gp: [N,k,chi] = [2299,4,Mod(1,2299)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2299, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2299.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [23,-4,2,96,10]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
\( p \)
Sign
\(11\)
\( -1 \)
\(19\)
\( +1 \)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2299))\):
\( T_{2}^{23} + 4 T_{2}^{22} - 132 T_{2}^{21} - 500 T_{2}^{20} + 7465 T_{2}^{19} + 26554 T_{2}^{18} + \cdots - 404467200 \)
T2^23 + 4*T2^22 - 132*T2^21 - 500*T2^20 + 7465*T2^19 + 26554*T2^18 - 236718*T2^17 - 783955*T2^16 + 4622717*T2^15 + 14127366*T2^14 - 57472462*T2^13 - 160479944*T2^12 + 454748113*T2^11 + 1144213552*T2^10 - 2230611520*T2^9 - 4927419905*T2^8 + 6443893792*T2^7 + 11772149452*T2^6 - 10086582680*T2^5 - 13160285232*T2^4 + 7039726272*T2^3 + 4303606656*T2^2 - 886446720*T2 - 404467200
\( T_{5}^{23} - 10 T_{5}^{22} - 1906 T_{5}^{21} + 18988 T_{5}^{20} + 1520556 T_{5}^{19} + \cdots - 24\!\cdots\!00 \)
T5^23 - 10*T5^22 - 1906*T5^21 + 18988*T5^20 + 1520556*T5^19 - 15034928*T5^18 - 662726854*T5^17 + 6510665970*T5^16 + 172738237449*T5^15 - 1701093902230*T5^14 - 27654145030575*T5^13 + 278763094242516*T5^12 + 2676783079042860*T5^11 - 28795353979433358*T5^10 - 145863073643370834*T5^9 + 1832286407372311374*T5^8 + 3517002668099578795*T5^7 - 67819480808600202048*T5^6 + 18098050727924834440*T5^5 + 1295419117627399848858*T5^4 - 2426423645148940929516*T5^3 - 8808225534318258007212*T5^2 + 31441210440679400421600*T5 - 24953529610886742489600