Properties

Label 2299.4.a.h
Level $2299$
Weight $4$
Character orbit 2299.a
Self dual yes
Analytic conductor $135.645$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2299,4,Mod(1,2299)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2299, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2299.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2299 = 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2299.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(135.645391103\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.3144.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 16x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 19)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} - \beta_1 - 1) q^{2} + (2 \beta_{2} - \beta_1) q^{3} + ( - 2 \beta_{2} - \beta_1 + 8) q^{4} + (2 \beta_{2} - 3 \beta_1 + 5) q^{5} + ( - 4 \beta_{2} - 3 \beta_1 + 24) q^{6} + ( - 4 \beta_1 + 13) q^{7}+ \cdots + (66 \beta_{2} - 106 \beta_1 + 830) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} + q^{3} + 21 q^{4} + 14 q^{5} + 65 q^{6} + 35 q^{7} - 27 q^{8} + 48 q^{9} + 88 q^{10} - 115 q^{12} - 65 q^{13} + 37 q^{14} + 140 q^{15} + 33 q^{16} - 29 q^{17} - 138 q^{18} + 57 q^{19} + 100 q^{20}+ \cdots + 2450 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 16x - 8 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} - \nu - 10 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} + \beta _1 + 10 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.526440
4.73549
−3.20905
−5.07177 −8.66998 17.7229 −2.61710 43.9722 15.1058 −49.3121 48.1686 13.2733
1.2 −1.89080 2.95388 −4.42486 −1.51710 −5.58521 −5.94196 23.4930 −18.2746 2.86853
1.3 3.96257 6.71610 7.70200 18.1342 26.6130 25.8362 −1.18085 18.1060 71.8581
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(11\) \( -1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2299.4.a.h 3
11.b odd 2 1 19.4.a.b 3
33.d even 2 1 171.4.a.f 3
44.c even 2 1 304.4.a.i 3
55.d odd 2 1 475.4.a.f 3
55.e even 4 2 475.4.b.f 6
77.b even 2 1 931.4.a.c 3
88.b odd 2 1 1216.4.a.s 3
88.g even 2 1 1216.4.a.u 3
209.d even 2 1 361.4.a.i 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
19.4.a.b 3 11.b odd 2 1
171.4.a.f 3 33.d even 2 1
304.4.a.i 3 44.c even 2 1
361.4.a.i 3 209.d even 2 1
475.4.a.f 3 55.d odd 2 1
475.4.b.f 6 55.e even 4 2
931.4.a.c 3 77.b even 2 1
1216.4.a.s 3 88.b odd 2 1
1216.4.a.u 3 88.g even 2 1
2299.4.a.h 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2299))\):

\( T_{2}^{3} + 3T_{2}^{2} - 18T_{2} - 38 \) Copy content Toggle raw display
\( T_{5}^{3} - 14T_{5}^{2} - 71T_{5} - 72 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + 3 T^{2} + \cdots - 38 \) Copy content Toggle raw display
$3$ \( T^{3} - T^{2} + \cdots + 172 \) Copy content Toggle raw display
$5$ \( T^{3} - 14 T^{2} + \cdots - 72 \) Copy content Toggle raw display
$7$ \( T^{3} - 35 T^{2} + \cdots + 2319 \) Copy content Toggle raw display
$11$ \( T^{3} \) Copy content Toggle raw display
$13$ \( T^{3} + 65 T^{2} + \cdots - 4848 \) Copy content Toggle raw display
$17$ \( T^{3} + 29 T^{2} + \cdots + 218619 \) Copy content Toggle raw display
$19$ \( (T - 19)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} + 101 T^{2} + \cdots - 378176 \) Copy content Toggle raw display
$29$ \( T^{3} + 377 T^{2} + \cdots - 4544396 \) Copy content Toggle raw display
$31$ \( T^{3} + 140 T^{2} + \cdots - 2444352 \) Copy content Toggle raw display
$37$ \( T^{3} + 290 T^{2} + \cdots - 10001448 \) Copy content Toggle raw display
$41$ \( T^{3} + 956 T^{2} + \cdots + 31578144 \) Copy content Toggle raw display
$43$ \( T^{3} - 570 T^{2} + \cdots + 65963504 \) Copy content Toggle raw display
$47$ \( T^{3} - 66 T^{2} + \cdots + 2940624 \) Copy content Toggle raw display
$53$ \( T^{3} - 817 T^{2} + \cdots - 16824816 \) Copy content Toggle raw display
$59$ \( T^{3} - 265 T^{2} + \cdots + 31557612 \) Copy content Toggle raw display
$61$ \( T^{3} + 988 T^{2} + \cdots - 76875874 \) Copy content Toggle raw display
$67$ \( T^{3} + 207 T^{2} + \cdots - 7515248 \) Copy content Toggle raw display
$71$ \( T^{3} - 846 T^{2} + \cdots + 1727928 \) Copy content Toggle raw display
$73$ \( T^{3} + 627 T^{2} + \cdots - 145581839 \) Copy content Toggle raw display
$79$ \( T^{3} + 382 T^{2} + \cdots + 56023488 \) Copy content Toggle raw display
$83$ \( T^{3} - 766 T^{2} + \cdots + 78728352 \) Copy content Toggle raw display
$89$ \( T^{3} + 172 T^{2} + \cdots - 76923456 \) Copy content Toggle raw display
$97$ \( T^{3} + 2450 T^{2} + \cdots + 196438912 \) Copy content Toggle raw display
show more
show less