Properties

Label 2299.4.a.i
Level $2299$
Weight $4$
Character orbit 2299.a
Self dual yes
Analytic conductor $135.645$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2299,4,Mod(1,2299)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2299, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2299.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2299 = 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2299.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(135.645391103\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 43x^{6} - 12x^{5} + 545x^{4} + 264x^{3} - 2017x^{2} - 660x + 2178 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 209)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + \beta_{3} q^{3} + (\beta_{2} + 3) q^{4} + ( - \beta_{5} + \beta_1 - 2) q^{5} + ( - \beta_{6} + \beta_{3} + \cdots - \beta_1) q^{6} + (\beta_{7} + \beta_{6} - \beta_{5} + \cdots + 7) q^{7}+ \cdots + ( - 12 \beta_{7} + 4 \beta_{6} + \cdots - 540) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{3} + 22 q^{4} - 12 q^{5} - q^{6} + 59 q^{7} + 36 q^{8} - 19 q^{9} + 120 q^{10} - 55 q^{12} + 61 q^{13} - 93 q^{14} - 62 q^{15} - 34 q^{16} - 107 q^{17} + 183 q^{18} - 152 q^{19} - 82 q^{20} + 145 q^{21}+ \cdots - 4035 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 43x^{6} - 12x^{5} + 545x^{4} + 264x^{3} - 2017x^{2} - 660x + 2178 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 11 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 7\nu^{7} - 165\nu^{6} - 334\nu^{5} + 6318\nu^{4} + 6389\nu^{3} - 64911\nu^{2} - 45634\nu + 129690 ) / 6864 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 17\nu^{7} - 33\nu^{6} - 566\nu^{5} + 390\nu^{4} + 4975\nu^{3} + 6237\nu^{2} - 12278\nu - 22110 ) / 3432 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{7} - 43\nu^{5} - 12\nu^{4} + 512\nu^{3} + 264\nu^{2} - 1258\nu - 462 ) / 66 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 43\nu^{7} - 33\nu^{6} - 1684\nu^{5} + 936\nu^{4} + 18287\nu^{3} - 6633\nu^{2} - 46702\nu + 17358 ) / 1716 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 5\nu^{7} - 12\nu^{6} - 194\nu^{5} + 390\nu^{4} + 2023\nu^{3} - 3114\nu^{2} - 4070\nu + 5688 ) / 156 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 11 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{7} + \beta_{6} + \beta_{4} + 2\beta_{3} + \beta_{2} + 18\beta _1 + 6 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{6} - 2\beta_{5} - 4\beta_{4} + 23\beta_{2} + 2\beta _1 + 193 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -25\beta_{7} + 33\beta_{6} - 14\beta_{5} + 29\beta_{4} + 42\beta_{3} + 29\beta_{2} + 362\beta _1 + 192 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -12\beta_{7} + 88\beta_{6} - 72\beta_{5} - 144\beta_{4} - 16\beta_{3} + 499\beta_{2} + 88\beta _1 + 3907 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -563\beta_{7} + 931\beta_{6} - 560\beta_{5} + 687\beta_{4} + 782\beta_{3} + 747\beta_{2} + 7632\beta _1 + 5058 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.65458
−3.50438
−2.09608
−1.60842
1.14081
1.73547
4.06018
4.92700
−4.65458 −3.27619 13.6651 −13.6377 15.2493 11.6190 −26.3687 −16.2666 63.4778
1.2 −3.50438 −0.605984 4.28065 0.861140 2.12360 30.2736 13.0340 −26.6328 −3.01776
1.3 −2.09608 0.225665 −3.60644 −3.33943 −0.473012 −21.2626 24.3281 −26.9491 6.99972
1.4 −1.60842 7.48922 −5.41298 −10.7091 −12.0458 24.0540 21.5737 29.0884 17.2248
1.5 1.14081 1.79882 −6.69855 12.6906 2.05212 10.6895 −16.7683 −23.7642 14.4776
1.6 1.73547 −9.28551 −4.98814 −1.59392 −16.1147 −8.61614 −22.5405 59.2207 −2.76620
1.7 4.06018 5.61545 8.48503 −6.03806 22.7997 −4.30385 1.96930 4.53328 −24.5156
1.8 4.92700 −2.96147 16.2753 9.76654 −14.5912 16.5465 40.7725 −18.2297 48.1197
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(11\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2299.4.a.i 8
11.b odd 2 1 209.4.a.a 8
33.d even 2 1 1881.4.a.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
209.4.a.a 8 11.b odd 2 1
1881.4.a.a 8 33.d even 2 1
2299.4.a.i 8 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2299))\):

\( T_{2}^{8} - 43T_{2}^{6} - 12T_{2}^{5} + 545T_{2}^{4} + 264T_{2}^{3} - 2017T_{2}^{2} - 660T_{2} + 2178 \) Copy content Toggle raw display
\( T_{5}^{8} + 12T_{5}^{7} - 232T_{5}^{6} - 3010T_{5}^{5} + 8324T_{5}^{4} + 175704T_{5}^{3} + 471697T_{5}^{2} + 41724T_{5} - 500988 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - 43 T^{6} + \cdots + 2178 \) Copy content Toggle raw display
$3$ \( T^{8} + T^{7} + \cdots + 932 \) Copy content Toggle raw display
$5$ \( T^{8} + 12 T^{7} + \cdots - 500988 \) Copy content Toggle raw display
$7$ \( T^{8} + \cdots - 1179970928 \) Copy content Toggle raw display
$11$ \( T^{8} \) Copy content Toggle raw display
$13$ \( T^{8} + \cdots - 928182024856 \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots - 5700281587968 \) Copy content Toggle raw display
$19$ \( (T + 19)^{8} \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots + 25\!\cdots\!76 \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots + 39\!\cdots\!76 \) Copy content Toggle raw display
$31$ \( T^{8} + \cdots - 43\!\cdots\!44 \) Copy content Toggle raw display
$37$ \( T^{8} + \cdots - 80\!\cdots\!72 \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots - 50\!\cdots\!52 \) Copy content Toggle raw display
$43$ \( T^{8} + \cdots + 60\!\cdots\!36 \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 11\!\cdots\!36 \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 64\!\cdots\!96 \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots - 11\!\cdots\!48 \) Copy content Toggle raw display
$61$ \( T^{8} + \cdots + 19\!\cdots\!08 \) Copy content Toggle raw display
$67$ \( T^{8} + \cdots - 14\!\cdots\!68 \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots - 15\!\cdots\!12 \) Copy content Toggle raw display
$73$ \( T^{8} + \cdots - 29\!\cdots\!12 \) Copy content Toggle raw display
$79$ \( T^{8} + \cdots + 69\!\cdots\!52 \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots - 31\!\cdots\!64 \) Copy content Toggle raw display
$89$ \( T^{8} + \cdots - 20\!\cdots\!44 \) Copy content Toggle raw display
$97$ \( T^{8} + \cdots - 11\!\cdots\!12 \) Copy content Toggle raw display
show more
show less