Properties

Label 2299.4.a.j
Level $2299$
Weight $4$
Character orbit 2299.a
Self dual yes
Analytic conductor $135.645$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2299,4,Mod(1,2299)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2299, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2299.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2299 = 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2299.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(135.645391103\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 4 x^{9} - 38 x^{8} + 128 x^{7} + 499 x^{6} - 1156 x^{5} - 2730 x^{4} + 2748 x^{3} + 4628 x^{2} + \cdots - 1952 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 209)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{9}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{2} + (\beta_{4} - 1) q^{3} + (\beta_{2} - \beta_1 + 2) q^{4} + ( - \beta_{5} - \beta_{4} - 1) q^{5} + (\beta_{7} - \beta_{6} + \beta_{4} + \cdots + \beta_1) q^{6} + ( - \beta_{9} + \beta_{8} - \beta_{5} + \cdots + 5) q^{7}+ \cdots + (5 \beta_{9} + 93 \beta_{8} + \cdots - 389) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 6 q^{2} - 9 q^{3} + 14 q^{4} - 10 q^{5} - q^{6} + 53 q^{7} + 42 q^{8} + 65 q^{9} - 4 q^{10} - q^{12} + 127 q^{13} - 33 q^{14} - 276 q^{15} - 82 q^{16} + 165 q^{17} + 343 q^{18} + 190 q^{19} - 226 q^{20}+ \cdots - 3491 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{10} - 4 x^{9} - 38 x^{8} + 128 x^{7} + 499 x^{6} - 1156 x^{5} - 2730 x^{4} + 2748 x^{3} + 4628 x^{2} + \cdots - 1952 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 9 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 5889 \nu^{9} + 22985 \nu^{8} - 430832 \nu^{7} - 827470 \nu^{6} + 9118029 \nu^{5} + 11143105 \nu^{4} + \cdots + 77877760 ) / 4171412 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 23661 \nu^{9} + 84558 \nu^{8} + 809814 \nu^{7} - 2105852 \nu^{6} - 9169883 \nu^{5} + \cdots - 101515464 ) / 8342824 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 29615 \nu^{9} - 121174 \nu^{8} - 1171734 \nu^{7} + 3737104 \nu^{6} + 16979665 \nu^{5} + \cdots - 49128816 ) / 8342824 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 15468 \nu^{9} + 48535 \nu^{8} + 639678 \nu^{7} - 1551732 \nu^{6} - 8945646 \nu^{5} + \cdots + 28999224 ) / 4171412 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 8157 \nu^{9} + 35101 \nu^{8} + 304566 \nu^{7} - 1021370 \nu^{6} - 4013188 \nu^{5} + \cdots - 14978406 ) / 2085706 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 25792 \nu^{9} + 81199 \nu^{8} + 1021320 \nu^{7} - 2430470 \nu^{6} - 13994044 \nu^{5} + \cdots - 608584 ) / 4171412 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 70843 \nu^{9} - 365961 \nu^{8} - 2256990 \nu^{7} + 11610816 \nu^{6} + 21503271 \nu^{5} + \cdots - 89837780 ) / 4171412 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 9 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{8} + \beta_{7} - \beta_{6} + \beta_{5} - \beta_{4} + 16\beta _1 + 8 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{9} + 3\beta_{8} + 3\beta_{7} + \beta_{6} + 2\beta_{5} - 2\beta_{4} + 3\beta_{3} + 20\beta_{2} + 28\beta _1 + 148 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{9} + 24 \beta_{8} + 34 \beta_{7} - 16 \beta_{6} + 35 \beta_{5} - 27 \beta_{4} + 3 \beta_{3} + \cdots + 229 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 34 \beta_{9} + 96 \beta_{8} + 128 \beta_{7} + 30 \beta_{6} + 86 \beta_{5} - 66 \beta_{4} + 96 \beta_{3} + \cdots + 2779 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 52 \beta_{9} + 543 \beta_{8} + 959 \beta_{7} - 229 \beta_{6} + 917 \beta_{5} - 681 \beta_{4} + \cdots + 5640 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 865 \beta_{9} + 2403 \beta_{8} + 3999 \beta_{7} + 681 \beta_{6} + 2630 \beta_{5} - 1982 \beta_{4} + \cdots + 55036 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 1765 \beta_{9} + 12028 \beta_{8} + 25246 \beta_{7} - 3344 \beta_{6} + 21959 \beta_{5} - 16799 \beta_{4} + \cdots + 134205 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4.83898
4.40746
3.64121
1.35918
0.921212
−0.595665
−1.36428
−1.89060
−3.09278
−4.22473
−3.83898 −4.61833 6.73778 −3.46804 17.7297 −5.73385 4.84564 −5.67104 13.3137
1.2 −3.40746 3.18502 3.61081 −19.4027 −10.8528 8.97513 14.9560 −16.8557 66.1141
1.3 −2.64121 −1.42142 −1.02399 15.2418 3.75427 33.7413 23.8343 −24.9796 −40.2570
1.4 −0.359183 5.32423 −7.87099 1.62705 −1.91237 14.9146 5.70058 1.34748 −0.584408
1.5 0.0787876 −6.76160 −7.99379 3.67867 −0.532730 −32.3926 −1.26011 18.7192 0.289833
1.6 1.59567 −8.62487 −5.45385 16.8045 −13.7624 28.5770 −21.4678 47.3883 26.8144
1.7 2.36428 0.664333 −2.41017 −1.33164 1.57067 −10.1376 −24.6126 −26.5587 −3.14837
1.8 2.89060 9.67478 0.355548 −16.5808 27.9659 8.25844 −22.0970 66.6014 −47.9284
1.9 4.09278 −7.59208 8.75083 −13.8757 −31.0727 7.43945 3.07300 30.6397 −56.7903
1.10 5.22473 1.16993 19.2978 7.30686 6.11255 −0.641868 59.0281 −25.6313 38.1764
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.10
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(11\) \( -1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2299.4.a.j 10
11.b odd 2 1 209.4.a.b 10
33.d even 2 1 1881.4.a.e 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
209.4.a.b 10 11.b odd 2 1
1881.4.a.e 10 33.d even 2 1
2299.4.a.j 10 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2299))\):

\( T_{2}^{10} - 6 T_{2}^{9} - 29 T_{2}^{8} + 200 T_{2}^{7} + 205 T_{2}^{6} - 2146 T_{2}^{5} + 501 T_{2}^{4} + \cdots + 228 \) Copy content Toggle raw display
\( T_{5}^{10} + 10 T_{5}^{9} - 671 T_{5}^{8} - 5094 T_{5}^{7} + 145960 T_{5}^{6} + 660422 T_{5}^{5} + \cdots - 230929132 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{10} - 6 T^{9} + \cdots + 228 \) Copy content Toggle raw display
$3$ \( T^{10} + 9 T^{9} + \cdots - 370616 \) Copy content Toggle raw display
$5$ \( T^{10} + \cdots - 230929132 \) Copy content Toggle raw display
$7$ \( T^{10} + \cdots + 9583861392 \) Copy content Toggle raw display
$11$ \( T^{10} \) Copy content Toggle raw display
$13$ \( T^{10} + \cdots + 61\!\cdots\!12 \) Copy content Toggle raw display
$17$ \( T^{10} + \cdots + 18\!\cdots\!56 \) Copy content Toggle raw display
$19$ \( (T - 19)^{10} \) Copy content Toggle raw display
$23$ \( T^{10} + \cdots - 32\!\cdots\!04 \) Copy content Toggle raw display
$29$ \( T^{10} + \cdots + 26\!\cdots\!32 \) Copy content Toggle raw display
$31$ \( T^{10} + \cdots - 10\!\cdots\!36 \) Copy content Toggle raw display
$37$ \( T^{10} + \cdots - 27\!\cdots\!88 \) Copy content Toggle raw display
$41$ \( T^{10} + \cdots + 18\!\cdots\!08 \) Copy content Toggle raw display
$43$ \( T^{10} + \cdots - 94\!\cdots\!56 \) Copy content Toggle raw display
$47$ \( T^{10} + \cdots - 10\!\cdots\!48 \) Copy content Toggle raw display
$53$ \( T^{10} + \cdots + 19\!\cdots\!44 \) Copy content Toggle raw display
$59$ \( T^{10} + \cdots + 11\!\cdots\!96 \) Copy content Toggle raw display
$61$ \( T^{10} + \cdots + 17\!\cdots\!72 \) Copy content Toggle raw display
$67$ \( T^{10} + \cdots - 16\!\cdots\!56 \) Copy content Toggle raw display
$71$ \( T^{10} + \cdots - 15\!\cdots\!52 \) Copy content Toggle raw display
$73$ \( T^{10} + \cdots + 31\!\cdots\!88 \) Copy content Toggle raw display
$79$ \( T^{10} + \cdots + 13\!\cdots\!16 \) Copy content Toggle raw display
$83$ \( T^{10} + \cdots - 15\!\cdots\!76 \) Copy content Toggle raw display
$89$ \( T^{10} + \cdots - 47\!\cdots\!84 \) Copy content Toggle raw display
$97$ \( T^{10} + \cdots - 14\!\cdots\!04 \) Copy content Toggle raw display
show more
show less