Properties

Label 2299.4.a.e
Level $2299$
Weight $4$
Character orbit 2299.a
Self dual yes
Analytic conductor $135.645$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2299,4,Mod(1,2299)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2299, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2299.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2299 = 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2299.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,5,26,35] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(135.645391103\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 4 \beta + 1) q^{2} + (3 \beta + 1) q^{3} + (8 \beta + 9) q^{4} + ( - 3 \beta + 19) q^{5} + ( - 13 \beta - 11) q^{6} + ( - 5 \beta + 6) q^{7} + ( - 28 \beta - 31) q^{8} + (15 \beta - 17) q^{9} + ( - 67 \beta + 31) q^{10}+ \cdots + (1233 \beta - 142) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 5 q^{3} + 26 q^{4} + 35 q^{5} - 35 q^{6} + 7 q^{7} - 90 q^{8} - 19 q^{9} - 5 q^{10} + 125 q^{12} - 39 q^{13} + 43 q^{14} + 65 q^{15} + 162 q^{16} - 2 q^{17} - 131 q^{18} + 38 q^{19} + 395 q^{20}+ \cdots + 949 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.61803
−0.618034
−5.47214 5.85410 21.9443 14.1459 −32.0344 −2.09017 −76.3050 7.27051 −77.4083
1.2 3.47214 −0.854102 4.05573 20.8541 −2.96556 9.09017 −13.6950 −26.2705 72.4083
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(11\) \( +1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2299.4.a.e 2
11.b odd 2 1 2299.4.a.g yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2299.4.a.e 2 1.a even 1 1 trivial
2299.4.a.g yes 2 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2299))\):

\( T_{2}^{2} + 2T_{2} - 19 \) Copy content Toggle raw display
\( T_{5}^{2} - 35T_{5} + 295 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 2T - 19 \) Copy content Toggle raw display
$3$ \( T^{2} - 5T - 5 \) Copy content Toggle raw display
$5$ \( T^{2} - 35T + 295 \) Copy content Toggle raw display
$7$ \( T^{2} - 7T - 19 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 39T + 19 \) Copy content Toggle raw display
$17$ \( T^{2} + 2T - 1444 \) Copy content Toggle raw display
$19$ \( (T - 19)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 260T + 10420 \) Copy content Toggle raw display
$29$ \( T^{2} + 225T - 7505 \) Copy content Toggle raw display
$31$ \( T^{2} + 145T - 3355 \) Copy content Toggle raw display
$37$ \( T^{2} - 110T - 99220 \) Copy content Toggle raw display
$41$ \( T^{2} - 35T - 51205 \) Copy content Toggle raw display
$43$ \( T^{2} + 559T + 71459 \) Copy content Toggle raw display
$47$ \( T^{2} - 70T + 1220 \) Copy content Toggle raw display
$53$ \( T^{2} - 140T + 4880 \) Copy content Toggle raw display
$59$ \( T^{2} - 352T - 41024 \) Copy content Toggle raw display
$61$ \( T^{2} - 170T - 109820 \) Copy content Toggle raw display
$67$ \( T^{2} - 185T - 123475 \) Copy content Toggle raw display
$71$ \( T^{2} - 101T - 91981 \) Copy content Toggle raw display
$73$ \( T^{2} + 324T - 765776 \) Copy content Toggle raw display
$79$ \( T^{2} + 680T + 45980 \) Copy content Toggle raw display
$83$ \( T^{2} + 1531 T + 442339 \) Copy content Toggle raw display
$89$ \( T^{2} + 1820 T + 500420 \) Copy content Toggle raw display
$97$ \( T^{2} + 1100 T + 201680 \) Copy content Toggle raw display
show more
show less