Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2299,4,Mod(1,2299)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2299, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2299.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 2299 = 11^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 2299.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(135.645391103\) |
Analytic rank: | \(0\) |
Dimension: | \(22\) |
Twist minimal: | yes |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −5.19157 | −1.87096 | 18.9524 | 7.68751 | 9.71321 | 18.0081 | −56.8604 | −23.4995 | −39.9103 | ||||||||||||||||||
1.2 | −5.06259 | −6.63903 | 17.6298 | −13.0064 | 33.6107 | −28.9606 | −48.7518 | 17.0768 | 65.8463 | ||||||||||||||||||
1.3 | −4.43852 | 6.80992 | 11.7005 | 3.17808 | −30.2260 | 18.5062 | −16.4247 | 19.3750 | −14.1060 | ||||||||||||||||||
1.4 | −3.86777 | 5.32976 | 6.95964 | −12.9431 | −20.6143 | −22.5451 | 4.02387 | 1.40635 | 50.0611 | ||||||||||||||||||
1.5 | −2.82403 | 1.56441 | −0.0248805 | 15.1210 | −4.41794 | −15.4762 | 22.6625 | −24.5526 | −42.7021 | ||||||||||||||||||
1.6 | −2.19322 | 9.23440 | −3.18979 | −10.3281 | −20.2531 | 24.6227 | 24.5417 | 58.2742 | 22.6519 | ||||||||||||||||||
1.7 | −1.87154 | −4.33923 | −4.49733 | −20.2949 | 8.12105 | −13.0526 | 23.3893 | −8.17107 | 37.9828 | ||||||||||||||||||
1.8 | −1.75593 | −6.28115 | −4.91672 | 8.34309 | 11.0292 | 35.4301 | 22.6808 | 12.4528 | −14.6499 | ||||||||||||||||||
1.9 | −0.768521 | 0.419154 | −7.40938 | −10.1932 | −0.322129 | 10.4096 | 11.8424 | −26.8243 | 7.83369 | ||||||||||||||||||
1.10 | −0.414400 | 4.79718 | −7.82827 | 11.0417 | −1.98795 | −9.77215 | 6.55923 | −3.98702 | −4.57566 | ||||||||||||||||||
1.11 | 0.402649 | −9.75295 | −7.83787 | 4.77814 | −3.92702 | −20.1025 | −6.37711 | 68.1200 | 1.92391 | ||||||||||||||||||
1.12 | 0.858493 | 9.94500 | −7.26299 | 16.1474 | 8.53772 | 23.7898 | −13.1032 | 71.9031 | 13.8624 | ||||||||||||||||||
1.13 | 1.59152 | −6.78232 | −5.46707 | −5.15999 | −10.7942 | 8.08597 | −21.4331 | 18.9998 | −8.21221 | ||||||||||||||||||
1.14 | 1.63049 | 5.25391 | −5.34152 | −3.49440 | 8.56642 | −8.36917 | −21.7531 | 0.603588 | −5.69756 | ||||||||||||||||||
1.15 | 3.13281 | 0.143257 | 1.81447 | 15.3516 | 0.448795 | 11.4592 | −19.3781 | −26.9795 | 48.0935 | ||||||||||||||||||
1.16 | 3.44831 | −5.82366 | 3.89087 | 4.62665 | −20.0818 | −13.1060 | −14.1696 | 6.91497 | 15.9542 | ||||||||||||||||||
1.17 | 3.78735 | 1.50826 | 6.34402 | −20.4839 | 5.71230 | −17.5528 | −6.27177 | −24.7252 | −77.5798 | ||||||||||||||||||
1.18 | 4.13578 | 1.49366 | 9.10470 | −15.4990 | 6.17746 | 35.6996 | 4.56880 | −24.7690 | −64.1005 | ||||||||||||||||||
1.19 | 4.62591 | 8.89109 | 13.3990 | −4.19389 | 41.1293 | −15.6646 | 24.9753 | 52.0515 | −19.4006 | ||||||||||||||||||
1.20 | 5.16512 | 6.12086 | 18.6785 | 15.5661 | 31.6150 | 20.8137 | 55.1556 | 10.4649 | 80.4008 | ||||||||||||||||||
See all 22 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(11\) | \( -1 \) |
\(19\) | \( -1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 2299.4.a.p | yes | 22 |
11.b | odd | 2 | 1 | 2299.4.a.o | ✓ | 22 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
2299.4.a.o | ✓ | 22 | 11.b | odd | 2 | 1 | |
2299.4.a.p | yes | 22 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2299))\):
\( T_{2}^{22} - 11 T_{2}^{21} - 75 T_{2}^{20} + 1175 T_{2}^{19} + 1220 T_{2}^{18} - 51224 T_{2}^{17} + \cdots + 298400256 \)
|
\( T_{5}^{22} - 1702 T_{5}^{20} + 556 T_{5}^{19} + 1219708 T_{5}^{18} - 633492 T_{5}^{17} + \cdots - 33\!\cdots\!00 \)
|