Properties

Label 2299.4.a.m
Level $2299$
Weight $4$
Character orbit 2299.a
Self dual yes
Analytic conductor $135.645$
Analytic rank $1$
Dimension $18$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2299,4,Mod(1,2299)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2299, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2299.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2299 = 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2299.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(135.645391103\)
Analytic rank: \(1\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 6 x^{17} - 90 x^{16} + 574 x^{15} + 3140 x^{14} - 22274 x^{13} - 51450 x^{12} + 448726 x^{11} + \cdots + 2334720 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{6}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{17}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - \beta_{4} q^{3} + (\beta_{2} + 4) q^{4} + ( - \beta_{6} - \beta_1 - 3) q^{5} + \beta_{9} q^{6} + (\beta_{7} + \beta_{4} + \beta_1 - 3) q^{7} + ( - \beta_{8} - \beta_{6} + \cdots - 3 \beta_1) q^{8}+ \cdots + ( - 10 \beta_{17} + 5 \beta_{16} + \cdots - 225) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 6 q^{2} - 8 q^{3} + 72 q^{4} - 58 q^{5} + 6 q^{6} - 44 q^{7} - 18 q^{8} + 190 q^{9} + 134 q^{10} + 130 q^{12} + 40 q^{13} - 152 q^{14} - 28 q^{15} + 88 q^{16} - 276 q^{17} - 52 q^{18} + 342 q^{19}+ \cdots - 5314 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{18} - 6 x^{17} - 90 x^{16} + 574 x^{15} + 3140 x^{14} - 22274 x^{13} - 51450 x^{12} + 448726 x^{11} + \cdots + 2334720 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 12 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 13\!\cdots\!66 \nu^{17} + \cdots - 26\!\cdots\!16 ) / 91\!\cdots\!04 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 21\!\cdots\!86 \nu^{17} + \cdots + 48\!\cdots\!08 ) / 91\!\cdots\!04 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 25\!\cdots\!41 \nu^{17} + \cdots + 37\!\cdots\!88 ) / 91\!\cdots\!04 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 69\!\cdots\!73 \nu^{17} + \cdots + 39\!\cdots\!84 ) / 22\!\cdots\!76 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 46\!\cdots\!07 \nu^{17} + \cdots - 96\!\cdots\!96 ) / 91\!\cdots\!04 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 49\!\cdots\!78 \nu^{17} + \cdots - 98\!\cdots\!96 ) / 91\!\cdots\!04 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 55\!\cdots\!07 \nu^{17} + \cdots + 50\!\cdots\!20 ) / 91\!\cdots\!04 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 68\!\cdots\!18 \nu^{17} + \cdots + 10\!\cdots\!12 ) / 91\!\cdots\!04 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 87\!\cdots\!55 \nu^{17} + \cdots - 48\!\cdots\!44 ) / 91\!\cdots\!04 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 88\!\cdots\!11 \nu^{17} + \cdots + 21\!\cdots\!00 ) / 91\!\cdots\!04 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 13\!\cdots\!89 \nu^{17} + \cdots - 33\!\cdots\!28 ) / 91\!\cdots\!04 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 18\!\cdots\!27 \nu^{17} + \cdots - 33\!\cdots\!12 ) / 91\!\cdots\!04 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 23\!\cdots\!23 \nu^{17} + \cdots - 41\!\cdots\!08 ) / 91\!\cdots\!04 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( 29\!\cdots\!52 \nu^{17} + \cdots + 31\!\cdots\!56 ) / 91\!\cdots\!04 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( 34\!\cdots\!81 \nu^{17} + \cdots - 24\!\cdots\!40 ) / 91\!\cdots\!04 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 12 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{8} + \beta_{6} + \beta_{4} + \beta_{2} + 19\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{16} + \beta_{13} + \beta_{12} - \beta_{10} + 2 \beta_{9} + 2 \beta_{8} - \beta_{7} + 3 \beta_{6} + \cdots + 225 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( - 2 \beta_{17} + 3 \beta_{16} + 3 \beta_{15} + \beta_{14} + \beta_{13} - 2 \beta_{12} - 3 \beta_{11} + \cdots + 53 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - 4 \beta_{17} + 43 \beta_{16} + 4 \beta_{15} + 8 \beta_{14} + 47 \beta_{13} + 27 \beta_{12} + \cdots + 4841 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 82 \beta_{17} + 147 \beta_{16} + 117 \beta_{15} + 57 \beta_{14} + 91 \beta_{13} - 118 \beta_{12} + \cdots + 2959 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 168 \beta_{17} + 1439 \beta_{16} + 174 \beta_{15} + 476 \beta_{14} + 1729 \beta_{13} + 455 \beta_{12} + \cdots + 112731 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 2406 \beta_{17} + 5403 \beta_{16} + 3447 \beta_{15} + 2533 \beta_{14} + 4633 \beta_{13} + \cdots + 119933 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 4892 \beta_{17} + 44511 \beta_{16} + 5436 \beta_{15} + 19804 \beta_{14} + 58111 \beta_{13} + \cdots + 2769809 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 61802 \beta_{17} + 179867 \beta_{16} + 92161 \beta_{15} + 98657 \beta_{14} + 189655 \beta_{13} + \cdots + 4316243 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 120944 \beta_{17} + 1337343 \beta_{16} + 151538 \beta_{15} + 715540 \beta_{14} + 1868285 \beta_{13} + \cdots + 70854567 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( - 1476142 \beta_{17} + 5734875 \beta_{16} + 2366667 \beta_{15} + 3541421 \beta_{14} + 6968437 \beta_{13} + \cdots + 146471353 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( - 2668948 \beta_{17} + 39776007 \beta_{16} + 4058400 \beta_{15} + 24115796 \beta_{14} + \cdots + 1871928965 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 33469218 \beta_{17} + 179069539 \beta_{16} + 59826957 \beta_{15} + 120699649 \beta_{14} + \cdots + 4805230199 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( - 52122376 \beta_{17} + 1180733799 \beta_{16} + 107987766 \beta_{15} + 782413628 \beta_{14} + \cdots + 50789070427 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( - 721930726 \beta_{17} + 5532118931 \beta_{16} + 1507761927 \beta_{15} + 3977375933 \beta_{14} + \cdots + 154319134221 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.52634
4.88721
4.38401
3.93998
3.49487
2.81206
2.21271
2.08014
1.15150
0.105296
−0.358037
−0.837228
−2.61431
−3.15480
−3.74414
−4.22467
−4.82054
−4.84039
−5.52634 −6.93606 22.5404 −20.1287 38.3310 19.4784 −80.3550 21.1090 111.238
1.2 −4.88721 9.51146 15.8848 −20.7883 −46.4845 −19.9656 −38.5349 63.4679 101.597
1.3 −4.38401 −3.40421 11.2195 10.5795 14.9241 33.0336 −14.1145 −15.4114 −46.3806
1.4 −3.93998 −2.40498 7.52342 −10.1845 9.47556 −32.6275 1.87773 −21.2161 40.1266
1.5 −3.49487 7.26127 4.21412 10.8334 −25.3772 −13.8581 13.2312 25.7260 −37.8612
1.6 −2.81206 4.39643 −0.0923432 −16.8494 −12.3630 12.9158 22.7561 −7.67144 47.3813
1.7 −2.21271 2.70882 −3.10390 2.73676 −5.99385 11.5141 24.5697 −19.6623 −6.05566
1.8 −2.08014 −6.72517 −3.67300 1.31825 13.9893 7.10424 24.2815 18.2280 −2.74215
1.9 −1.15150 −7.57076 −6.67404 18.3685 8.71774 −25.2111 16.8972 30.3164 −21.1513
1.10 −0.105296 −0.343644 −7.98891 −16.0139 0.0361843 −22.6655 1.68357 −26.8819 1.68620
1.11 0.358037 −9.51080 −7.87181 −14.0403 −3.40522 35.1451 −5.68270 63.4552 −5.02694
1.12 0.837228 1.70494 −7.29905 11.3759 1.42743 −27.5404 −12.8088 −24.0932 9.52418
1.13 2.61431 3.64054 −1.16538 0.302892 9.51751 27.0597 −23.9611 −13.7464 0.791853
1.14 3.15480 −5.38807 1.95277 −14.4007 −16.9983 −5.91572 −19.0778 2.03128 −45.4314
1.15 3.74414 9.42877 6.01859 4.00968 35.3026 −31.4657 −7.41866 61.9016 15.0128
1.16 4.22467 −9.90185 9.84786 6.64131 −41.8321 −0.361822 7.80659 71.0466 28.0573
1.17 4.82054 2.55220 15.2376 −8.04245 12.3030 −14.9441 34.8890 −20.4863 −38.7689
1.18 4.84039 2.98110 15.4294 −3.71799 14.4297 4.30459 35.9609 −18.1130 −17.9965
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.18
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(11\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2299.4.a.m 18
11.b odd 2 1 2299.4.a.n yes 18
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2299.4.a.m 18 1.a even 1 1 trivial
2299.4.a.n yes 18 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2299))\):

\( T_{2}^{18} + 6 T_{2}^{17} - 90 T_{2}^{16} - 574 T_{2}^{15} + 3140 T_{2}^{14} + 22274 T_{2}^{13} + \cdots + 2334720 \) Copy content Toggle raw display
\( T_{5}^{18} + 58 T_{5}^{17} + 317 T_{5}^{16} - 39016 T_{5}^{15} - 638304 T_{5}^{14} + \cdots - 48\!\cdots\!72 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{18} + 6 T^{17} + \cdots + 2334720 \) Copy content Toggle raw display
$3$ \( T^{18} + \cdots - 184638336588 \) Copy content Toggle raw display
$5$ \( T^{18} + \cdots - 48\!\cdots\!72 \) Copy content Toggle raw display
$7$ \( T^{18} + \cdots + 39\!\cdots\!60 \) Copy content Toggle raw display
$11$ \( T^{18} \) Copy content Toggle raw display
$13$ \( T^{18} + \cdots - 32\!\cdots\!00 \) Copy content Toggle raw display
$17$ \( T^{18} + \cdots - 21\!\cdots\!60 \) Copy content Toggle raw display
$19$ \( (T - 19)^{18} \) Copy content Toggle raw display
$23$ \( T^{18} + \cdots - 30\!\cdots\!40 \) Copy content Toggle raw display
$29$ \( T^{18} + \cdots - 19\!\cdots\!20 \) Copy content Toggle raw display
$31$ \( T^{18} + \cdots - 12\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{18} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{18} + \cdots + 38\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{18} + \cdots - 66\!\cdots\!80 \) Copy content Toggle raw display
$47$ \( T^{18} + \cdots + 53\!\cdots\!96 \) Copy content Toggle raw display
$53$ \( T^{18} + \cdots - 11\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{18} + \cdots + 62\!\cdots\!80 \) Copy content Toggle raw display
$61$ \( T^{18} + \cdots + 13\!\cdots\!60 \) Copy content Toggle raw display
$67$ \( T^{18} + \cdots - 20\!\cdots\!84 \) Copy content Toggle raw display
$71$ \( T^{18} + \cdots - 96\!\cdots\!60 \) Copy content Toggle raw display
$73$ \( T^{18} + \cdots - 45\!\cdots\!80 \) Copy content Toggle raw display
$79$ \( T^{18} + \cdots - 12\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{18} + \cdots - 93\!\cdots\!40 \) Copy content Toggle raw display
$89$ \( T^{18} + \cdots - 46\!\cdots\!16 \) Copy content Toggle raw display
$97$ \( T^{18} + \cdots - 78\!\cdots\!84 \) Copy content Toggle raw display
show more
show less