Properties

Label 2299.4.a.d
Level $2299$
Weight $4$
Character orbit 2299.a
Self dual yes
Analytic conductor $135.645$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2299,4,Mod(1,2299)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2299, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2299.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2299 = 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2299.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(135.645391103\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(-1 + 5\sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + (\beta + 3) q^{3} - 7 q^{4} + ( - \beta - 3) q^{5} + ( - \beta - 3) q^{6} + ( - \beta - 12) q^{7} + 15 q^{8} + (5 \beta + 13) q^{9} + (\beta + 3) q^{10} + ( - 7 \beta - 21) q^{12} + (\beta + 46) q^{13}+ \cdots + ( - 23 \beta + 168) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 5 q^{3} - 14 q^{4} - 5 q^{5} - 5 q^{6} - 23 q^{7} + 30 q^{8} + 21 q^{9} + 5 q^{10} - 35 q^{12} + 91 q^{13} + 23 q^{14} - 75 q^{15} + 82 q^{16} - 142 q^{17} - 21 q^{18} - 38 q^{19} + 35 q^{20}+ \cdots + 359 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.618034
1.61803
−1.00000 −3.09017 −7.00000 3.09017 3.09017 −5.90983 15.0000 −17.4508 −3.09017
1.2 −1.00000 8.09017 −7.00000 −8.09017 −8.09017 −17.0902 15.0000 38.4508 8.09017
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(11\) \( +1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2299.4.a.d 2
11.b odd 2 1 2299.4.a.f yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2299.4.a.d 2 1.a even 1 1 trivial
2299.4.a.f yes 2 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2299))\):

\( T_{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{2} + 5T_{5} - 25 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 5T - 25 \) Copy content Toggle raw display
$5$ \( T^{2} + 5T - 25 \) Copy content Toggle raw display
$7$ \( T^{2} + 23T + 101 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 91T + 2039 \) Copy content Toggle raw display
$17$ \( T^{2} + 142T + 1916 \) Copy content Toggle raw display
$19$ \( (T + 19)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 140T - 3100 \) Copy content Toggle raw display
$29$ \( T^{2} + 55T - 10525 \) Copy content Toggle raw display
$31$ \( T^{2} - 75T - 21375 \) Copy content Toggle raw display
$37$ \( T^{2} - 150T + 5500 \) Copy content Toggle raw display
$41$ \( T^{2} + 95T - 79025 \) Copy content Toggle raw display
$43$ \( T^{2} - 111T - 10701 \) Copy content Toggle raw display
$47$ \( T^{2} - 70T - 19900 \) Copy content Toggle raw display
$53$ \( T^{2} - 500T + 58000 \) Copy content Toggle raw display
$59$ \( T^{2} - 792T + 106816 \) Copy content Toggle raw display
$61$ \( T^{2} + 10T - 45100 \) Copy content Toggle raw display
$67$ \( T^{2} + 555T - 98775 \) Copy content Toggle raw display
$71$ \( T^{2} + 1299 T + 402319 \) Copy content Toggle raw display
$73$ \( T^{2} - 156 T - 1194416 \) Copy content Toggle raw display
$79$ \( T^{2} + 80T - 542900 \) Copy content Toggle raw display
$83$ \( T^{2} + 741T - 575261 \) Copy content Toggle raw display
$89$ \( T^{2} + 500T - 99500 \) Copy content Toggle raw display
$97$ \( T^{2} + 2300 T + 1318000 \) Copy content Toggle raw display
show more
show less