gp: [N,k,chi] = [2299,4,Mod(1,2299)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2299, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2299.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [22,-11,7,95,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
\( p \)
Sign
\(11\)
\( -1 \)
\(19\)
\( +1 \)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2299))\):
\( T_{2}^{22} + 11 T_{2}^{21} - 75 T_{2}^{20} - 1175 T_{2}^{19} + 1220 T_{2}^{18} + 51224 T_{2}^{17} + \cdots + 298400256 \)
T2^22 + 11*T2^21 - 75*T2^20 - 1175*T2^19 + 1220*T2^18 + 51224*T2^17 + 44828*T2^16 - 1178839*T2^15 - 2150466*T2^14 + 15539958*T2^13 + 37144150*T2^12 - 120051682*T2^11 - 331819507*T2^10 + 539399499*T2^9 + 1626980269*T2^8 - 1348221964*T2^7 - 4279443348*T2^6 + 1640326840*T2^5 + 5466175536*T2^4 - 679990976*T2^3 - 2586312064*T2^2 + 86471808*T2 + 298400256
\( T_{5}^{22} - 1702 T_{5}^{20} + 556 T_{5}^{19} + 1219708 T_{5}^{18} - 633492 T_{5}^{17} + \cdots - 33\!\cdots\!00 \)
T5^22 - 1702*T5^20 + 556*T5^19 + 1219708*T5^18 - 633492*T5^17 - 482248542*T5^16 + 281091230*T5^15 + 115888227349*T5^14 - 63431522012*T5^13 - 17579988442547*T5^12 + 7947370220986*T5^11 + 1694647753059556*T5^10 - 565371543304654*T5^9 - 102201989448410958*T5^8 + 21980694675124950*T5^7 + 3721049464782808247*T5^6 - 391782179079535890*T5^5 - 77052244957263149472*T5^4 + 1788424681016387118*T5^3 + 815669180859504519872*T5^2 + 16478920644634095008*T5 - 3347578329623344371200