Properties

Label 2299.2.a.u.1.7
Level $2299$
Weight $2$
Character 2299.1
Self dual yes
Analytic conductor $18.358$
Analytic rank $1$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2299,2,Mod(1,2299)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2299.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2299, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2299 = 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2299.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,1,-2,7,-14,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.3576074247\)
Analytic rank: \(1\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - x^{13} - 17 x^{12} + 15 x^{11} + 107 x^{10} - 80 x^{9} - 310 x^{8} + 179 x^{7} + 415 x^{6} + \cdots - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 209)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-0.200027\) of defining polynomial
Character \(\chi\) \(=\) 2299.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.200027 q^{2} +1.22622 q^{3} -1.95999 q^{4} +0.0816230 q^{5} -0.245277 q^{6} +0.895749 q^{7} +0.792103 q^{8} -1.49638 q^{9} -0.0163268 q^{10} -2.40338 q^{12} -4.65387 q^{13} -0.179174 q^{14} +0.100088 q^{15} +3.76154 q^{16} +2.44487 q^{17} +0.299316 q^{18} +1.00000 q^{19} -0.159980 q^{20} +1.09839 q^{21} +7.88800 q^{23} +0.971294 q^{24} -4.99334 q^{25} +0.930897 q^{26} -5.51356 q^{27} -1.75566 q^{28} +5.07424 q^{29} -0.0200202 q^{30} -7.80907 q^{31} -2.33661 q^{32} -0.489040 q^{34} +0.0731137 q^{35} +2.93289 q^{36} +1.43731 q^{37} -0.200027 q^{38} -5.70667 q^{39} +0.0646538 q^{40} +2.33889 q^{41} -0.219707 q^{42} -6.94775 q^{43} -0.122139 q^{45} -1.57781 q^{46} -4.95312 q^{47} +4.61248 q^{48} -6.19763 q^{49} +0.998800 q^{50} +2.99796 q^{51} +9.12153 q^{52} -9.73085 q^{53} +1.10286 q^{54} +0.709525 q^{56} +1.22622 q^{57} -1.01498 q^{58} -8.02085 q^{59} -0.196171 q^{60} -10.9682 q^{61} +1.56202 q^{62} -1.34038 q^{63} -7.05569 q^{64} -0.379863 q^{65} -13.3839 q^{67} -4.79193 q^{68} +9.67244 q^{69} -0.0146247 q^{70} +1.99737 q^{71} -1.18529 q^{72} +0.533747 q^{73} -0.287500 q^{74} -6.12294 q^{75} -1.95999 q^{76} +1.14149 q^{78} +11.0792 q^{79} +0.307028 q^{80} -2.27171 q^{81} -0.467840 q^{82} +16.1770 q^{83} -2.15283 q^{84} +0.199558 q^{85} +1.38974 q^{86} +6.22215 q^{87} -8.40759 q^{89} +0.0244310 q^{90} -4.16870 q^{91} -15.4604 q^{92} -9.57565 q^{93} +0.990755 q^{94} +0.0816230 q^{95} -2.86521 q^{96} -0.103308 q^{97} +1.23969 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + q^{2} - 2 q^{3} + 7 q^{4} - 14 q^{5} - 8 q^{6} - 4 q^{7} + 3 q^{8} - 2 q^{9} + 6 q^{10} - 8 q^{12} + 5 q^{13} - 6 q^{14} - 10 q^{15} + 5 q^{16} - 10 q^{17} - 6 q^{18} + 14 q^{19} - 16 q^{20} + 9 q^{21}+ \cdots - 42 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.200027 −0.141440 −0.0707201 0.997496i \(-0.522530\pi\)
−0.0707201 + 0.997496i \(0.522530\pi\)
\(3\) 1.22622 0.707959 0.353980 0.935253i \(-0.384828\pi\)
0.353980 + 0.935253i \(0.384828\pi\)
\(4\) −1.95999 −0.979995
\(5\) 0.0816230 0.0365029 0.0182515 0.999833i \(-0.494190\pi\)
0.0182515 + 0.999833i \(0.494190\pi\)
\(6\) −0.245277 −0.100134
\(7\) 0.895749 0.338561 0.169281 0.985568i \(-0.445856\pi\)
0.169281 + 0.985568i \(0.445856\pi\)
\(8\) 0.792103 0.280051
\(9\) −1.49638 −0.498793
\(10\) −0.0163268 −0.00516298
\(11\) 0 0
\(12\) −2.40338 −0.693796
\(13\) −4.65387 −1.29075 −0.645375 0.763866i \(-0.723299\pi\)
−0.645375 + 0.763866i \(0.723299\pi\)
\(14\) −0.179174 −0.0478861
\(15\) 0.100088 0.0258426
\(16\) 3.76154 0.940384
\(17\) 2.44487 0.592969 0.296485 0.955038i \(-0.404186\pi\)
0.296485 + 0.955038i \(0.404186\pi\)
\(18\) 0.299316 0.0705494
\(19\) 1.00000 0.229416
\(20\) −0.159980 −0.0357727
\(21\) 1.09839 0.239688
\(22\) 0 0
\(23\) 7.88800 1.64476 0.822381 0.568937i \(-0.192645\pi\)
0.822381 + 0.568937i \(0.192645\pi\)
\(24\) 0.971294 0.198265
\(25\) −4.99334 −0.998668
\(26\) 0.930897 0.182564
\(27\) −5.51356 −1.06108
\(28\) −1.75566 −0.331788
\(29\) 5.07424 0.942263 0.471132 0.882063i \(-0.343846\pi\)
0.471132 + 0.882063i \(0.343846\pi\)
\(30\) −0.0200202 −0.00365518
\(31\) −7.80907 −1.40255 −0.701275 0.712891i \(-0.747385\pi\)
−0.701275 + 0.712891i \(0.747385\pi\)
\(32\) −2.33661 −0.413059
\(33\) 0 0
\(34\) −0.489040 −0.0838696
\(35\) 0.0731137 0.0123585
\(36\) 2.93289 0.488815
\(37\) 1.43731 0.236292 0.118146 0.992996i \(-0.462305\pi\)
0.118146 + 0.992996i \(0.462305\pi\)
\(38\) −0.200027 −0.0324486
\(39\) −5.70667 −0.913799
\(40\) 0.0646538 0.0102227
\(41\) 2.33889 0.365273 0.182636 0.983181i \(-0.441537\pi\)
0.182636 + 0.983181i \(0.441537\pi\)
\(42\) −0.219707 −0.0339015
\(43\) −6.94775 −1.05952 −0.529761 0.848147i \(-0.677719\pi\)
−0.529761 + 0.848147i \(0.677719\pi\)
\(44\) 0 0
\(45\) −0.122139 −0.0182074
\(46\) −1.57781 −0.232635
\(47\) −4.95312 −0.722486 −0.361243 0.932472i \(-0.617648\pi\)
−0.361243 + 0.932472i \(0.617648\pi\)
\(48\) 4.61248 0.665754
\(49\) −6.19763 −0.885376
\(50\) 0.998800 0.141252
\(51\) 2.99796 0.419798
\(52\) 9.12153 1.26493
\(53\) −9.73085 −1.33663 −0.668317 0.743876i \(-0.732985\pi\)
−0.668317 + 0.743876i \(0.732985\pi\)
\(54\) 1.10286 0.150080
\(55\) 0 0
\(56\) 0.709525 0.0948143
\(57\) 1.22622 0.162417
\(58\) −1.01498 −0.133274
\(59\) −8.02085 −1.04423 −0.522113 0.852876i \(-0.674856\pi\)
−0.522113 + 0.852876i \(0.674856\pi\)
\(60\) −0.196171 −0.0253256
\(61\) −10.9682 −1.40433 −0.702165 0.712014i \(-0.747783\pi\)
−0.702165 + 0.712014i \(0.747783\pi\)
\(62\) 1.56202 0.198377
\(63\) −1.34038 −0.168872
\(64\) −7.05569 −0.881961
\(65\) −0.379863 −0.0471162
\(66\) 0 0
\(67\) −13.3839 −1.63511 −0.817554 0.575852i \(-0.804670\pi\)
−0.817554 + 0.575852i \(0.804670\pi\)
\(68\) −4.79193 −0.581107
\(69\) 9.67244 1.16443
\(70\) −0.0146247 −0.00174798
\(71\) 1.99737 0.237044 0.118522 0.992951i \(-0.462184\pi\)
0.118522 + 0.992951i \(0.462184\pi\)
\(72\) −1.18529 −0.139687
\(73\) 0.533747 0.0624703 0.0312352 0.999512i \(-0.490056\pi\)
0.0312352 + 0.999512i \(0.490056\pi\)
\(74\) −0.287500 −0.0334212
\(75\) −6.12294 −0.707016
\(76\) −1.95999 −0.224826
\(77\) 0 0
\(78\) 1.14149 0.129248
\(79\) 11.0792 1.24651 0.623254 0.782020i \(-0.285810\pi\)
0.623254 + 0.782020i \(0.285810\pi\)
\(80\) 0.307028 0.0343268
\(81\) −2.27171 −0.252412
\(82\) −0.467840 −0.0516642
\(83\) 16.1770 1.77565 0.887827 0.460178i \(-0.152215\pi\)
0.887827 + 0.460178i \(0.152215\pi\)
\(84\) −2.15283 −0.234893
\(85\) 0.199558 0.0216451
\(86\) 1.38974 0.149859
\(87\) 6.22215 0.667084
\(88\) 0 0
\(89\) −8.40759 −0.891203 −0.445602 0.895231i \(-0.647010\pi\)
−0.445602 + 0.895231i \(0.647010\pi\)
\(90\) 0.0244310 0.00257526
\(91\) −4.16870 −0.436998
\(92\) −15.4604 −1.61186
\(93\) −9.57565 −0.992948
\(94\) 0.990755 0.102189
\(95\) 0.0816230 0.00837434
\(96\) −2.86521 −0.292429
\(97\) −0.103308 −0.0104894 −0.00524469 0.999986i \(-0.501669\pi\)
−0.00524469 + 0.999986i \(0.501669\pi\)
\(98\) 1.23969 0.125228
\(99\) 0 0
\(100\) 9.78689 0.978689
\(101\) −10.3789 −1.03274 −0.516370 0.856366i \(-0.672717\pi\)
−0.516370 + 0.856366i \(0.672717\pi\)
\(102\) −0.599671 −0.0593763
\(103\) −3.48528 −0.343415 −0.171708 0.985148i \(-0.554928\pi\)
−0.171708 + 0.985148i \(0.554928\pi\)
\(104\) −3.68634 −0.361476
\(105\) 0.0896536 0.00874930
\(106\) 1.94643 0.189054
\(107\) 7.57460 0.732265 0.366132 0.930563i \(-0.380682\pi\)
0.366132 + 0.930563i \(0.380682\pi\)
\(108\) 10.8065 1.03986
\(109\) 14.3006 1.36975 0.684875 0.728661i \(-0.259857\pi\)
0.684875 + 0.728661i \(0.259857\pi\)
\(110\) 0 0
\(111\) 1.76246 0.167285
\(112\) 3.36939 0.318378
\(113\) 14.5393 1.36774 0.683870 0.729604i \(-0.260295\pi\)
0.683870 + 0.729604i \(0.260295\pi\)
\(114\) −0.245277 −0.0229723
\(115\) 0.643842 0.0600386
\(116\) −9.94546 −0.923413
\(117\) 6.96396 0.643818
\(118\) 1.60438 0.147695
\(119\) 2.18999 0.200756
\(120\) 0.0792799 0.00723723
\(121\) 0 0
\(122\) 2.19393 0.198629
\(123\) 2.86799 0.258598
\(124\) 15.3057 1.37449
\(125\) −0.815686 −0.0729572
\(126\) 0.268112 0.0238853
\(127\) −19.6947 −1.74762 −0.873811 0.486266i \(-0.838358\pi\)
−0.873811 + 0.486266i \(0.838358\pi\)
\(128\) 6.08455 0.537803
\(129\) −8.51949 −0.750099
\(130\) 0.0759826 0.00666412
\(131\) −14.6793 −1.28253 −0.641267 0.767318i \(-0.721591\pi\)
−0.641267 + 0.767318i \(0.721591\pi\)
\(132\) 0 0
\(133\) 0.895749 0.0776713
\(134\) 2.67714 0.231270
\(135\) −0.450033 −0.0387327
\(136\) 1.93659 0.166061
\(137\) −12.5169 −1.06939 −0.534695 0.845045i \(-0.679573\pi\)
−0.534695 + 0.845045i \(0.679573\pi\)
\(138\) −1.93474 −0.164696
\(139\) −6.90711 −0.585853 −0.292927 0.956135i \(-0.594629\pi\)
−0.292927 + 0.956135i \(0.594629\pi\)
\(140\) −0.143302 −0.0121112
\(141\) −6.07362 −0.511491
\(142\) −0.399526 −0.0335275
\(143\) 0 0
\(144\) −5.62869 −0.469058
\(145\) 0.414175 0.0343954
\(146\) −0.106764 −0.00883581
\(147\) −7.59967 −0.626810
\(148\) −2.81711 −0.231565
\(149\) −15.2444 −1.24887 −0.624433 0.781078i \(-0.714670\pi\)
−0.624433 + 0.781078i \(0.714670\pi\)
\(150\) 1.22475 0.100000
\(151\) −6.13838 −0.499535 −0.249767 0.968306i \(-0.580354\pi\)
−0.249767 + 0.968306i \(0.580354\pi\)
\(152\) 0.792103 0.0642480
\(153\) −3.65846 −0.295769
\(154\) 0 0
\(155\) −0.637399 −0.0511971
\(156\) 11.1850 0.895518
\(157\) −4.13567 −0.330063 −0.165031 0.986288i \(-0.552773\pi\)
−0.165031 + 0.986288i \(0.552773\pi\)
\(158\) −2.21613 −0.176306
\(159\) −11.9322 −0.946283
\(160\) −0.190721 −0.0150778
\(161\) 7.06567 0.556853
\(162\) 0.454401 0.0357011
\(163\) −15.9329 −1.24796 −0.623982 0.781439i \(-0.714486\pi\)
−0.623982 + 0.781439i \(0.714486\pi\)
\(164\) −4.58419 −0.357965
\(165\) 0 0
\(166\) −3.23582 −0.251149
\(167\) −1.46039 −0.113008 −0.0565041 0.998402i \(-0.517995\pi\)
−0.0565041 + 0.998402i \(0.517995\pi\)
\(168\) 0.870035 0.0671247
\(169\) 8.65849 0.666037
\(170\) −0.0399169 −0.00306149
\(171\) −1.49638 −0.114431
\(172\) 13.6175 1.03833
\(173\) 14.6398 1.11304 0.556522 0.830833i \(-0.312135\pi\)
0.556522 + 0.830833i \(0.312135\pi\)
\(174\) −1.24459 −0.0943525
\(175\) −4.47278 −0.338110
\(176\) 0 0
\(177\) −9.83534 −0.739270
\(178\) 1.68174 0.126052
\(179\) −13.9305 −1.04121 −0.520606 0.853797i \(-0.674294\pi\)
−0.520606 + 0.853797i \(0.674294\pi\)
\(180\) 0.239391 0.0178432
\(181\) 18.4877 1.37418 0.687090 0.726573i \(-0.258888\pi\)
0.687090 + 0.726573i \(0.258888\pi\)
\(182\) 0.833850 0.0618091
\(183\) −13.4494 −0.994209
\(184\) 6.24811 0.460617
\(185\) 0.117318 0.00862536
\(186\) 1.91538 0.140443
\(187\) 0 0
\(188\) 9.70806 0.708033
\(189\) −4.93876 −0.359242
\(190\) −0.0163268 −0.00118447
\(191\) −4.36556 −0.315881 −0.157941 0.987449i \(-0.550485\pi\)
−0.157941 + 0.987449i \(0.550485\pi\)
\(192\) −8.65184 −0.624393
\(193\) 6.81018 0.490208 0.245104 0.969497i \(-0.421178\pi\)
0.245104 + 0.969497i \(0.421178\pi\)
\(194\) 0.0206644 0.00148362
\(195\) −0.465796 −0.0333563
\(196\) 12.1473 0.867664
\(197\) −10.5905 −0.754542 −0.377271 0.926103i \(-0.623137\pi\)
−0.377271 + 0.926103i \(0.623137\pi\)
\(198\) 0 0
\(199\) 2.81828 0.199782 0.0998911 0.994998i \(-0.468151\pi\)
0.0998911 + 0.994998i \(0.468151\pi\)
\(200\) −3.95524 −0.279678
\(201\) −16.4117 −1.15759
\(202\) 2.07606 0.146071
\(203\) 4.54525 0.319014
\(204\) −5.87597 −0.411400
\(205\) 0.190907 0.0133335
\(206\) 0.697149 0.0485727
\(207\) −11.8035 −0.820397
\(208\) −17.5057 −1.21380
\(209\) 0 0
\(210\) −0.0179331 −0.00123750
\(211\) −10.7387 −0.739284 −0.369642 0.929174i \(-0.620520\pi\)
−0.369642 + 0.929174i \(0.620520\pi\)
\(212\) 19.0724 1.30990
\(213\) 2.44921 0.167817
\(214\) −1.51512 −0.103572
\(215\) −0.567097 −0.0386757
\(216\) −4.36731 −0.297158
\(217\) −6.99496 −0.474849
\(218\) −2.86050 −0.193737
\(219\) 0.654492 0.0442265
\(220\) 0 0
\(221\) −11.3781 −0.765376
\(222\) −0.352539 −0.0236609
\(223\) 3.99759 0.267698 0.133849 0.991002i \(-0.457266\pi\)
0.133849 + 0.991002i \(0.457266\pi\)
\(224\) −2.09302 −0.139846
\(225\) 7.47193 0.498129
\(226\) −2.90824 −0.193453
\(227\) −21.4664 −1.42477 −0.712387 0.701787i \(-0.752386\pi\)
−0.712387 + 0.701787i \(0.752386\pi\)
\(228\) −2.40338 −0.159168
\(229\) 4.99717 0.330223 0.165111 0.986275i \(-0.447202\pi\)
0.165111 + 0.986275i \(0.447202\pi\)
\(230\) −0.128786 −0.00849187
\(231\) 0 0
\(232\) 4.01932 0.263882
\(233\) 13.3691 0.875841 0.437920 0.899014i \(-0.355715\pi\)
0.437920 + 0.899014i \(0.355715\pi\)
\(234\) −1.39298 −0.0910617
\(235\) −0.404288 −0.0263729
\(236\) 15.7208 1.02334
\(237\) 13.5856 0.882477
\(238\) −0.438057 −0.0283950
\(239\) 12.0780 0.781263 0.390632 0.920547i \(-0.372257\pi\)
0.390632 + 0.920547i \(0.372257\pi\)
\(240\) 0.376484 0.0243020
\(241\) 22.7610 1.46617 0.733083 0.680139i \(-0.238080\pi\)
0.733083 + 0.680139i \(0.238080\pi\)
\(242\) 0 0
\(243\) 13.7551 0.882388
\(244\) 21.4975 1.37624
\(245\) −0.505869 −0.0323188
\(246\) −0.573675 −0.0365762
\(247\) −4.65387 −0.296119
\(248\) −6.18558 −0.392785
\(249\) 19.8366 1.25709
\(250\) 0.163159 0.0103191
\(251\) 14.3292 0.904449 0.452224 0.891904i \(-0.350631\pi\)
0.452224 + 0.891904i \(0.350631\pi\)
\(252\) 2.62713 0.165494
\(253\) 0 0
\(254\) 3.93946 0.247184
\(255\) 0.244702 0.0153239
\(256\) 12.8943 0.805894
\(257\) −4.54396 −0.283445 −0.141722 0.989906i \(-0.545264\pi\)
−0.141722 + 0.989906i \(0.545264\pi\)
\(258\) 1.70412 0.106094
\(259\) 1.28747 0.0799994
\(260\) 0.744527 0.0461736
\(261\) −7.59300 −0.469995
\(262\) 2.93625 0.181402
\(263\) −7.21456 −0.444869 −0.222434 0.974948i \(-0.571400\pi\)
−0.222434 + 0.974948i \(0.571400\pi\)
\(264\) 0 0
\(265\) −0.794261 −0.0487911
\(266\) −0.179174 −0.0109858
\(267\) −10.3096 −0.630936
\(268\) 26.2324 1.60240
\(269\) 9.71941 0.592603 0.296302 0.955094i \(-0.404247\pi\)
0.296302 + 0.955094i \(0.404247\pi\)
\(270\) 0.0900186 0.00547836
\(271\) 17.5875 1.06837 0.534183 0.845369i \(-0.320619\pi\)
0.534183 + 0.845369i \(0.320619\pi\)
\(272\) 9.19649 0.557619
\(273\) −5.11175 −0.309377
\(274\) 2.50371 0.151255
\(275\) 0 0
\(276\) −18.9579 −1.14113
\(277\) −0.995539 −0.0598161 −0.0299081 0.999553i \(-0.509521\pi\)
−0.0299081 + 0.999553i \(0.509521\pi\)
\(278\) 1.38160 0.0828631
\(279\) 11.6853 0.699583
\(280\) 0.0579136 0.00346100
\(281\) 14.7235 0.878333 0.439166 0.898406i \(-0.355274\pi\)
0.439166 + 0.898406i \(0.355274\pi\)
\(282\) 1.21489 0.0723454
\(283\) −5.04060 −0.299632 −0.149816 0.988714i \(-0.547868\pi\)
−0.149816 + 0.988714i \(0.547868\pi\)
\(284\) −3.91481 −0.232301
\(285\) 0.100088 0.00592869
\(286\) 0 0
\(287\) 2.09506 0.123667
\(288\) 3.49646 0.206031
\(289\) −11.0226 −0.648387
\(290\) −0.0828460 −0.00486488
\(291\) −0.126679 −0.00742605
\(292\) −1.04614 −0.0612206
\(293\) 14.5677 0.851056 0.425528 0.904945i \(-0.360088\pi\)
0.425528 + 0.904945i \(0.360088\pi\)
\(294\) 1.52014 0.0886562
\(295\) −0.654686 −0.0381173
\(296\) 1.13850 0.0661738
\(297\) 0 0
\(298\) 3.04928 0.176640
\(299\) −36.7097 −2.12298
\(300\) 12.0009 0.692872
\(301\) −6.22344 −0.358713
\(302\) 1.22784 0.0706542
\(303\) −12.7268 −0.731138
\(304\) 3.76154 0.215739
\(305\) −0.895255 −0.0512622
\(306\) 0.731790 0.0418336
\(307\) 4.11852 0.235056 0.117528 0.993070i \(-0.462503\pi\)
0.117528 + 0.993070i \(0.462503\pi\)
\(308\) 0 0
\(309\) −4.27373 −0.243124
\(310\) 0.127497 0.00724133
\(311\) 2.68101 0.152026 0.0760131 0.997107i \(-0.475781\pi\)
0.0760131 + 0.997107i \(0.475781\pi\)
\(312\) −4.52027 −0.255910
\(313\) −4.69992 −0.265655 −0.132827 0.991139i \(-0.542406\pi\)
−0.132827 + 0.991139i \(0.542406\pi\)
\(314\) 0.827244 0.0466841
\(315\) −0.109406 −0.00616432
\(316\) −21.7151 −1.22157
\(317\) −1.77929 −0.0999348 −0.0499674 0.998751i \(-0.515912\pi\)
−0.0499674 + 0.998751i \(0.515912\pi\)
\(318\) 2.38675 0.133842
\(319\) 0 0
\(320\) −0.575907 −0.0321942
\(321\) 9.28814 0.518414
\(322\) −1.41332 −0.0787613
\(323\) 2.44487 0.136036
\(324\) 4.45252 0.247362
\(325\) 23.2383 1.28903
\(326\) 3.18701 0.176512
\(327\) 17.5357 0.969727
\(328\) 1.85264 0.102295
\(329\) −4.43675 −0.244606
\(330\) 0 0
\(331\) 18.2118 1.00101 0.500505 0.865734i \(-0.333148\pi\)
0.500505 + 0.865734i \(0.333148\pi\)
\(332\) −31.7067 −1.74013
\(333\) −2.15076 −0.117861
\(334\) 0.292117 0.0159839
\(335\) −1.09244 −0.0596862
\(336\) 4.13162 0.225398
\(337\) −1.76331 −0.0960537 −0.0480268 0.998846i \(-0.515293\pi\)
−0.0480268 + 0.998846i \(0.515293\pi\)
\(338\) −1.73193 −0.0942044
\(339\) 17.8284 0.968305
\(340\) −0.391132 −0.0212121
\(341\) 0 0
\(342\) 0.299316 0.0161851
\(343\) −11.8218 −0.638315
\(344\) −5.50334 −0.296720
\(345\) 0.789494 0.0425049
\(346\) −2.92835 −0.157429
\(347\) 34.2534 1.83882 0.919408 0.393304i \(-0.128668\pi\)
0.919408 + 0.393304i \(0.128668\pi\)
\(348\) −12.1953 −0.653739
\(349\) −23.0038 −1.23136 −0.615682 0.787995i \(-0.711119\pi\)
−0.615682 + 0.787995i \(0.711119\pi\)
\(350\) 0.894674 0.0478223
\(351\) 25.6594 1.36960
\(352\) 0 0
\(353\) 7.46659 0.397407 0.198703 0.980060i \(-0.436327\pi\)
0.198703 + 0.980060i \(0.436327\pi\)
\(354\) 1.96733 0.104562
\(355\) 0.163031 0.00865278
\(356\) 16.4788 0.873374
\(357\) 2.68542 0.142127
\(358\) 2.78646 0.147269
\(359\) −34.5410 −1.82301 −0.911503 0.411293i \(-0.865077\pi\)
−0.911503 + 0.411293i \(0.865077\pi\)
\(360\) −0.0967467 −0.00509900
\(361\) 1.00000 0.0526316
\(362\) −3.69803 −0.194364
\(363\) 0 0
\(364\) 8.17060 0.428256
\(365\) 0.0435660 0.00228035
\(366\) 2.69024 0.140621
\(367\) −8.73460 −0.455942 −0.227971 0.973668i \(-0.573209\pi\)
−0.227971 + 0.973668i \(0.573209\pi\)
\(368\) 29.6710 1.54671
\(369\) −3.49986 −0.182196
\(370\) −0.0234666 −0.00121997
\(371\) −8.71640 −0.452533
\(372\) 18.7682 0.973084
\(373\) −29.9452 −1.55050 −0.775251 0.631654i \(-0.782376\pi\)
−0.775251 + 0.631654i \(0.782376\pi\)
\(374\) 0 0
\(375\) −1.00021 −0.0516507
\(376\) −3.92338 −0.202333
\(377\) −23.6149 −1.21623
\(378\) 0.987884 0.0508113
\(379\) −7.49446 −0.384965 −0.192482 0.981300i \(-0.561654\pi\)
−0.192482 + 0.981300i \(0.561654\pi\)
\(380\) −0.159980 −0.00820681
\(381\) −24.1501 −1.23724
\(382\) 0.873228 0.0446783
\(383\) 4.01152 0.204979 0.102489 0.994734i \(-0.467319\pi\)
0.102489 + 0.994734i \(0.467319\pi\)
\(384\) 7.46101 0.380743
\(385\) 0 0
\(386\) −1.36222 −0.0693350
\(387\) 10.3965 0.528483
\(388\) 0.202483 0.0102795
\(389\) 30.6954 1.55632 0.778159 0.628067i \(-0.216154\pi\)
0.778159 + 0.628067i \(0.216154\pi\)
\(390\) 0.0931715 0.00471792
\(391\) 19.2852 0.975294
\(392\) −4.90916 −0.247950
\(393\) −18.0001 −0.907982
\(394\) 2.11838 0.106722
\(395\) 0.904318 0.0455012
\(396\) 0 0
\(397\) −1.79554 −0.0901158 −0.0450579 0.998984i \(-0.514347\pi\)
−0.0450579 + 0.998984i \(0.514347\pi\)
\(398\) −0.563730 −0.0282572
\(399\) 1.09839 0.0549881
\(400\) −18.7826 −0.939131
\(401\) −6.42021 −0.320610 −0.160305 0.987068i \(-0.551248\pi\)
−0.160305 + 0.987068i \(0.551248\pi\)
\(402\) 3.28277 0.163730
\(403\) 36.3424 1.81034
\(404\) 20.3425 1.01208
\(405\) −0.185423 −0.00921376
\(406\) −0.909170 −0.0451214
\(407\) 0 0
\(408\) 2.37469 0.117565
\(409\) 4.28533 0.211896 0.105948 0.994372i \(-0.466212\pi\)
0.105948 + 0.994372i \(0.466212\pi\)
\(410\) −0.0381865 −0.00188590
\(411\) −15.3485 −0.757084
\(412\) 6.83112 0.336545
\(413\) −7.18467 −0.353534
\(414\) 2.36100 0.116037
\(415\) 1.32041 0.0648165
\(416\) 10.8743 0.533156
\(417\) −8.46964 −0.414760
\(418\) 0 0
\(419\) 17.0735 0.834094 0.417047 0.908885i \(-0.363065\pi\)
0.417047 + 0.908885i \(0.363065\pi\)
\(420\) −0.175720 −0.00857426
\(421\) −34.8218 −1.69711 −0.848557 0.529105i \(-0.822528\pi\)
−0.848557 + 0.529105i \(0.822528\pi\)
\(422\) 2.14803 0.104564
\(423\) 7.41175 0.360371
\(424\) −7.70783 −0.374326
\(425\) −12.2081 −0.592179
\(426\) −0.489907 −0.0237361
\(427\) −9.82473 −0.475452
\(428\) −14.8461 −0.717615
\(429\) 0 0
\(430\) 0.113434 0.00547029
\(431\) −4.79973 −0.231195 −0.115597 0.993296i \(-0.536878\pi\)
−0.115597 + 0.993296i \(0.536878\pi\)
\(432\) −20.7395 −0.997828
\(433\) 28.2849 1.35928 0.679642 0.733544i \(-0.262135\pi\)
0.679642 + 0.733544i \(0.262135\pi\)
\(434\) 1.39918 0.0671627
\(435\) 0.507870 0.0243505
\(436\) −28.0290 −1.34235
\(437\) 7.88800 0.377334
\(438\) −0.130916 −0.00625540
\(439\) 29.2851 1.39770 0.698850 0.715268i \(-0.253696\pi\)
0.698850 + 0.715268i \(0.253696\pi\)
\(440\) 0 0
\(441\) 9.27402 0.441620
\(442\) 2.27593 0.108255
\(443\) 9.86786 0.468836 0.234418 0.972136i \(-0.424682\pi\)
0.234418 + 0.972136i \(0.424682\pi\)
\(444\) −3.45441 −0.163939
\(445\) −0.686253 −0.0325315
\(446\) −0.799624 −0.0378633
\(447\) −18.6930 −0.884147
\(448\) −6.32013 −0.298598
\(449\) 4.70980 0.222269 0.111135 0.993805i \(-0.464552\pi\)
0.111135 + 0.993805i \(0.464552\pi\)
\(450\) −1.49458 −0.0704554
\(451\) 0 0
\(452\) −28.4968 −1.34038
\(453\) −7.52702 −0.353650
\(454\) 4.29384 0.201520
\(455\) −0.340262 −0.0159517
\(456\) 0.971294 0.0454850
\(457\) −1.15519 −0.0540375 −0.0270187 0.999635i \(-0.508601\pi\)
−0.0270187 + 0.999635i \(0.508601\pi\)
\(458\) −0.999568 −0.0467067
\(459\) −13.4800 −0.629191
\(460\) −1.26192 −0.0588375
\(461\) 41.3195 1.92444 0.962221 0.272271i \(-0.0877747\pi\)
0.962221 + 0.272271i \(0.0877747\pi\)
\(462\) 0 0
\(463\) −8.31946 −0.386638 −0.193319 0.981136i \(-0.561925\pi\)
−0.193319 + 0.981136i \(0.561925\pi\)
\(464\) 19.0870 0.886090
\(465\) −0.781593 −0.0362455
\(466\) −2.67418 −0.123879
\(467\) 7.11539 0.329261 0.164630 0.986355i \(-0.447357\pi\)
0.164630 + 0.986355i \(0.447357\pi\)
\(468\) −13.6493 −0.630938
\(469\) −11.9886 −0.553584
\(470\) 0.0808684 0.00373018
\(471\) −5.07125 −0.233671
\(472\) −6.35334 −0.292436
\(473\) 0 0
\(474\) −2.71747 −0.124818
\(475\) −4.99334 −0.229110
\(476\) −4.29237 −0.196740
\(477\) 14.5610 0.666705
\(478\) −2.41593 −0.110502
\(479\) 20.8922 0.954588 0.477294 0.878744i \(-0.341618\pi\)
0.477294 + 0.878744i \(0.341618\pi\)
\(480\) −0.233867 −0.0106745
\(481\) −6.68905 −0.304995
\(482\) −4.55281 −0.207375
\(483\) 8.66408 0.394229
\(484\) 0 0
\(485\) −0.00843234 −0.000382893 0
\(486\) −2.75138 −0.124805
\(487\) 1.11750 0.0506388 0.0253194 0.999679i \(-0.491940\pi\)
0.0253194 + 0.999679i \(0.491940\pi\)
\(488\) −8.68792 −0.393284
\(489\) −19.5373 −0.883508
\(490\) 0.101187 0.00457118
\(491\) −29.0965 −1.31311 −0.656553 0.754280i \(-0.727986\pi\)
−0.656553 + 0.754280i \(0.727986\pi\)
\(492\) −5.62124 −0.253425
\(493\) 12.4059 0.558733
\(494\) 0.930897 0.0418830
\(495\) 0 0
\(496\) −29.3741 −1.31894
\(497\) 1.78914 0.0802538
\(498\) −3.96784 −0.177803
\(499\) −2.95731 −0.132387 −0.0661937 0.997807i \(-0.521086\pi\)
−0.0661937 + 0.997807i \(0.521086\pi\)
\(500\) 1.59874 0.0714977
\(501\) −1.79076 −0.0800053
\(502\) −2.86621 −0.127925
\(503\) 23.9236 1.06670 0.533350 0.845895i \(-0.320933\pi\)
0.533350 + 0.845895i \(0.320933\pi\)
\(504\) −1.06172 −0.0472928
\(505\) −0.847157 −0.0376980
\(506\) 0 0
\(507\) 10.6172 0.471528
\(508\) 38.6014 1.71266
\(509\) 9.84805 0.436507 0.218254 0.975892i \(-0.429964\pi\)
0.218254 + 0.975892i \(0.429964\pi\)
\(510\) −0.0489470 −0.00216741
\(511\) 0.478103 0.0211500
\(512\) −14.7483 −0.651789
\(513\) −5.51356 −0.243430
\(514\) 0.908913 0.0400904
\(515\) −0.284479 −0.0125357
\(516\) 16.6981 0.735093
\(517\) 0 0
\(518\) −0.257528 −0.0113151
\(519\) 17.9517 0.787991
\(520\) −0.300890 −0.0131949
\(521\) −24.5361 −1.07495 −0.537474 0.843280i \(-0.680621\pi\)
−0.537474 + 0.843280i \(0.680621\pi\)
\(522\) 1.51880 0.0664761
\(523\) 44.1499 1.93054 0.965270 0.261254i \(-0.0841360\pi\)
0.965270 + 0.261254i \(0.0841360\pi\)
\(524\) 28.7712 1.25688
\(525\) −5.48462 −0.239368
\(526\) 1.44310 0.0629223
\(527\) −19.0922 −0.831669
\(528\) 0 0
\(529\) 39.2206 1.70524
\(530\) 0.158873 0.00690101
\(531\) 12.0022 0.520853
\(532\) −1.75566 −0.0761174
\(533\) −10.8849 −0.471476
\(534\) 2.06219 0.0892396
\(535\) 0.618262 0.0267298
\(536\) −10.6015 −0.457913
\(537\) −17.0818 −0.737135
\(538\) −1.94414 −0.0838178
\(539\) 0 0
\(540\) 0.882060 0.0379578
\(541\) 5.41726 0.232906 0.116453 0.993196i \(-0.462848\pi\)
0.116453 + 0.993196i \(0.462848\pi\)
\(542\) −3.51797 −0.151110
\(543\) 22.6700 0.972863
\(544\) −5.71273 −0.244931
\(545\) 1.16726 0.0499998
\(546\) 1.02249 0.0437583
\(547\) 1.20892 0.0516897 0.0258448 0.999666i \(-0.491772\pi\)
0.0258448 + 0.999666i \(0.491772\pi\)
\(548\) 24.5330 1.04800
\(549\) 16.4126 0.700471
\(550\) 0 0
\(551\) 5.07424 0.216170
\(552\) 7.66157 0.326098
\(553\) 9.92418 0.422019
\(554\) 0.199134 0.00846040
\(555\) 0.143857 0.00610641
\(556\) 13.5379 0.574133
\(557\) −28.4168 −1.20406 −0.602030 0.798473i \(-0.705641\pi\)
−0.602030 + 0.798473i \(0.705641\pi\)
\(558\) −2.33738 −0.0989490
\(559\) 32.3339 1.36758
\(560\) 0.275020 0.0116217
\(561\) 0 0
\(562\) −2.94510 −0.124232
\(563\) −25.2933 −1.06599 −0.532994 0.846119i \(-0.678933\pi\)
−0.532994 + 0.846119i \(0.678933\pi\)
\(564\) 11.9042 0.501258
\(565\) 1.18674 0.0499265
\(566\) 1.00825 0.0423800
\(567\) −2.03488 −0.0854568
\(568\) 1.58212 0.0663842
\(569\) −8.81909 −0.369716 −0.184858 0.982765i \(-0.559182\pi\)
−0.184858 + 0.982765i \(0.559182\pi\)
\(570\) −0.0200202 −0.000838555 0
\(571\) 28.4197 1.18933 0.594663 0.803975i \(-0.297285\pi\)
0.594663 + 0.803975i \(0.297285\pi\)
\(572\) 0 0
\(573\) −5.35315 −0.223631
\(574\) −0.419067 −0.0174915
\(575\) −39.3875 −1.64257
\(576\) 10.5580 0.439916
\(577\) 28.2626 1.17659 0.588294 0.808647i \(-0.299800\pi\)
0.588294 + 0.808647i \(0.299800\pi\)
\(578\) 2.20481 0.0917080
\(579\) 8.35080 0.347047
\(580\) −0.811779 −0.0337073
\(581\) 14.4905 0.601167
\(582\) 0.0253391 0.00105034
\(583\) 0 0
\(584\) 0.422782 0.0174949
\(585\) 0.568419 0.0235012
\(586\) −2.91393 −0.120373
\(587\) −34.2658 −1.41430 −0.707151 0.707063i \(-0.750020\pi\)
−0.707151 + 0.707063i \(0.750020\pi\)
\(588\) 14.8953 0.614271
\(589\) −7.80907 −0.321767
\(590\) 0.130955 0.00539131
\(591\) −12.9863 −0.534185
\(592\) 5.40650 0.222206
\(593\) 25.9391 1.06519 0.532595 0.846370i \(-0.321217\pi\)
0.532595 + 0.846370i \(0.321217\pi\)
\(594\) 0 0
\(595\) 0.178754 0.00732819
\(596\) 29.8788 1.22388
\(597\) 3.45583 0.141438
\(598\) 7.34292 0.300274
\(599\) 11.9624 0.488771 0.244386 0.969678i \(-0.421414\pi\)
0.244386 + 0.969678i \(0.421414\pi\)
\(600\) −4.85000 −0.198000
\(601\) −47.9051 −1.95409 −0.977044 0.213037i \(-0.931664\pi\)
−0.977044 + 0.213037i \(0.931664\pi\)
\(602\) 1.24485 0.0507365
\(603\) 20.0275 0.815581
\(604\) 12.0312 0.489541
\(605\) 0 0
\(606\) 2.54570 0.103412
\(607\) −37.6440 −1.52792 −0.763961 0.645262i \(-0.776748\pi\)
−0.763961 + 0.645262i \(0.776748\pi\)
\(608\) −2.33661 −0.0947622
\(609\) 5.57348 0.225849
\(610\) 0.179075 0.00725053
\(611\) 23.0512 0.932550
\(612\) 7.17055 0.289852
\(613\) −29.7321 −1.20087 −0.600435 0.799674i \(-0.705006\pi\)
−0.600435 + 0.799674i \(0.705006\pi\)
\(614\) −0.823813 −0.0332464
\(615\) 0.234094 0.00943959
\(616\) 0 0
\(617\) −31.2183 −1.25680 −0.628401 0.777890i \(-0.716290\pi\)
−0.628401 + 0.777890i \(0.716290\pi\)
\(618\) 0.854860 0.0343875
\(619\) 26.9286 1.08235 0.541176 0.840909i \(-0.317979\pi\)
0.541176 + 0.840909i \(0.317979\pi\)
\(620\) 1.24930 0.0501729
\(621\) −43.4910 −1.74523
\(622\) −0.536274 −0.0215026
\(623\) −7.53109 −0.301727
\(624\) −21.4659 −0.859322
\(625\) 24.9001 0.996004
\(626\) 0.940108 0.0375743
\(627\) 0 0
\(628\) 8.10587 0.323460
\(629\) 3.51404 0.140114
\(630\) 0.0218841 0.000871883 0
\(631\) 19.4266 0.773360 0.386680 0.922214i \(-0.373622\pi\)
0.386680 + 0.922214i \(0.373622\pi\)
\(632\) 8.77587 0.349085
\(633\) −13.1680 −0.523383
\(634\) 0.355905 0.0141348
\(635\) −1.60754 −0.0637933
\(636\) 23.3869 0.927353
\(637\) 28.8430 1.14280
\(638\) 0 0
\(639\) −2.98882 −0.118236
\(640\) 0.496639 0.0196314
\(641\) −3.38404 −0.133661 −0.0668307 0.997764i \(-0.521289\pi\)
−0.0668307 + 0.997764i \(0.521289\pi\)
\(642\) −1.85788 −0.0733245
\(643\) 20.2841 0.799926 0.399963 0.916531i \(-0.369023\pi\)
0.399963 + 0.916531i \(0.369023\pi\)
\(644\) −13.8486 −0.545713
\(645\) −0.695386 −0.0273808
\(646\) −0.489040 −0.0192410
\(647\) 3.45406 0.135793 0.0678966 0.997692i \(-0.478371\pi\)
0.0678966 + 0.997692i \(0.478371\pi\)
\(648\) −1.79942 −0.0706881
\(649\) 0 0
\(650\) −4.64828 −0.182321
\(651\) −8.57737 −0.336174
\(652\) 31.2284 1.22300
\(653\) −25.9226 −1.01443 −0.507215 0.861820i \(-0.669325\pi\)
−0.507215 + 0.861820i \(0.669325\pi\)
\(654\) −3.50761 −0.137158
\(655\) −1.19817 −0.0468162
\(656\) 8.79781 0.343497
\(657\) −0.798688 −0.0311598
\(658\) 0.887468 0.0345971
\(659\) −39.0302 −1.52040 −0.760201 0.649688i \(-0.774899\pi\)
−0.760201 + 0.649688i \(0.774899\pi\)
\(660\) 0 0
\(661\) −12.0694 −0.469444 −0.234722 0.972063i \(-0.575418\pi\)
−0.234722 + 0.972063i \(0.575418\pi\)
\(662\) −3.64284 −0.141583
\(663\) −13.9521 −0.541855
\(664\) 12.8138 0.497273
\(665\) 0.0731137 0.00283523
\(666\) 0.430210 0.0166703
\(667\) 40.0257 1.54980
\(668\) 2.86235 0.110748
\(669\) 4.90193 0.189520
\(670\) 0.218516 0.00844202
\(671\) 0 0
\(672\) −2.56651 −0.0990051
\(673\) 35.2196 1.35762 0.678808 0.734316i \(-0.262497\pi\)
0.678808 + 0.734316i \(0.262497\pi\)
\(674\) 0.352709 0.0135858
\(675\) 27.5311 1.05967
\(676\) −16.9705 −0.652713
\(677\) 14.8411 0.570391 0.285196 0.958469i \(-0.407941\pi\)
0.285196 + 0.958469i \(0.407941\pi\)
\(678\) −3.56615 −0.136957
\(679\) −0.0925383 −0.00355130
\(680\) 0.158070 0.00606173
\(681\) −26.3225 −1.00868
\(682\) 0 0
\(683\) −31.1026 −1.19011 −0.595054 0.803686i \(-0.702869\pi\)
−0.595054 + 0.803686i \(0.702869\pi\)
\(684\) 2.93289 0.112142
\(685\) −1.02167 −0.0390358
\(686\) 2.36467 0.0902834
\(687\) 6.12764 0.233784
\(688\) −26.1342 −0.996358
\(689\) 45.2861 1.72526
\(690\) −0.157920 −0.00601190
\(691\) 48.6258 1.84981 0.924907 0.380194i \(-0.124143\pi\)
0.924907 + 0.380194i \(0.124143\pi\)
\(692\) −28.6939 −1.09078
\(693\) 0 0
\(694\) −6.85158 −0.260082
\(695\) −0.563779 −0.0213853
\(696\) 4.92858 0.186817
\(697\) 5.71829 0.216596
\(698\) 4.60137 0.174164
\(699\) 16.3935 0.620060
\(700\) 8.76660 0.331346
\(701\) 17.3353 0.654747 0.327373 0.944895i \(-0.393836\pi\)
0.327373 + 0.944895i \(0.393836\pi\)
\(702\) −5.13256 −0.193716
\(703\) 1.43731 0.0542092
\(704\) 0 0
\(705\) −0.495747 −0.0186709
\(706\) −1.49352 −0.0562093
\(707\) −9.29689 −0.349646
\(708\) 19.2772 0.724480
\(709\) 17.7875 0.668025 0.334012 0.942569i \(-0.391597\pi\)
0.334012 + 0.942569i \(0.391597\pi\)
\(710\) −0.0326105 −0.00122385
\(711\) −16.5787 −0.621750
\(712\) −6.65968 −0.249582
\(713\) −61.5979 −2.30686
\(714\) −0.537155 −0.0201025
\(715\) 0 0
\(716\) 27.3035 1.02038
\(717\) 14.8104 0.553103
\(718\) 6.90912 0.257846
\(719\) −48.7880 −1.81949 −0.909743 0.415173i \(-0.863721\pi\)
−0.909743 + 0.415173i \(0.863721\pi\)
\(720\) −0.459431 −0.0171220
\(721\) −3.12194 −0.116267
\(722\) −0.200027 −0.00744422
\(723\) 27.9101 1.03799
\(724\) −36.2357 −1.34669
\(725\) −25.3374 −0.941008
\(726\) 0 0
\(727\) −11.3288 −0.420162 −0.210081 0.977684i \(-0.567373\pi\)
−0.210081 + 0.977684i \(0.567373\pi\)
\(728\) −3.30204 −0.122382
\(729\) 23.6819 0.877106
\(730\) −0.00871436 −0.000322533 0
\(731\) −16.9864 −0.628264
\(732\) 26.3607 0.974320
\(733\) −14.3227 −0.529023 −0.264511 0.964383i \(-0.585211\pi\)
−0.264511 + 0.964383i \(0.585211\pi\)
\(734\) 1.74715 0.0644885
\(735\) −0.620308 −0.0228804
\(736\) −18.4312 −0.679383
\(737\) 0 0
\(738\) 0.700066 0.0257698
\(739\) −42.5999 −1.56706 −0.783532 0.621351i \(-0.786584\pi\)
−0.783532 + 0.621351i \(0.786584\pi\)
\(740\) −0.229941 −0.00845281
\(741\) −5.70667 −0.209640
\(742\) 1.74351 0.0640063
\(743\) 25.5536 0.937470 0.468735 0.883339i \(-0.344710\pi\)
0.468735 + 0.883339i \(0.344710\pi\)
\(744\) −7.58490 −0.278076
\(745\) −1.24429 −0.0455873
\(746\) 5.98983 0.219303
\(747\) −24.2069 −0.885684
\(748\) 0 0
\(749\) 6.78494 0.247916
\(750\) 0.200069 0.00730549
\(751\) 42.8191 1.56249 0.781246 0.624223i \(-0.214584\pi\)
0.781246 + 0.624223i \(0.214584\pi\)
\(752\) −18.6313 −0.679415
\(753\) 17.5707 0.640313
\(754\) 4.72360 0.172023
\(755\) −0.501033 −0.0182345
\(756\) 9.67993 0.352056
\(757\) −31.5166 −1.14549 −0.572744 0.819734i \(-0.694121\pi\)
−0.572744 + 0.819734i \(0.694121\pi\)
\(758\) 1.49909 0.0544494
\(759\) 0 0
\(760\) 0.0646538 0.00234524
\(761\) 35.2163 1.27659 0.638296 0.769791i \(-0.279640\pi\)
0.638296 + 0.769791i \(0.279640\pi\)
\(762\) 4.83065 0.174996
\(763\) 12.8097 0.463744
\(764\) 8.55646 0.309562
\(765\) −0.298615 −0.0107964
\(766\) −0.802410 −0.0289922
\(767\) 37.3280 1.34784
\(768\) 15.8113 0.570540
\(769\) −9.89036 −0.356655 −0.178328 0.983971i \(-0.557069\pi\)
−0.178328 + 0.983971i \(0.557069\pi\)
\(770\) 0 0
\(771\) −5.57191 −0.200667
\(772\) −13.3479 −0.480401
\(773\) −32.8434 −1.18130 −0.590648 0.806930i \(-0.701128\pi\)
−0.590648 + 0.806930i \(0.701128\pi\)
\(774\) −2.07957 −0.0747487
\(775\) 38.9933 1.40068
\(776\) −0.0818308 −0.00293756
\(777\) 1.57872 0.0566364
\(778\) −6.13990 −0.220126
\(779\) 2.33889 0.0837993
\(780\) 0.912955 0.0326890
\(781\) 0 0
\(782\) −3.85755 −0.137946
\(783\) −27.9771 −0.999822
\(784\) −23.3126 −0.832594
\(785\) −0.337566 −0.0120482
\(786\) 3.60049 0.128425
\(787\) −52.3773 −1.86705 −0.933524 0.358516i \(-0.883283\pi\)
−0.933524 + 0.358516i \(0.883283\pi\)
\(788\) 20.7573 0.739447
\(789\) −8.84665 −0.314949
\(790\) −0.180888 −0.00643569
\(791\) 13.0235 0.463064
\(792\) 0 0
\(793\) 51.0444 1.81264
\(794\) 0.359157 0.0127460
\(795\) −0.973940 −0.0345421
\(796\) −5.52379 −0.195786
\(797\) −17.7908 −0.630181 −0.315091 0.949062i \(-0.602035\pi\)
−0.315091 + 0.949062i \(0.602035\pi\)
\(798\) −0.219707 −0.00777753
\(799\) −12.1098 −0.428412
\(800\) 11.6675 0.412508
\(801\) 12.5810 0.444526
\(802\) 1.28421 0.0453471
\(803\) 0 0
\(804\) 32.1667 1.13443
\(805\) 0.576721 0.0203268
\(806\) −7.26944 −0.256055
\(807\) 11.9182 0.419539
\(808\) −8.22116 −0.289219
\(809\) −36.7305 −1.29137 −0.645687 0.763602i \(-0.723429\pi\)
−0.645687 + 0.763602i \(0.723429\pi\)
\(810\) 0.0370896 0.00130320
\(811\) 38.5485 1.35362 0.676811 0.736157i \(-0.263361\pi\)
0.676811 + 0.736157i \(0.263361\pi\)
\(812\) −8.90864 −0.312632
\(813\) 21.5662 0.756360
\(814\) 0 0
\(815\) −1.30049 −0.0455543
\(816\) 11.2769 0.394772
\(817\) −6.94775 −0.243071
\(818\) −0.857179 −0.0299706
\(819\) 6.23796 0.217972
\(820\) −0.374176 −0.0130668
\(821\) −25.8360 −0.901683 −0.450842 0.892604i \(-0.648876\pi\)
−0.450842 + 0.892604i \(0.648876\pi\)
\(822\) 3.07010 0.107082
\(823\) −21.3234 −0.743289 −0.371644 0.928375i \(-0.621206\pi\)
−0.371644 + 0.928375i \(0.621206\pi\)
\(824\) −2.76070 −0.0961737
\(825\) 0 0
\(826\) 1.43712 0.0500040
\(827\) −12.2015 −0.424289 −0.212144 0.977238i \(-0.568045\pi\)
−0.212144 + 0.977238i \(0.568045\pi\)
\(828\) 23.1346 0.803984
\(829\) 53.2814 1.85054 0.925270 0.379308i \(-0.123838\pi\)
0.925270 + 0.379308i \(0.123838\pi\)
\(830\) −0.264118 −0.00916766
\(831\) −1.22075 −0.0423474
\(832\) 32.8362 1.13839
\(833\) −15.1524 −0.525001
\(834\) 1.69415 0.0586637
\(835\) −0.119201 −0.00412513
\(836\) 0 0
\(837\) 43.0557 1.48822
\(838\) −3.41515 −0.117974
\(839\) −8.39932 −0.289977 −0.144988 0.989433i \(-0.546314\pi\)
−0.144988 + 0.989433i \(0.546314\pi\)
\(840\) 0.0710149 0.00245025
\(841\) −3.25205 −0.112140
\(842\) 6.96529 0.240040
\(843\) 18.0543 0.621824
\(844\) 21.0478 0.724494
\(845\) 0.706732 0.0243123
\(846\) −1.48255 −0.0509710
\(847\) 0 0
\(848\) −36.6029 −1.25695
\(849\) −6.18089 −0.212128
\(850\) 2.44194 0.0837579
\(851\) 11.3375 0.388645
\(852\) −4.80043 −0.164460
\(853\) −53.4755 −1.83097 −0.915484 0.402355i \(-0.868192\pi\)
−0.915484 + 0.402355i \(0.868192\pi\)
\(854\) 1.96521 0.0672480
\(855\) −0.122139 −0.00417707
\(856\) 5.99987 0.205071
\(857\) 26.7668 0.914335 0.457168 0.889381i \(-0.348864\pi\)
0.457168 + 0.889381i \(0.348864\pi\)
\(858\) 0 0
\(859\) 20.6673 0.705158 0.352579 0.935782i \(-0.385305\pi\)
0.352579 + 0.935782i \(0.385305\pi\)
\(860\) 1.11150 0.0379019
\(861\) 2.56900 0.0875514
\(862\) 0.960074 0.0327002
\(863\) 37.9184 1.29076 0.645379 0.763863i \(-0.276700\pi\)
0.645379 + 0.763863i \(0.276700\pi\)
\(864\) 12.8831 0.438290
\(865\) 1.19495 0.0406294
\(866\) −5.65773 −0.192257
\(867\) −13.5161 −0.459032
\(868\) 13.7101 0.465349
\(869\) 0 0
\(870\) −0.101588 −0.00344414
\(871\) 62.2871 2.11052
\(872\) 11.3275 0.383599
\(873\) 0.154589 0.00523203
\(874\) −1.57781 −0.0533702
\(875\) −0.730650 −0.0247005
\(876\) −1.28280 −0.0433417
\(877\) 0.729467 0.0246324 0.0123162 0.999924i \(-0.496080\pi\)
0.0123162 + 0.999924i \(0.496080\pi\)
\(878\) −5.85779 −0.197691
\(879\) 17.8633 0.602513
\(880\) 0 0
\(881\) −42.5972 −1.43514 −0.717569 0.696488i \(-0.754745\pi\)
−0.717569 + 0.696488i \(0.754745\pi\)
\(882\) −1.85505 −0.0624628
\(883\) 1.36806 0.0460390 0.0230195 0.999735i \(-0.492672\pi\)
0.0230195 + 0.999735i \(0.492672\pi\)
\(884\) 22.3010 0.750064
\(885\) −0.802790 −0.0269855
\(886\) −1.97383 −0.0663122
\(887\) −22.5442 −0.756960 −0.378480 0.925610i \(-0.623553\pi\)
−0.378480 + 0.925610i \(0.623553\pi\)
\(888\) 1.39605 0.0468484
\(889\) −17.6415 −0.591677
\(890\) 0.137269 0.00460126
\(891\) 0 0
\(892\) −7.83523 −0.262343
\(893\) −4.95312 −0.165750
\(894\) 3.73909 0.125054
\(895\) −1.13705 −0.0380072
\(896\) 5.45023 0.182079
\(897\) −45.0143 −1.50298
\(898\) −0.942084 −0.0314378
\(899\) −39.6251 −1.32157
\(900\) −14.6449 −0.488164
\(901\) −23.7907 −0.792583
\(902\) 0 0
\(903\) −7.63132 −0.253954
\(904\) 11.5166 0.383037
\(905\) 1.50902 0.0501616
\(906\) 1.50560 0.0500203
\(907\) −22.1263 −0.734691 −0.367346 0.930084i \(-0.619733\pi\)
−0.367346 + 0.930084i \(0.619733\pi\)
\(908\) 42.0739 1.39627
\(909\) 15.5308 0.515124
\(910\) 0.0680613 0.00225621
\(911\) 13.8428 0.458632 0.229316 0.973352i \(-0.426351\pi\)
0.229316 + 0.973352i \(0.426351\pi\)
\(912\) 4.61248 0.152734
\(913\) 0 0
\(914\) 0.231068 0.00764307
\(915\) −1.09778 −0.0362915
\(916\) −9.79441 −0.323616
\(917\) −13.1489 −0.434217
\(918\) 2.69635 0.0889928
\(919\) 14.3933 0.474792 0.237396 0.971413i \(-0.423706\pi\)
0.237396 + 0.971413i \(0.423706\pi\)
\(920\) 0.509990 0.0168139
\(921\) 5.05022 0.166410
\(922\) −8.26500 −0.272193
\(923\) −9.29547 −0.305964
\(924\) 0 0
\(925\) −7.17698 −0.235978
\(926\) 1.66411 0.0546861
\(927\) 5.21531 0.171293
\(928\) −11.8565 −0.389210
\(929\) 23.1287 0.758827 0.379413 0.925227i \(-0.376126\pi\)
0.379413 + 0.925227i \(0.376126\pi\)
\(930\) 0.156339 0.00512657
\(931\) −6.19763 −0.203119
\(932\) −26.2033 −0.858319
\(933\) 3.28752 0.107628
\(934\) −1.42327 −0.0465707
\(935\) 0 0
\(936\) 5.51617 0.180302
\(937\) 4.99511 0.163183 0.0815916 0.996666i \(-0.474000\pi\)
0.0815916 + 0.996666i \(0.474000\pi\)
\(938\) 2.39805 0.0782990
\(939\) −5.76314 −0.188073
\(940\) 0.792401 0.0258453
\(941\) 57.5285 1.87538 0.937688 0.347479i \(-0.112962\pi\)
0.937688 + 0.347479i \(0.112962\pi\)
\(942\) 1.01438 0.0330504
\(943\) 18.4492 0.600787
\(944\) −30.1707 −0.981974
\(945\) −0.403117 −0.0131134
\(946\) 0 0
\(947\) 26.9892 0.877032 0.438516 0.898723i \(-0.355504\pi\)
0.438516 + 0.898723i \(0.355504\pi\)
\(948\) −26.6275 −0.864822
\(949\) −2.48399 −0.0806336
\(950\) 0.998800 0.0324054
\(951\) −2.18180 −0.0707498
\(952\) 1.73470 0.0562220
\(953\) 44.7439 1.44940 0.724699 0.689066i \(-0.241979\pi\)
0.724699 + 0.689066i \(0.241979\pi\)
\(954\) −2.91260 −0.0942988
\(955\) −0.356330 −0.0115306
\(956\) −23.6728 −0.765634
\(957\) 0 0
\(958\) −4.17899 −0.135017
\(959\) −11.2120 −0.362054
\(960\) −0.706189 −0.0227922
\(961\) 29.9815 0.967145
\(962\) 1.33799 0.0431385
\(963\) −11.3345 −0.365249
\(964\) −44.6114 −1.43684
\(965\) 0.555868 0.0178940
\(966\) −1.73305 −0.0557598
\(967\) −15.9104 −0.511644 −0.255822 0.966724i \(-0.582346\pi\)
−0.255822 + 0.966724i \(0.582346\pi\)
\(968\) 0 0
\(969\) 2.99796 0.0963083
\(970\) 0.00168669 5.41564e−5 0
\(971\) 31.3050 1.00462 0.502312 0.864686i \(-0.332483\pi\)
0.502312 + 0.864686i \(0.332483\pi\)
\(972\) −26.9598 −0.864735
\(973\) −6.18703 −0.198347
\(974\) −0.223530 −0.00716236
\(975\) 28.4954 0.912582
\(976\) −41.2572 −1.32061
\(977\) 16.4925 0.527643 0.263821 0.964572i \(-0.415017\pi\)
0.263821 + 0.964572i \(0.415017\pi\)
\(978\) 3.90798 0.124964
\(979\) 0 0
\(980\) 0.991499 0.0316723
\(981\) −21.3991 −0.683222
\(982\) 5.82007 0.185726
\(983\) −27.7320 −0.884514 −0.442257 0.896888i \(-0.645822\pi\)
−0.442257 + 0.896888i \(0.645822\pi\)
\(984\) 2.27175 0.0724206
\(985\) −0.864428 −0.0275430
\(986\) −2.48151 −0.0790273
\(987\) −5.44044 −0.173171
\(988\) 9.12153 0.290195
\(989\) −54.8039 −1.74266
\(990\) 0 0
\(991\) 36.0016 1.14363 0.571815 0.820383i \(-0.306240\pi\)
0.571815 + 0.820383i \(0.306240\pi\)
\(992\) 18.2468 0.579335
\(993\) 22.3317 0.708674
\(994\) −0.357875 −0.0113511
\(995\) 0.230036 0.00729263
\(996\) −38.8794 −1.23194
\(997\) 27.1016 0.858317 0.429158 0.903229i \(-0.358810\pi\)
0.429158 + 0.903229i \(0.358810\pi\)
\(998\) 0.591541 0.0187249
\(999\) −7.92470 −0.250726
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2299.2.a.u.1.7 14
11.2 odd 10 209.2.f.b.191.4 yes 28
11.6 odd 10 209.2.f.b.58.4 28
11.10 odd 2 2299.2.a.t.1.8 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
209.2.f.b.58.4 28 11.6 odd 10
209.2.f.b.191.4 yes 28 11.2 odd 10
2299.2.a.t.1.8 14 11.10 odd 2
2299.2.a.u.1.7 14 1.1 even 1 trivial