1.08169e17 −0.802830
\(717\) −4.97510e15 −0.0366173
\(718\) 0 0
\(719\) 2.08599e17 1.50987 0.754934 0.655801i \(-0.227669\pi\)
0.754934 + 0.655801i \(0.227669\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −1.74852e17 −1.23438
\(723\) 0 0
\(724\) 0 0
\(725\) −5.96509e16 −0.410761
\(726\) 3.47110e15 0.0237054
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) −1.49763e17 −0.997788
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 1.51692e17 0.954321
\(737\) 0 0
\(738\) −3.18803e17 −1.97326
\(739\) −3.09880e17 −1.90251 −0.951254 0.308408i \(-0.900204\pi\)
−0.951254 + 0.308408i \(0.900204\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) −3.61869e15 −0.0213361
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) −4.31964e17 −2.38859
\(753\) 0 0
\(754\) −1.63737e17 −0.891087
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 3.32960e16 0.171429 0.0857146 0.996320i \(-0.472683\pi\)
0.0857146 + 0.996320i \(0.472683\pi\)
\(762\) −1.18925e15 −0.00607497
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.68594e17 0.828073
\(768\) −4.78949e15 −0.0233411
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 5.46974e14 0.00260400
\(772\) −1.87541e17 −0.885914
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 4.09430e17 1.88960
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −3.63505e15 −0.0157739
\(784\) −2.90143e17 −1.24944
\(785\) 0 0
\(786\) 1.02205e15 0.00433449
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 2.30662e17 0.963426
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) −2.08579e17 −0.832429
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 2.50170e17 0.954321
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 1.12386e18 4.09921
\(807\) −9.52863e15 −0.0344976
\(808\) −2.87790e17 −1.03421
\(809\) −4.80287e17 −1.71321 −0.856603 0.515976i \(-0.827429\pi\)
−0.856603 + 0.515976i \(0.827429\pi\)
\(810\) 0 0
\(811\) 5.45039e17 1.91559 0.957794 0.287454i \(-0.0928089\pi\)
0.957794 + 0.287454i \(0.0928089\pi\)
\(812\) 0 0
\(813\) −1.08839e16 −0.0376914
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −2.48120e17 −0.828213
\(819\) 0 0
\(820\) 0 0
\(821\) −3.54020e17 −1.15603 −0.578014 0.816027i \(-0.696172\pi\)
−0.578014 + 0.816027i \(0.696172\pi\)
\(822\) 0 0
\(823\) 2.76481e16 0.0889745 0.0444872 0.999010i \(-0.485835\pi\)
0.0444872 + 0.999010i \(0.485835\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) −1.68690e17 −0.523489
\(829\) 5.93576e17 1.82873 0.914364 0.404892i \(-0.132691\pi\)
0.914364 + 0.404892i \(0.132691\pi\)
\(830\) 0 0
\(831\) −8.78735e15 −0.0266841
\(832\) −4.16506e16 −0.125569
\(833\) 0 0
\(834\) 1.39693e16 0.0415124
\(835\) 0 0
\(836\) 0 0
\(837\) 2.49501e16 0.0725638
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) −2.94118e17 −0.831276
\(842\) 0 0
\(843\) 0 0
\(844\) −3.27803e16 −0.0906897
\(845\) 0 0
\(846\) 8.64838e17 2.35892
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) −5.67248e15 −0.0148298
\(853\) −3.65113e17 −0.947835 −0.473917 0.880569i \(-0.657160\pi\)
−0.473917 + 0.880569i \(0.657160\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −5.29616e17 −1.33683 −0.668414 0.743789i \(-0.733027\pi\)
−0.668414 + 0.743789i \(0.733027\pi\)
\(858\) 0 0
\(859\) 8.02395e17 1.99724 0.998618 0.0525528i \(-0.0167358\pi\)
0.998618 + 0.0525528i \(0.0167358\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −6.65593e17 −1.61118 −0.805590 0.592474i \(-0.798151\pi\)
−0.805590 + 0.592474i \(0.798151\pi\)
\(864\) 1.52450e16 0.0366475
\(865\) 0 0
\(866\) 0 0
\(867\) −8.15671e15 −0.0192044
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) −6.69721e15 −0.0148207
\(877\) −8.75030e17 −1.92320 −0.961602 0.274446i \(-0.911505\pi\)
−0.961602 + 0.274446i \(0.911505\pi\)
\(878\) 6.62028e16 0.144514
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 5.80896e17 1.23392
\(883\) 9.25511e17 1.95262 0.976309 0.216382i \(-0.0694257\pi\)
0.976309 + 0.216382i \(0.0694257\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −4.17223e17 −0.862513
\(887\) 9.58929e17 1.96900 0.984498 0.175394i \(-0.0561201\pi\)
0.984498 + 0.175394i \(0.0561201\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) −5.24245e17 −1.04075
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 1.75808e16 0.0337508
\(898\) −6.78499e17 −1.29387
\(899\) −4.09748e17 −0.776173
\(900\) −2.78203e17 −0.523489
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 1.61506e16 0.0292025
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 9.91943e17 1.75834
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) −1.25559e16 −0.0205726
\(922\) −1.22158e18 −1.98856
\(923\) −1.60237e18 −2.59150
\(924\) 0 0
\(925\) 0 0
\(926\) 1.25199e18 1.98579
\(927\) 0 0
\(928\) −2.50364e17 −0.391998
\(929\) −5.75741e17 −0.895639 −0.447819 0.894124i \(-0.647799\pi\)
−0.447819 + 0.894124i \(0.647799\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −5.55593e17 −0.847738
\(933\) 1.59670e16 0.0242066
\(934\) 0 0
\(935\) 0 0
\(936\) 6.94582e17 1.03292
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) −1.12452e18 −1.59918
\(944\) 4.16612e17 0.588708
\(945\) 0 0
\(946\) 0 0
\(947\) 3.24905e17 0.450460 0.225230 0.974306i \(-0.427687\pi\)
0.225230 + 0.974306i \(0.427687\pi\)
\(948\) 0 0
\(949\) −1.89183e18 −2.58992
\(950\) 0 0
\(951\) −2.43136e16 −0.0328675
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 7.62256e17 0.998513
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 2.02475e18 2.57058
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1.37846e18 1.68591 0.842954 0.537985i \(-0.180814\pi\)
0.842954 + 0.537985i \(0.180814\pi\)
\(968\) 4.83723e17 0.587955
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) −2.54316e16 −0.0301561
\(973\) 0 0
\(974\) 1.85633e17 0.217421
\(975\) 2.89943e16 0.0337508
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) −1.86974e15 −0.00213672
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) −6.60784e17 −0.736870
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 1.63913e16 0.0180569
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 1.57698e18 1.66488 0.832442 0.554112i \(-0.186942\pi\)
0.832442 + 0.554112i \(0.186942\pi\)
\(992\) 1.71844e18 1.80328
\(993\) −3.68219e16 −0.0384070
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 7.27897e17 0.741138 0.370569 0.928805i \(-0.379163\pi\)
0.370569 + 0.928805i \(0.379163\pi\)
\(998\) 2.43923e18 2.46870
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 23.13.b.a.22.1 1
23.22 odd 2 CM 23.13.b.a.22.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.13.b.a.22.1 1 1.1 even 1 trivial
23.13.b.a.22.1 1 23.22 odd 2 CM