Properties

Label 2299.2.a.n.1.1
Level $2299$
Weight $2$
Character 2299.1
Self dual yes
Analytic conductor $18.358$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2299,2,Mod(1,2299)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2299, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2299.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2299 = 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2299.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.3576074247\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.246832.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 5x^{3} + 6x^{2} + 7x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 209)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.71457\) of defining polynomial
Character \(\chi\) \(=\) 2299.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.65432 q^{2} +0.121872 q^{3} +5.04540 q^{4} -1.06025 q^{5} -0.323487 q^{6} +3.36889 q^{7} -8.08346 q^{8} -2.98515 q^{9} +2.81425 q^{10} +0.614893 q^{12} +2.15993 q^{13} -8.94209 q^{14} -0.129215 q^{15} +11.3653 q^{16} -3.67288 q^{17} +7.92353 q^{18} +1.00000 q^{19} -5.34940 q^{20} +0.410573 q^{21} +3.15468 q^{23} -0.985147 q^{24} -3.87587 q^{25} -5.73313 q^{26} -0.729422 q^{27} +16.9974 q^{28} -7.17849 q^{29} +0.342978 q^{30} +4.65295 q^{31} -14.0001 q^{32} +9.74900 q^{34} -3.57187 q^{35} -15.0613 q^{36} +2.27446 q^{37} -2.65432 q^{38} +0.263235 q^{39} +8.57050 q^{40} +11.3852 q^{41} -1.08979 q^{42} -9.38838 q^{43} +3.16501 q^{45} -8.37352 q^{46} -5.77094 q^{47} +1.38511 q^{48} +4.34940 q^{49} +10.2878 q^{50} -0.447622 q^{51} +10.8977 q^{52} -5.65820 q^{53} +1.93612 q^{54} -27.2322 q^{56} +0.121872 q^{57} +19.0540 q^{58} -13.7944 q^{59} -0.651942 q^{60} -6.98152 q^{61} -12.3504 q^{62} -10.0566 q^{63} +14.4301 q^{64} -2.29007 q^{65} -4.81332 q^{67} -18.5312 q^{68} +0.384467 q^{69} +9.48087 q^{70} +15.2629 q^{71} +24.1303 q^{72} +8.08806 q^{73} -6.03713 q^{74} -0.472360 q^{75} +5.04540 q^{76} -0.698709 q^{78} -13.4291 q^{79} -12.0500 q^{80} +8.86655 q^{81} -30.2199 q^{82} -9.96666 q^{83} +2.07150 q^{84} +3.89418 q^{85} +24.9197 q^{86} -0.874858 q^{87} -4.61626 q^{89} -8.40094 q^{90} +7.27655 q^{91} +15.9166 q^{92} +0.567064 q^{93} +15.3179 q^{94} -1.06025 q^{95} -1.70622 q^{96} -4.09907 q^{97} -11.5447 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 2 q^{2} + q^{3} + 6 q^{4} - 5 q^{5} + 2 q^{6} - 6 q^{7} - 6 q^{8} + 4 q^{9} - 12 q^{10} + 6 q^{12} - 4 q^{13} - 14 q^{14} + 3 q^{15} + 8 q^{16} + 4 q^{17} + 20 q^{18} + 5 q^{19} - 8 q^{20} - 10 q^{21}+ \cdots + 10 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.65432 −1.87689 −0.938443 0.345435i \(-0.887732\pi\)
−0.938443 + 0.345435i \(0.887732\pi\)
\(3\) 0.121872 0.0703629 0.0351814 0.999381i \(-0.488799\pi\)
0.0351814 + 0.999381i \(0.488799\pi\)
\(4\) 5.04540 2.52270
\(5\) −1.06025 −0.474159 −0.237080 0.971490i \(-0.576190\pi\)
−0.237080 + 0.971490i \(0.576190\pi\)
\(6\) −0.323487 −0.132063
\(7\) 3.36889 1.27332 0.636660 0.771145i \(-0.280316\pi\)
0.636660 + 0.771145i \(0.280316\pi\)
\(8\) −8.08346 −2.85793
\(9\) −2.98515 −0.995049
\(10\) 2.81425 0.889943
\(11\) 0 0
\(12\) 0.614893 0.177504
\(13\) 2.15993 0.599056 0.299528 0.954087i \(-0.403171\pi\)
0.299528 + 0.954087i \(0.403171\pi\)
\(14\) −8.94209 −2.38987
\(15\) −0.129215 −0.0333632
\(16\) 11.3653 2.84131
\(17\) −3.67288 −0.890805 −0.445402 0.895330i \(-0.646939\pi\)
−0.445402 + 0.895330i \(0.646939\pi\)
\(18\) 7.92353 1.86759
\(19\) 1.00000 0.229416
\(20\) −5.34940 −1.19616
\(21\) 0.410573 0.0895944
\(22\) 0 0
\(23\) 3.15468 0.657797 0.328898 0.944365i \(-0.393323\pi\)
0.328898 + 0.944365i \(0.393323\pi\)
\(24\) −0.985147 −0.201092
\(25\) −3.87587 −0.775173
\(26\) −5.73313 −1.12436
\(27\) −0.729422 −0.140377
\(28\) 16.9974 3.21220
\(29\) −7.17849 −1.33301 −0.666506 0.745499i \(-0.732211\pi\)
−0.666506 + 0.745499i \(0.732211\pi\)
\(30\) 0.342978 0.0626189
\(31\) 4.65295 0.835694 0.417847 0.908517i \(-0.362785\pi\)
0.417847 + 0.908517i \(0.362785\pi\)
\(32\) −14.0001 −2.47489
\(33\) 0 0
\(34\) 9.74900 1.67194
\(35\) −3.57187 −0.603756
\(36\) −15.0613 −2.51021
\(37\) 2.27446 0.373918 0.186959 0.982368i \(-0.440137\pi\)
0.186959 + 0.982368i \(0.440137\pi\)
\(38\) −2.65432 −0.430587
\(39\) 0.263235 0.0421513
\(40\) 8.57050 1.35512
\(41\) 11.3852 1.77807 0.889034 0.457841i \(-0.151377\pi\)
0.889034 + 0.457841i \(0.151377\pi\)
\(42\) −1.08979 −0.168158
\(43\) −9.38838 −1.43171 −0.715857 0.698247i \(-0.753964\pi\)
−0.715857 + 0.698247i \(0.753964\pi\)
\(44\) 0 0
\(45\) 3.16501 0.471812
\(46\) −8.37352 −1.23461
\(47\) −5.77094 −0.841778 −0.420889 0.907112i \(-0.638282\pi\)
−0.420889 + 0.907112i \(0.638282\pi\)
\(48\) 1.38511 0.199923
\(49\) 4.34940 0.621342
\(50\) 10.2878 1.45491
\(51\) −0.447622 −0.0626796
\(52\) 10.8977 1.51124
\(53\) −5.65820 −0.777213 −0.388607 0.921404i \(-0.627043\pi\)
−0.388607 + 0.921404i \(0.627043\pi\)
\(54\) 1.93612 0.263472
\(55\) 0 0
\(56\) −27.2322 −3.63906
\(57\) 0.121872 0.0161423
\(58\) 19.0540 2.50191
\(59\) −13.7944 −1.79588 −0.897939 0.440121i \(-0.854936\pi\)
−0.897939 + 0.440121i \(0.854936\pi\)
\(60\) −0.651942 −0.0841653
\(61\) −6.98152 −0.893892 −0.446946 0.894561i \(-0.647488\pi\)
−0.446946 + 0.894561i \(0.647488\pi\)
\(62\) −12.3504 −1.56850
\(63\) −10.0566 −1.26702
\(64\) 14.4301 1.80377
\(65\) −2.29007 −0.284048
\(66\) 0 0
\(67\) −4.81332 −0.588041 −0.294020 0.955799i \(-0.594993\pi\)
−0.294020 + 0.955799i \(0.594993\pi\)
\(68\) −18.5312 −2.24723
\(69\) 0.384467 0.0462844
\(70\) 9.48087 1.13318
\(71\) 15.2629 1.81137 0.905685 0.423951i \(-0.139357\pi\)
0.905685 + 0.423951i \(0.139357\pi\)
\(72\) 24.1303 2.84378
\(73\) 8.08806 0.946636 0.473318 0.880892i \(-0.343056\pi\)
0.473318 + 0.880892i \(0.343056\pi\)
\(74\) −6.03713 −0.701802
\(75\) −0.472360 −0.0545434
\(76\) 5.04540 0.578747
\(77\) 0 0
\(78\) −0.698709 −0.0791132
\(79\) −13.4291 −1.51090 −0.755448 0.655209i \(-0.772581\pi\)
−0.755448 + 0.655209i \(0.772581\pi\)
\(80\) −12.0500 −1.34724
\(81\) 8.86655 0.985172
\(82\) −30.2199 −3.33723
\(83\) −9.96666 −1.09398 −0.546992 0.837138i \(-0.684227\pi\)
−0.546992 + 0.837138i \(0.684227\pi\)
\(84\) 2.07150 0.226020
\(85\) 3.89418 0.422383
\(86\) 24.9197 2.68716
\(87\) −0.874858 −0.0937946
\(88\) 0 0
\(89\) −4.61626 −0.489323 −0.244661 0.969609i \(-0.578677\pi\)
−0.244661 + 0.969609i \(0.578677\pi\)
\(90\) −8.40094 −0.885537
\(91\) 7.27655 0.762790
\(92\) 15.9166 1.65942
\(93\) 0.567064 0.0588018
\(94\) 15.3179 1.57992
\(95\) −1.06025 −0.108780
\(96\) −1.70622 −0.174140
\(97\) −4.09907 −0.416197 −0.208099 0.978108i \(-0.566727\pi\)
−0.208099 + 0.978108i \(0.566727\pi\)
\(98\) −11.5447 −1.16619
\(99\) 0 0
\(100\) −19.5553 −1.95553
\(101\) 10.8730 1.08190 0.540950 0.841055i \(-0.318065\pi\)
0.540950 + 0.841055i \(0.318065\pi\)
\(102\) 1.18813 0.117642
\(103\) 8.85864 0.872867 0.436434 0.899736i \(-0.356241\pi\)
0.436434 + 0.899736i \(0.356241\pi\)
\(104\) −17.4597 −1.71206
\(105\) −0.435311 −0.0424820
\(106\) 15.0186 1.45874
\(107\) 18.1669 1.75626 0.878131 0.478421i \(-0.158791\pi\)
0.878131 + 0.478421i \(0.158791\pi\)
\(108\) −3.68023 −0.354130
\(109\) 0.211303 0.0202392 0.0101196 0.999949i \(-0.496779\pi\)
0.0101196 + 0.999949i \(0.496779\pi\)
\(110\) 0 0
\(111\) 0.277193 0.0263100
\(112\) 38.2883 3.61790
\(113\) −0.198345 −0.0186587 −0.00932935 0.999956i \(-0.502970\pi\)
−0.00932935 + 0.999956i \(0.502970\pi\)
\(114\) −0.323487 −0.0302973
\(115\) −3.34476 −0.311900
\(116\) −36.2184 −3.36279
\(117\) −6.44770 −0.596090
\(118\) 36.6147 3.37066
\(119\) −12.3735 −1.13428
\(120\) 1.04450 0.0953498
\(121\) 0 0
\(122\) 18.5312 1.67773
\(123\) 1.38754 0.125110
\(124\) 23.4760 2.10821
\(125\) 9.41066 0.841715
\(126\) 26.6935 2.37804
\(127\) 3.60331 0.319742 0.159871 0.987138i \(-0.448892\pi\)
0.159871 + 0.987138i \(0.448892\pi\)
\(128\) −10.3020 −0.910578
\(129\) −1.14418 −0.100739
\(130\) 6.07857 0.533126
\(131\) −16.8741 −1.47430 −0.737150 0.675729i \(-0.763829\pi\)
−0.737150 + 0.675729i \(0.763829\pi\)
\(132\) 0 0
\(133\) 3.36889 0.292119
\(134\) 12.7761 1.10369
\(135\) 0.773371 0.0665612
\(136\) 29.6896 2.54586
\(137\) −6.10839 −0.521875 −0.260937 0.965356i \(-0.584032\pi\)
−0.260937 + 0.965356i \(0.584032\pi\)
\(138\) −1.02050 −0.0868706
\(139\) −11.3347 −0.961398 −0.480699 0.876886i \(-0.659617\pi\)
−0.480699 + 0.876886i \(0.659617\pi\)
\(140\) −18.0215 −1.52310
\(141\) −0.703316 −0.0592299
\(142\) −40.5125 −3.39973
\(143\) 0 0
\(144\) −33.9270 −2.82725
\(145\) 7.61101 0.632060
\(146\) −21.4683 −1.77673
\(147\) 0.530070 0.0437194
\(148\) 11.4755 0.943284
\(149\) −6.75698 −0.553554 −0.276777 0.960934i \(-0.589266\pi\)
−0.276777 + 0.960934i \(0.589266\pi\)
\(150\) 1.25379 0.102372
\(151\) −6.46231 −0.525895 −0.262948 0.964810i \(-0.584695\pi\)
−0.262948 + 0.964810i \(0.584695\pi\)
\(152\) −8.08346 −0.655655
\(153\) 10.9641 0.886395
\(154\) 0 0
\(155\) −4.93330 −0.396252
\(156\) 1.32813 0.106335
\(157\) 0.248382 0.0198230 0.00991152 0.999951i \(-0.496845\pi\)
0.00991152 + 0.999951i \(0.496845\pi\)
\(158\) 35.6452 2.83578
\(159\) −0.689576 −0.0546869
\(160\) 14.8436 1.17349
\(161\) 10.6278 0.837585
\(162\) −23.5346 −1.84905
\(163\) −16.9710 −1.32927 −0.664637 0.747167i \(-0.731414\pi\)
−0.664637 + 0.747167i \(0.731414\pi\)
\(164\) 57.4428 4.48553
\(165\) 0 0
\(166\) 26.4547 2.05328
\(167\) 0.865538 0.0669773 0.0334887 0.999439i \(-0.489338\pi\)
0.0334887 + 0.999439i \(0.489338\pi\)
\(168\) −3.31885 −0.256055
\(169\) −8.33471 −0.641132
\(170\) −10.3364 −0.792765
\(171\) −2.98515 −0.228280
\(172\) −47.3681 −3.61178
\(173\) 4.14483 0.315125 0.157563 0.987509i \(-0.449636\pi\)
0.157563 + 0.987509i \(0.449636\pi\)
\(174\) 2.32215 0.176042
\(175\) −13.0574 −0.987043
\(176\) 0 0
\(177\) −1.68115 −0.126363
\(178\) 12.2530 0.918403
\(179\) 2.04584 0.152913 0.0764567 0.997073i \(-0.475639\pi\)
0.0764567 + 0.997073i \(0.475639\pi\)
\(180\) 15.9687 1.19024
\(181\) 5.27519 0.392101 0.196051 0.980594i \(-0.437188\pi\)
0.196051 + 0.980594i \(0.437188\pi\)
\(182\) −19.3143 −1.43167
\(183\) −0.850852 −0.0628968
\(184\) −25.5007 −1.87994
\(185\) −2.41150 −0.177297
\(186\) −1.50517 −0.110364
\(187\) 0 0
\(188\) −29.1167 −2.12355
\(189\) −2.45734 −0.178745
\(190\) 2.81425 0.204167
\(191\) −16.1899 −1.17146 −0.585729 0.810507i \(-0.699192\pi\)
−0.585729 + 0.810507i \(0.699192\pi\)
\(192\) 1.75863 0.126918
\(193\) 20.0620 1.44409 0.722045 0.691846i \(-0.243202\pi\)
0.722045 + 0.691846i \(0.243202\pi\)
\(194\) 10.8802 0.781155
\(195\) −0.279095 −0.0199864
\(196\) 21.9444 1.56746
\(197\) 23.8398 1.69851 0.849257 0.527979i \(-0.177050\pi\)
0.849257 + 0.527979i \(0.177050\pi\)
\(198\) 0 0
\(199\) −1.90194 −0.134825 −0.0674125 0.997725i \(-0.521474\pi\)
−0.0674125 + 0.997725i \(0.521474\pi\)
\(200\) 31.3304 2.21539
\(201\) −0.586609 −0.0413762
\(202\) −28.8603 −2.03060
\(203\) −24.1835 −1.69735
\(204\) −2.25843 −0.158122
\(205\) −12.0712 −0.843087
\(206\) −23.5136 −1.63827
\(207\) −9.41719 −0.654540
\(208\) 24.5481 1.70211
\(209\) 0 0
\(210\) 1.15545 0.0797339
\(211\) −12.3048 −0.847100 −0.423550 0.905873i \(-0.639216\pi\)
−0.423550 + 0.905873i \(0.639216\pi\)
\(212\) −28.5479 −1.96068
\(213\) 1.86012 0.127453
\(214\) −48.2207 −3.29630
\(215\) 9.95405 0.678860
\(216\) 5.89625 0.401189
\(217\) 15.6753 1.06411
\(218\) −0.560865 −0.0379866
\(219\) 0.985709 0.0666080
\(220\) 0 0
\(221\) −7.93316 −0.533642
\(222\) −0.735757 −0.0493808
\(223\) 22.8473 1.52997 0.764985 0.644048i \(-0.222746\pi\)
0.764985 + 0.644048i \(0.222746\pi\)
\(224\) −47.1647 −3.15132
\(225\) 11.5700 0.771335
\(226\) 0.526470 0.0350202
\(227\) −4.00654 −0.265923 −0.132962 0.991121i \(-0.542449\pi\)
−0.132962 + 0.991121i \(0.542449\pi\)
\(228\) 0.614893 0.0407223
\(229\) −24.6024 −1.62577 −0.812887 0.582422i \(-0.802105\pi\)
−0.812887 + 0.582422i \(0.802105\pi\)
\(230\) 8.87805 0.585401
\(231\) 0 0
\(232\) 58.0270 3.80966
\(233\) −16.2994 −1.06781 −0.533903 0.845545i \(-0.679275\pi\)
−0.533903 + 0.845545i \(0.679275\pi\)
\(234\) 17.1143 1.11879
\(235\) 6.11865 0.399137
\(236\) −69.5982 −4.53046
\(237\) −1.63664 −0.106311
\(238\) 32.8433 2.12891
\(239\) 15.4182 0.997324 0.498662 0.866797i \(-0.333825\pi\)
0.498662 + 0.866797i \(0.333825\pi\)
\(240\) −1.46856 −0.0947953
\(241\) −24.1441 −1.55526 −0.777629 0.628723i \(-0.783578\pi\)
−0.777629 + 0.628723i \(0.783578\pi\)
\(242\) 0 0
\(243\) 3.26885 0.209697
\(244\) −35.2245 −2.25502
\(245\) −4.61146 −0.294615
\(246\) −3.68296 −0.234817
\(247\) 2.15993 0.137433
\(248\) −37.6119 −2.38836
\(249\) −1.21466 −0.0769758
\(250\) −24.9789 −1.57980
\(251\) −19.9099 −1.25670 −0.628350 0.777931i \(-0.716269\pi\)
−0.628350 + 0.777931i \(0.716269\pi\)
\(252\) −50.7397 −3.19630
\(253\) 0 0
\(254\) −9.56433 −0.600119
\(255\) 0.474592 0.0297201
\(256\) −1.51547 −0.0947166
\(257\) −22.3126 −1.39182 −0.695911 0.718128i \(-0.744999\pi\)
−0.695911 + 0.718128i \(0.744999\pi\)
\(258\) 3.03702 0.189076
\(259\) 7.66239 0.476118
\(260\) −11.5543 −0.716568
\(261\) 21.4289 1.32641
\(262\) 44.7893 2.76709
\(263\) −13.7963 −0.850716 −0.425358 0.905025i \(-0.639852\pi\)
−0.425358 + 0.905025i \(0.639852\pi\)
\(264\) 0 0
\(265\) 5.99912 0.368523
\(266\) −8.94209 −0.548275
\(267\) −0.562593 −0.0344301
\(268\) −24.2851 −1.48345
\(269\) −11.2028 −0.683048 −0.341524 0.939873i \(-0.610943\pi\)
−0.341524 + 0.939873i \(0.610943\pi\)
\(270\) −2.05277 −0.124928
\(271\) −17.1234 −1.04017 −0.520085 0.854115i \(-0.674100\pi\)
−0.520085 + 0.854115i \(0.674100\pi\)
\(272\) −41.7433 −2.53106
\(273\) 0.886808 0.0536721
\(274\) 16.2136 0.979499
\(275\) 0 0
\(276\) 1.93979 0.116762
\(277\) 13.7127 0.823919 0.411960 0.911202i \(-0.364844\pi\)
0.411960 + 0.911202i \(0.364844\pi\)
\(278\) 30.0859 1.80443
\(279\) −13.8897 −0.831557
\(280\) 28.8730 1.72549
\(281\) −25.8599 −1.54267 −0.771337 0.636427i \(-0.780412\pi\)
−0.771337 + 0.636427i \(0.780412\pi\)
\(282\) 1.86682 0.111168
\(283\) −28.8711 −1.71621 −0.858103 0.513477i \(-0.828357\pi\)
−0.858103 + 0.513477i \(0.828357\pi\)
\(284\) 77.0073 4.56954
\(285\) −0.129215 −0.00765404
\(286\) 0 0
\(287\) 38.3554 2.26405
\(288\) 41.7923 2.46264
\(289\) −3.50993 −0.206467
\(290\) −20.2020 −1.18630
\(291\) −0.499562 −0.0292848
\(292\) 40.8075 2.38808
\(293\) −6.37971 −0.372707 −0.186353 0.982483i \(-0.559667\pi\)
−0.186353 + 0.982483i \(0.559667\pi\)
\(294\) −1.40697 −0.0820563
\(295\) 14.6255 0.851532
\(296\) −18.3855 −1.06863
\(297\) 0 0
\(298\) 17.9352 1.03896
\(299\) 6.81389 0.394057
\(300\) −2.38324 −0.137597
\(301\) −31.6284 −1.82303
\(302\) 17.1530 0.987045
\(303\) 1.32511 0.0761256
\(304\) 11.3653 0.651842
\(305\) 7.40217 0.423847
\(306\) −29.1022 −1.66366
\(307\) −10.4299 −0.595264 −0.297632 0.954681i \(-0.596197\pi\)
−0.297632 + 0.954681i \(0.596197\pi\)
\(308\) 0 0
\(309\) 1.07962 0.0614174
\(310\) 13.0945 0.743720
\(311\) −8.26224 −0.468508 −0.234254 0.972175i \(-0.575265\pi\)
−0.234254 + 0.972175i \(0.575265\pi\)
\(312\) −2.12785 −0.120466
\(313\) −24.1167 −1.36315 −0.681577 0.731746i \(-0.738706\pi\)
−0.681577 + 0.731746i \(0.738706\pi\)
\(314\) −0.659285 −0.0372056
\(315\) 10.6626 0.600767
\(316\) −67.7554 −3.81154
\(317\) −11.7330 −0.658989 −0.329495 0.944157i \(-0.606878\pi\)
−0.329495 + 0.944157i \(0.606878\pi\)
\(318\) 1.83035 0.102641
\(319\) 0 0
\(320\) −15.2996 −0.855273
\(321\) 2.21404 0.123576
\(322\) −28.2095 −1.57205
\(323\) −3.67288 −0.204365
\(324\) 44.7353 2.48529
\(325\) −8.37159 −0.464372
\(326\) 45.0465 2.49489
\(327\) 0.0257519 0.00142409
\(328\) −92.0317 −5.08160
\(329\) −19.4416 −1.07185
\(330\) 0 0
\(331\) −6.95223 −0.382129 −0.191065 0.981577i \(-0.561194\pi\)
−0.191065 + 0.981577i \(0.561194\pi\)
\(332\) −50.2858 −2.75979
\(333\) −6.78959 −0.372067
\(334\) −2.29741 −0.125709
\(335\) 5.10333 0.278825
\(336\) 4.66627 0.254566
\(337\) −29.4416 −1.60379 −0.801893 0.597468i \(-0.796174\pi\)
−0.801893 + 0.597468i \(0.796174\pi\)
\(338\) 22.1230 1.20333
\(339\) −0.0241727 −0.00131288
\(340\) 19.6477 1.06555
\(341\) 0 0
\(342\) 7.92353 0.428455
\(343\) −8.92959 −0.482152
\(344\) 75.8905 4.09174
\(345\) −0.407632 −0.0219462
\(346\) −11.0017 −0.591454
\(347\) 17.2180 0.924311 0.462155 0.886799i \(-0.347076\pi\)
0.462155 + 0.886799i \(0.347076\pi\)
\(348\) −4.41401 −0.236616
\(349\) −4.32405 −0.231461 −0.115731 0.993281i \(-0.536921\pi\)
−0.115731 + 0.993281i \(0.536921\pi\)
\(350\) 34.6583 1.85257
\(351\) −1.57550 −0.0840939
\(352\) 0 0
\(353\) 23.4421 1.24770 0.623848 0.781545i \(-0.285568\pi\)
0.623848 + 0.781545i \(0.285568\pi\)
\(354\) 4.46231 0.237169
\(355\) −16.1825 −0.858878
\(356\) −23.2909 −1.23441
\(357\) −1.50799 −0.0798111
\(358\) −5.43031 −0.287001
\(359\) −8.20544 −0.433066 −0.216533 0.976275i \(-0.569475\pi\)
−0.216533 + 0.976275i \(0.569475\pi\)
\(360\) −25.5842 −1.34841
\(361\) 1.00000 0.0526316
\(362\) −14.0020 −0.735930
\(363\) 0 0
\(364\) 36.7131 1.92429
\(365\) −8.57539 −0.448856
\(366\) 2.25843 0.118050
\(367\) 33.1494 1.73039 0.865193 0.501439i \(-0.167196\pi\)
0.865193 + 0.501439i \(0.167196\pi\)
\(368\) 35.8538 1.86901
\(369\) −33.9865 −1.76926
\(370\) 6.40088 0.332766
\(371\) −19.0618 −0.989640
\(372\) 2.86107 0.148339
\(373\) 16.5840 0.858685 0.429343 0.903142i \(-0.358745\pi\)
0.429343 + 0.903142i \(0.358745\pi\)
\(374\) 0 0
\(375\) 1.14690 0.0592254
\(376\) 46.6492 2.40575
\(377\) −15.5050 −0.798550
\(378\) 6.52256 0.335484
\(379\) 5.79467 0.297652 0.148826 0.988863i \(-0.452451\pi\)
0.148826 + 0.988863i \(0.452451\pi\)
\(380\) −5.34940 −0.274418
\(381\) 0.439143 0.0224980
\(382\) 42.9730 2.19869
\(383\) 5.89016 0.300973 0.150487 0.988612i \(-0.451916\pi\)
0.150487 + 0.988612i \(0.451916\pi\)
\(384\) −1.25553 −0.0640709
\(385\) 0 0
\(386\) −53.2508 −2.71039
\(387\) 28.0257 1.42463
\(388\) −20.6814 −1.04994
\(389\) 13.8055 0.699964 0.349982 0.936756i \(-0.386188\pi\)
0.349982 + 0.936756i \(0.386188\pi\)
\(390\) 0.740808 0.0375122
\(391\) −11.5868 −0.585968
\(392\) −35.1581 −1.77575
\(393\) −2.05649 −0.103736
\(394\) −63.2784 −3.18792
\(395\) 14.2383 0.716405
\(396\) 0 0
\(397\) 6.48471 0.325458 0.162729 0.986671i \(-0.447970\pi\)
0.162729 + 0.986671i \(0.447970\pi\)
\(398\) 5.04835 0.253051
\(399\) 0.410573 0.0205544
\(400\) −44.0502 −2.20251
\(401\) 3.70806 0.185172 0.0925858 0.995705i \(-0.470487\pi\)
0.0925858 + 0.995705i \(0.470487\pi\)
\(402\) 1.55705 0.0776584
\(403\) 10.0500 0.500628
\(404\) 54.8584 2.72931
\(405\) −9.40077 −0.467128
\(406\) 64.1908 3.18573
\(407\) 0 0
\(408\) 3.61833 0.179134
\(409\) −31.0569 −1.53567 −0.767833 0.640650i \(-0.778665\pi\)
−0.767833 + 0.640650i \(0.778665\pi\)
\(410\) 32.0407 1.58238
\(411\) −0.744442 −0.0367206
\(412\) 44.6954 2.20198
\(413\) −46.4717 −2.28673
\(414\) 24.9962 1.22850
\(415\) 10.5672 0.518722
\(416\) −30.2392 −1.48260
\(417\) −1.38138 −0.0676467
\(418\) 0 0
\(419\) −11.2871 −0.551410 −0.275705 0.961242i \(-0.588911\pi\)
−0.275705 + 0.961242i \(0.588911\pi\)
\(420\) −2.19632 −0.107169
\(421\) 34.5194 1.68237 0.841186 0.540746i \(-0.181858\pi\)
0.841186 + 0.540746i \(0.181858\pi\)
\(422\) 32.6609 1.58991
\(423\) 17.2271 0.837611
\(424\) 45.7378 2.22122
\(425\) 14.2356 0.690528
\(426\) −4.93734 −0.239215
\(427\) −23.5199 −1.13821
\(428\) 91.6593 4.43052
\(429\) 0 0
\(430\) −26.4212 −1.27414
\(431\) −18.1654 −0.874996 −0.437498 0.899219i \(-0.644135\pi\)
−0.437498 + 0.899219i \(0.644135\pi\)
\(432\) −8.29007 −0.398856
\(433\) 10.7804 0.518075 0.259037 0.965867i \(-0.416595\pi\)
0.259037 + 0.965867i \(0.416595\pi\)
\(434\) −41.6071 −1.99720
\(435\) 0.927570 0.0444736
\(436\) 1.06611 0.0510573
\(437\) 3.15468 0.150909
\(438\) −2.61638 −0.125016
\(439\) 1.38742 0.0662180 0.0331090 0.999452i \(-0.489459\pi\)
0.0331090 + 0.999452i \(0.489459\pi\)
\(440\) 0 0
\(441\) −12.9836 −0.618266
\(442\) 21.0571 1.00159
\(443\) −7.26792 −0.345310 −0.172655 0.984982i \(-0.555234\pi\)
−0.172655 + 0.984982i \(0.555234\pi\)
\(444\) 1.39855 0.0663722
\(445\) 4.89440 0.232017
\(446\) −60.6441 −2.87158
\(447\) −0.823487 −0.0389496
\(448\) 48.6135 2.29677
\(449\) 21.4298 1.01134 0.505668 0.862728i \(-0.331246\pi\)
0.505668 + 0.862728i \(0.331246\pi\)
\(450\) −30.7105 −1.44771
\(451\) 0 0
\(452\) −1.00073 −0.0470703
\(453\) −0.787575 −0.0370035
\(454\) 10.6346 0.499108
\(455\) −7.71498 −0.361684
\(456\) −0.985147 −0.0461337
\(457\) 17.6312 0.824754 0.412377 0.911013i \(-0.364699\pi\)
0.412377 + 0.911013i \(0.364699\pi\)
\(458\) 65.3026 3.05139
\(459\) 2.67908 0.125049
\(460\) −16.8756 −0.786831
\(461\) −34.2073 −1.59320 −0.796598 0.604510i \(-0.793369\pi\)
−0.796598 + 0.604510i \(0.793369\pi\)
\(462\) 0 0
\(463\) −11.0009 −0.511253 −0.255626 0.966776i \(-0.582282\pi\)
−0.255626 + 0.966776i \(0.582282\pi\)
\(464\) −81.5854 −3.78751
\(465\) −0.601231 −0.0278814
\(466\) 43.2637 2.00415
\(467\) 4.38453 0.202892 0.101446 0.994841i \(-0.467653\pi\)
0.101446 + 0.994841i \(0.467653\pi\)
\(468\) −32.5312 −1.50376
\(469\) −16.2155 −0.748764
\(470\) −16.2408 −0.749134
\(471\) 0.0302708 0.00139481
\(472\) 111.506 5.13250
\(473\) 0 0
\(474\) 4.34415 0.199534
\(475\) −3.87587 −0.177837
\(476\) −62.4294 −2.86145
\(477\) 16.8905 0.773365
\(478\) −40.9249 −1.87186
\(479\) 14.3683 0.656505 0.328253 0.944590i \(-0.393540\pi\)
0.328253 + 0.944590i \(0.393540\pi\)
\(480\) 1.80902 0.0825702
\(481\) 4.91266 0.223998
\(482\) 64.0861 2.91904
\(483\) 1.29523 0.0589349
\(484\) 0 0
\(485\) 4.34604 0.197344
\(486\) −8.67657 −0.393577
\(487\) 1.01712 0.0460899 0.0230449 0.999734i \(-0.492664\pi\)
0.0230449 + 0.999734i \(0.492664\pi\)
\(488\) 56.4348 2.55468
\(489\) −2.06829 −0.0935314
\(490\) 12.2403 0.552959
\(491\) 2.41045 0.108782 0.0543910 0.998520i \(-0.482678\pi\)
0.0543910 + 0.998520i \(0.482678\pi\)
\(492\) 7.00067 0.315615
\(493\) 26.3658 1.18745
\(494\) −5.73313 −0.257946
\(495\) 0 0
\(496\) 52.8820 2.37447
\(497\) 51.4189 2.30645
\(498\) 3.22409 0.144475
\(499\) 4.07426 0.182389 0.0911945 0.995833i \(-0.470931\pi\)
0.0911945 + 0.995833i \(0.470931\pi\)
\(500\) 47.4805 2.12339
\(501\) 0.105485 0.00471272
\(502\) 52.8471 2.35868
\(503\) 19.9553 0.889762 0.444881 0.895590i \(-0.353246\pi\)
0.444881 + 0.895590i \(0.353246\pi\)
\(504\) 81.2923 3.62104
\(505\) −11.5281 −0.512993
\(506\) 0 0
\(507\) −1.01577 −0.0451118
\(508\) 18.1801 0.806613
\(509\) −8.79239 −0.389716 −0.194858 0.980831i \(-0.562425\pi\)
−0.194858 + 0.980831i \(0.562425\pi\)
\(510\) −1.25972 −0.0557812
\(511\) 27.2478 1.20537
\(512\) 24.6266 1.08835
\(513\) −0.729422 −0.0322048
\(514\) 59.2247 2.61229
\(515\) −9.39239 −0.413878
\(516\) −5.77285 −0.254135
\(517\) 0 0
\(518\) −20.3384 −0.893618
\(519\) 0.505138 0.0221731
\(520\) 18.5117 0.811790
\(521\) 27.3483 1.19815 0.599075 0.800693i \(-0.295535\pi\)
0.599075 + 0.800693i \(0.295535\pi\)
\(522\) −56.8790 −2.48953
\(523\) 41.7043 1.82360 0.911800 0.410634i \(-0.134693\pi\)
0.911800 + 0.410634i \(0.134693\pi\)
\(524\) −85.1368 −3.71922
\(525\) −1.59133 −0.0694512
\(526\) 36.6197 1.59670
\(527\) −17.0897 −0.744441
\(528\) 0 0
\(529\) −13.0480 −0.567304
\(530\) −15.9236 −0.691675
\(531\) 41.1783 1.78699
\(532\) 16.9974 0.736930
\(533\) 24.5912 1.06516
\(534\) 1.49330 0.0646214
\(535\) −19.2615 −0.832748
\(536\) 38.9083 1.68058
\(537\) 0.249331 0.0107594
\(538\) 29.7358 1.28200
\(539\) 0 0
\(540\) 3.90197 0.167914
\(541\) 20.7584 0.892472 0.446236 0.894915i \(-0.352764\pi\)
0.446236 + 0.894915i \(0.352764\pi\)
\(542\) 45.4508 1.95228
\(543\) 0.642898 0.0275894
\(544\) 51.4207 2.20464
\(545\) −0.224035 −0.00959659
\(546\) −2.35387 −0.100736
\(547\) −5.39396 −0.230629 −0.115315 0.993329i \(-0.536788\pi\)
−0.115315 + 0.993329i \(0.536788\pi\)
\(548\) −30.8193 −1.31653
\(549\) 20.8409 0.889466
\(550\) 0 0
\(551\) −7.17849 −0.305814
\(552\) −3.10783 −0.132278
\(553\) −45.2412 −1.92385
\(554\) −36.3980 −1.54640
\(555\) −0.293894 −0.0124751
\(556\) −57.1881 −2.42532
\(557\) 38.0076 1.61043 0.805217 0.592981i \(-0.202049\pi\)
0.805217 + 0.592981i \(0.202049\pi\)
\(558\) 36.8678 1.56074
\(559\) −20.2782 −0.857677
\(560\) −40.5952 −1.71546
\(561\) 0 0
\(562\) 68.6404 2.89542
\(563\) 26.4313 1.11395 0.556973 0.830530i \(-0.311963\pi\)
0.556973 + 0.830530i \(0.311963\pi\)
\(564\) −3.54851 −0.149419
\(565\) 0.210295 0.00884719
\(566\) 76.6330 3.22112
\(567\) 29.8704 1.25444
\(568\) −123.377 −5.17677
\(569\) −40.6105 −1.70248 −0.851239 0.524778i \(-0.824148\pi\)
−0.851239 + 0.524778i \(0.824148\pi\)
\(570\) 0.342978 0.0143658
\(571\) −8.44299 −0.353328 −0.176664 0.984271i \(-0.556531\pi\)
−0.176664 + 0.984271i \(0.556531\pi\)
\(572\) 0 0
\(573\) −1.97309 −0.0824271
\(574\) −101.807 −4.24936
\(575\) −12.2271 −0.509906
\(576\) −43.0761 −1.79484
\(577\) 20.9771 0.873288 0.436644 0.899634i \(-0.356167\pi\)
0.436644 + 0.899634i \(0.356167\pi\)
\(578\) 9.31648 0.387514
\(579\) 2.44499 0.101610
\(580\) 38.4006 1.59450
\(581\) −33.5766 −1.39299
\(582\) 1.32600 0.0549643
\(583\) 0 0
\(584\) −65.3795 −2.70542
\(585\) 6.83619 0.282642
\(586\) 16.9338 0.699528
\(587\) −21.1452 −0.872756 −0.436378 0.899764i \(-0.643739\pi\)
−0.436378 + 0.899764i \(0.643739\pi\)
\(588\) 2.67441 0.110291
\(589\) 4.65295 0.191721
\(590\) −38.8208 −1.59823
\(591\) 2.90540 0.119512
\(592\) 25.8498 1.06242
\(593\) −27.7731 −1.14051 −0.570253 0.821469i \(-0.693155\pi\)
−0.570253 + 0.821469i \(0.693155\pi\)
\(594\) 0 0
\(595\) 13.1191 0.537829
\(596\) −34.0917 −1.39645
\(597\) −0.231793 −0.00948667
\(598\) −18.0862 −0.739600
\(599\) 23.0129 0.940281 0.470140 0.882592i \(-0.344203\pi\)
0.470140 + 0.882592i \(0.344203\pi\)
\(600\) 3.81830 0.155881
\(601\) −23.3322 −0.951738 −0.475869 0.879516i \(-0.657866\pi\)
−0.475869 + 0.879516i \(0.657866\pi\)
\(602\) 83.9517 3.42162
\(603\) 14.3685 0.585129
\(604\) −32.6049 −1.32668
\(605\) 0 0
\(606\) −3.51726 −0.142879
\(607\) 3.22857 0.131044 0.0655218 0.997851i \(-0.479129\pi\)
0.0655218 + 0.997851i \(0.479129\pi\)
\(608\) −14.0001 −0.567778
\(609\) −2.94730 −0.119430
\(610\) −19.6477 −0.795512
\(611\) −12.4648 −0.504273
\(612\) 55.3182 2.23611
\(613\) 17.2202 0.695519 0.347759 0.937584i \(-0.386943\pi\)
0.347759 + 0.937584i \(0.386943\pi\)
\(614\) 27.6842 1.11724
\(615\) −1.47114 −0.0593220
\(616\) 0 0
\(617\) −27.4776 −1.10621 −0.553103 0.833113i \(-0.686557\pi\)
−0.553103 + 0.833113i \(0.686557\pi\)
\(618\) −2.86565 −0.115274
\(619\) −9.53870 −0.383393 −0.191696 0.981454i \(-0.561399\pi\)
−0.191696 + 0.981454i \(0.561399\pi\)
\(620\) −24.8905 −0.999625
\(621\) −2.30109 −0.0923397
\(622\) 21.9306 0.879337
\(623\) −15.5517 −0.623064
\(624\) 2.99173 0.119765
\(625\) 9.40166 0.376066
\(626\) 64.0133 2.55848
\(627\) 0 0
\(628\) 1.25319 0.0500076
\(629\) −8.35381 −0.333088
\(630\) −28.3018 −1.12757
\(631\) 1.16647 0.0464363 0.0232182 0.999730i \(-0.492609\pi\)
0.0232182 + 0.999730i \(0.492609\pi\)
\(632\) 108.554 4.31804
\(633\) −1.49962 −0.0596044
\(634\) 31.1430 1.23685
\(635\) −3.82042 −0.151609
\(636\) −3.47919 −0.137959
\(637\) 9.39438 0.372219
\(638\) 0 0
\(639\) −45.5619 −1.80240
\(640\) 10.9227 0.431759
\(641\) 10.0249 0.395960 0.197980 0.980206i \(-0.436562\pi\)
0.197980 + 0.980206i \(0.436562\pi\)
\(642\) −5.87676 −0.231937
\(643\) −40.7197 −1.60583 −0.802915 0.596094i \(-0.796719\pi\)
−0.802915 + 0.596094i \(0.796719\pi\)
\(644\) 53.6213 2.11298
\(645\) 1.21312 0.0477666
\(646\) 9.74900 0.383569
\(647\) −16.6460 −0.654423 −0.327211 0.944951i \(-0.606109\pi\)
−0.327211 + 0.944951i \(0.606109\pi\)
\(648\) −71.6723 −2.81555
\(649\) 0 0
\(650\) 22.2209 0.871574
\(651\) 1.91038 0.0748735
\(652\) −85.6256 −3.35336
\(653\) −34.7416 −1.35954 −0.679771 0.733424i \(-0.737921\pi\)
−0.679771 + 0.733424i \(0.737921\pi\)
\(654\) −0.0683538 −0.00267285
\(655\) 17.8908 0.699053
\(656\) 129.396 5.05205
\(657\) −24.1441 −0.941949
\(658\) 51.6043 2.01175
\(659\) 22.9537 0.894148 0.447074 0.894497i \(-0.352466\pi\)
0.447074 + 0.894497i \(0.352466\pi\)
\(660\) 0 0
\(661\) −22.7141 −0.883476 −0.441738 0.897144i \(-0.645638\pi\)
−0.441738 + 0.897144i \(0.645638\pi\)
\(662\) 18.4534 0.717213
\(663\) −0.966831 −0.0375486
\(664\) 80.5651 3.12653
\(665\) −3.57187 −0.138511
\(666\) 18.0217 0.698328
\(667\) −22.6459 −0.876851
\(668\) 4.36698 0.168964
\(669\) 2.78445 0.107653
\(670\) −13.5459 −0.523322
\(671\) 0 0
\(672\) −5.74806 −0.221736
\(673\) −20.9448 −0.807364 −0.403682 0.914899i \(-0.632270\pi\)
−0.403682 + 0.914899i \(0.632270\pi\)
\(674\) 78.1473 3.01012
\(675\) 2.82714 0.108817
\(676\) −42.0519 −1.61738
\(677\) −11.4153 −0.438726 −0.219363 0.975643i \(-0.570398\pi\)
−0.219363 + 0.975643i \(0.570398\pi\)
\(678\) 0.0641619 0.00246412
\(679\) −13.8093 −0.529952
\(680\) −31.4784 −1.20714
\(681\) −0.488285 −0.0187111
\(682\) 0 0
\(683\) −34.9550 −1.33752 −0.668759 0.743479i \(-0.733174\pi\)
−0.668759 + 0.743479i \(0.733174\pi\)
\(684\) −15.0613 −0.575882
\(685\) 6.47643 0.247452
\(686\) 23.7020 0.904945
\(687\) −2.99835 −0.114394
\(688\) −106.701 −4.06795
\(689\) −12.2213 −0.465594
\(690\) 1.08199 0.0411905
\(691\) −15.8717 −0.603789 −0.301894 0.953341i \(-0.597619\pi\)
−0.301894 + 0.953341i \(0.597619\pi\)
\(692\) 20.9123 0.794967
\(693\) 0 0
\(694\) −45.7020 −1.73483
\(695\) 12.0177 0.455855
\(696\) 7.07187 0.268059
\(697\) −41.8165 −1.58391
\(698\) 11.4774 0.434426
\(699\) −1.98644 −0.0751339
\(700\) −65.8795 −2.49001
\(701\) 18.5830 0.701869 0.350935 0.936400i \(-0.385864\pi\)
0.350935 + 0.936400i \(0.385864\pi\)
\(702\) 4.18188 0.157835
\(703\) 2.27446 0.0857828
\(704\) 0 0
\(705\) 0.745693 0.0280844
\(706\) −62.2228 −2.34178
\(707\) 36.6298 1.37760
\(708\) −8.48208 −0.318776
\(709\) 23.8063 0.894064 0.447032 0.894518i \(-0.352481\pi\)
0.447032 + 0.894518i \(0.352481\pi\)
\(710\) 42.9535 1.61202
\(711\) 40.0880 1.50342
\(712\) 37.3153 1.39845
\(713\) 14.6786 0.549717
\(714\) 4.00267 0.149796
\(715\) 0 0
\(716\) 10.3221 0.385755
\(717\) 1.87905 0.0701745
\(718\) 21.7798 0.812816
\(719\) 37.0144 1.38040 0.690202 0.723616i \(-0.257522\pi\)
0.690202 + 0.723616i \(0.257522\pi\)
\(720\) 35.9711 1.34057
\(721\) 29.8437 1.11144
\(722\) −2.65432 −0.0987835
\(723\) −2.94249 −0.109432
\(724\) 26.6154 0.989154
\(725\) 27.8229 1.03332
\(726\) 0 0
\(727\) −22.0744 −0.818694 −0.409347 0.912379i \(-0.634243\pi\)
−0.409347 + 0.912379i \(0.634243\pi\)
\(728\) −58.8197 −2.18000
\(729\) −26.2013 −0.970417
\(730\) 22.7618 0.842452
\(731\) 34.4824 1.27538
\(732\) −4.29289 −0.158670
\(733\) 18.7090 0.691031 0.345515 0.938413i \(-0.387704\pi\)
0.345515 + 0.938413i \(0.387704\pi\)
\(734\) −87.9891 −3.24774
\(735\) −0.562008 −0.0207300
\(736\) −44.1658 −1.62797
\(737\) 0 0
\(738\) 90.2109 3.32071
\(739\) 5.91630 0.217635 0.108817 0.994062i \(-0.465294\pi\)
0.108817 + 0.994062i \(0.465294\pi\)
\(740\) −12.1670 −0.447267
\(741\) 0.263235 0.00967017
\(742\) 50.5961 1.85744
\(743\) −14.0422 −0.515159 −0.257579 0.966257i \(-0.582925\pi\)
−0.257579 + 0.966257i \(0.582925\pi\)
\(744\) −4.58384 −0.168052
\(745\) 7.16411 0.262473
\(746\) −44.0191 −1.61165
\(747\) 29.7520 1.08857
\(748\) 0 0
\(749\) 61.2023 2.23628
\(750\) −3.04423 −0.111159
\(751\) 4.91166 0.179229 0.0896145 0.995977i \(-0.471437\pi\)
0.0896145 + 0.995977i \(0.471437\pi\)
\(752\) −65.5882 −2.39176
\(753\) −2.42646 −0.0884250
\(754\) 41.1553 1.49879
\(755\) 6.85168 0.249358
\(756\) −12.3983 −0.450920
\(757\) 49.2829 1.79122 0.895609 0.444843i \(-0.146741\pi\)
0.895609 + 0.444843i \(0.146741\pi\)
\(758\) −15.3809 −0.558659
\(759\) 0 0
\(760\) 8.57050 0.310885
\(761\) 7.25922 0.263146 0.131573 0.991306i \(-0.457997\pi\)
0.131573 + 0.991306i \(0.457997\pi\)
\(762\) −1.16562 −0.0422261
\(763\) 0.711856 0.0257709
\(764\) −81.6843 −2.95524
\(765\) −11.6247 −0.420292
\(766\) −15.6344 −0.564892
\(767\) −29.7949 −1.07583
\(768\) −0.184693 −0.00666453
\(769\) 21.5123 0.775755 0.387877 0.921711i \(-0.373208\pi\)
0.387877 + 0.921711i \(0.373208\pi\)
\(770\) 0 0
\(771\) −2.71928 −0.0979325
\(772\) 101.221 3.64301
\(773\) 4.54038 0.163306 0.0816530 0.996661i \(-0.473980\pi\)
0.0816530 + 0.996661i \(0.473980\pi\)
\(774\) −74.3891 −2.67386
\(775\) −18.0342 −0.647808
\(776\) 33.1346 1.18946
\(777\) 0.933831 0.0335010
\(778\) −36.6440 −1.31375
\(779\) 11.3852 0.407917
\(780\) −1.40815 −0.0504198
\(781\) 0 0
\(782\) 30.7550 1.09980
\(783\) 5.23615 0.187125
\(784\) 49.4320 1.76543
\(785\) −0.263348 −0.00939928
\(786\) 5.45856 0.194701
\(787\) 7.25028 0.258444 0.129222 0.991616i \(-0.458752\pi\)
0.129222 + 0.991616i \(0.458752\pi\)
\(788\) 120.281 4.28484
\(789\) −1.68138 −0.0598588
\(790\) −37.7929 −1.34461
\(791\) −0.668201 −0.0237585
\(792\) 0 0
\(793\) −15.0796 −0.535491
\(794\) −17.2125 −0.610848
\(795\) 0.731124 0.0259303
\(796\) −9.59605 −0.340123
\(797\) 18.8674 0.668319 0.334159 0.942517i \(-0.391548\pi\)
0.334159 + 0.942517i \(0.391548\pi\)
\(798\) −1.08979 −0.0385782
\(799\) 21.1960 0.749860
\(800\) 54.2624 1.91847
\(801\) 13.7802 0.486900
\(802\) −9.84236 −0.347546
\(803\) 0 0
\(804\) −2.95968 −0.104380
\(805\) −11.2681 −0.397149
\(806\) −26.6760 −0.939622
\(807\) −1.36531 −0.0480612
\(808\) −87.8911 −3.09200
\(809\) 19.4948 0.685399 0.342700 0.939445i \(-0.388659\pi\)
0.342700 + 0.939445i \(0.388659\pi\)
\(810\) 24.9526 0.876746
\(811\) −4.28635 −0.150514 −0.0752570 0.997164i \(-0.523978\pi\)
−0.0752570 + 0.997164i \(0.523978\pi\)
\(812\) −122.016 −4.28191
\(813\) −2.08686 −0.0731893
\(814\) 0 0
\(815\) 17.9936 0.630287
\(816\) −5.08734 −0.178092
\(817\) −9.38838 −0.328458
\(818\) 82.4350 2.88227
\(819\) −21.7216 −0.759014
\(820\) −60.9039 −2.12686
\(821\) −5.37419 −0.187561 −0.0937803 0.995593i \(-0.529895\pi\)
−0.0937803 + 0.995593i \(0.529895\pi\)
\(822\) 1.97598 0.0689204
\(823\) 26.3196 0.917445 0.458723 0.888580i \(-0.348307\pi\)
0.458723 + 0.888580i \(0.348307\pi\)
\(824\) −71.6084 −2.49460
\(825\) 0 0
\(826\) 123.351 4.29192
\(827\) 8.11186 0.282077 0.141039 0.990004i \(-0.454956\pi\)
0.141039 + 0.990004i \(0.454956\pi\)
\(828\) −47.5135 −1.65121
\(829\) −21.5948 −0.750017 −0.375009 0.927021i \(-0.622360\pi\)
−0.375009 + 0.927021i \(0.622360\pi\)
\(830\) −28.0486 −0.973582
\(831\) 1.67120 0.0579733
\(832\) 31.1681 1.08056
\(833\) −15.9748 −0.553495
\(834\) 3.66663 0.126965
\(835\) −0.917688 −0.0317579
\(836\) 0 0
\(837\) −3.39396 −0.117313
\(838\) 29.9595 1.03493
\(839\) −4.35109 −0.150216 −0.0751082 0.997175i \(-0.523930\pi\)
−0.0751082 + 0.997175i \(0.523930\pi\)
\(840\) 3.51882 0.121411
\(841\) 22.5308 0.776923
\(842\) −91.6254 −3.15762
\(843\) −3.15160 −0.108547
\(844\) −62.0828 −2.13698
\(845\) 8.83689 0.303998
\(846\) −45.7262 −1.57210
\(847\) 0 0
\(848\) −64.3069 −2.20831
\(849\) −3.51858 −0.120757
\(850\) −37.7858 −1.29604
\(851\) 7.17519 0.245962
\(852\) 9.38504 0.321526
\(853\) −19.5022 −0.667744 −0.333872 0.942618i \(-0.608355\pi\)
−0.333872 + 0.942618i \(0.608355\pi\)
\(854\) 62.4294 2.13629
\(855\) 3.16501 0.108241
\(856\) −146.851 −5.01928
\(857\) −13.3462 −0.455898 −0.227949 0.973673i \(-0.573202\pi\)
−0.227949 + 0.973673i \(0.573202\pi\)
\(858\) 0 0
\(859\) 21.6016 0.737036 0.368518 0.929621i \(-0.379865\pi\)
0.368518 + 0.929621i \(0.379865\pi\)
\(860\) 50.2221 1.71256
\(861\) 4.67445 0.159305
\(862\) 48.2167 1.64227
\(863\) −2.72425 −0.0927345 −0.0463673 0.998924i \(-0.514764\pi\)
−0.0463673 + 0.998924i \(0.514764\pi\)
\(864\) 10.2120 0.347418
\(865\) −4.39456 −0.149420
\(866\) −28.6147 −0.972367
\(867\) −0.427763 −0.0145276
\(868\) 79.0879 2.68442
\(869\) 0 0
\(870\) −2.46206 −0.0834718
\(871\) −10.3964 −0.352269
\(872\) −1.70806 −0.0578422
\(873\) 12.2363 0.414137
\(874\) −8.37352 −0.283239
\(875\) 31.7034 1.07177
\(876\) 4.97329 0.168032
\(877\) −1.29130 −0.0436041 −0.0218021 0.999762i \(-0.506940\pi\)
−0.0218021 + 0.999762i \(0.506940\pi\)
\(878\) −3.68266 −0.124284
\(879\) −0.777508 −0.0262247
\(880\) 0 0
\(881\) 24.9873 0.841844 0.420922 0.907097i \(-0.361707\pi\)
0.420922 + 0.907097i \(0.361707\pi\)
\(882\) 34.4626 1.16041
\(883\) 15.5046 0.521772 0.260886 0.965370i \(-0.415985\pi\)
0.260886 + 0.965370i \(0.415985\pi\)
\(884\) −40.0260 −1.34622
\(885\) 1.78244 0.0599162
\(886\) 19.2914 0.648107
\(887\) 9.98029 0.335105 0.167553 0.985863i \(-0.446414\pi\)
0.167553 + 0.985863i \(0.446414\pi\)
\(888\) −2.24068 −0.0751921
\(889\) 12.1391 0.407134
\(890\) −12.9913 −0.435469
\(891\) 0 0
\(892\) 115.274 3.85966
\(893\) −5.77094 −0.193117
\(894\) 2.18580 0.0731040
\(895\) −2.16911 −0.0725053
\(896\) −34.7063 −1.15946
\(897\) 0.830422 0.0277270
\(898\) −56.8815 −1.89816
\(899\) −33.4012 −1.11399
\(900\) 58.3754 1.94585
\(901\) 20.7819 0.692345
\(902\) 0 0
\(903\) −3.85461 −0.128274
\(904\) 1.60331 0.0533253
\(905\) −5.59303 −0.185919
\(906\) 2.09047 0.0694513
\(907\) 11.8887 0.394758 0.197379 0.980327i \(-0.436757\pi\)
0.197379 + 0.980327i \(0.436757\pi\)
\(908\) −20.2146 −0.670845
\(909\) −32.4574 −1.07654
\(910\) 20.4780 0.678839
\(911\) −23.7166 −0.785767 −0.392883 0.919588i \(-0.628522\pi\)
−0.392883 + 0.919588i \(0.628522\pi\)
\(912\) 1.38511 0.0458655
\(913\) 0 0
\(914\) −46.7989 −1.54797
\(915\) 0.902117 0.0298231
\(916\) −124.129 −4.10134
\(917\) −56.8471 −1.87726
\(918\) −7.11113 −0.234702
\(919\) −18.1426 −0.598470 −0.299235 0.954179i \(-0.596731\pi\)
−0.299235 + 0.954179i \(0.596731\pi\)
\(920\) 27.0372 0.891390
\(921\) −1.27111 −0.0418845
\(922\) 90.7972 2.99024
\(923\) 32.9667 1.08511
\(924\) 0 0
\(925\) −8.81549 −0.289852
\(926\) 29.1997 0.959563
\(927\) −26.4443 −0.868546
\(928\) 100.500 3.29906
\(929\) −50.5019 −1.65691 −0.828457 0.560053i \(-0.810781\pi\)
−0.828457 + 0.560053i \(0.810781\pi\)
\(930\) 1.59586 0.0523303
\(931\) 4.34940 0.142546
\(932\) −82.2368 −2.69376
\(933\) −1.00694 −0.0329656
\(934\) −11.6379 −0.380805
\(935\) 0 0
\(936\) 52.1197 1.70359
\(937\) 39.6587 1.29559 0.647797 0.761813i \(-0.275691\pi\)
0.647797 + 0.761813i \(0.275691\pi\)
\(938\) 43.0412 1.40534
\(939\) −2.93915 −0.0959154
\(940\) 30.8711 1.00690
\(941\) 34.8809 1.13709 0.568543 0.822653i \(-0.307507\pi\)
0.568543 + 0.822653i \(0.307507\pi\)
\(942\) −0.0803484 −0.00261789
\(943\) 35.9166 1.16961
\(944\) −156.777 −5.10265
\(945\) 2.60540 0.0847537
\(946\) 0 0
\(947\) −30.3067 −0.984835 −0.492417 0.870359i \(-0.663887\pi\)
−0.492417 + 0.870359i \(0.663887\pi\)
\(948\) −8.25748 −0.268191
\(949\) 17.4696 0.567088
\(950\) 10.2878 0.333780
\(951\) −1.42992 −0.0463684
\(952\) 100.021 3.24169
\(953\) 6.65804 0.215675 0.107838 0.994169i \(-0.465607\pi\)
0.107838 + 0.994169i \(0.465607\pi\)
\(954\) −44.8329 −1.45152
\(955\) 17.1653 0.555457
\(956\) 77.7912 2.51595
\(957\) 0 0
\(958\) −38.1381 −1.23219
\(959\) −20.5785 −0.664513
\(960\) −1.86459 −0.0601795
\(961\) −9.35006 −0.301615
\(962\) −13.0398 −0.420419
\(963\) −54.2309 −1.74757
\(964\) −121.817 −3.92345
\(965\) −21.2707 −0.684729
\(966\) −3.43794 −0.110614
\(967\) 20.0020 0.643221 0.321611 0.946872i \(-0.395776\pi\)
0.321611 + 0.946872i \(0.395776\pi\)
\(968\) 0 0
\(969\) −0.447622 −0.0143797
\(970\) −11.5358 −0.370392
\(971\) −0.491941 −0.0157871 −0.00789357 0.999969i \(-0.502513\pi\)
−0.00789357 + 0.999969i \(0.502513\pi\)
\(972\) 16.4927 0.529002
\(973\) −38.1853 −1.22417
\(974\) −2.69975 −0.0865055
\(975\) −1.02026 −0.0326746
\(976\) −79.3467 −2.53983
\(977\) 23.6515 0.756679 0.378339 0.925667i \(-0.376495\pi\)
0.378339 + 0.925667i \(0.376495\pi\)
\(978\) 5.48991 0.175548
\(979\) 0 0
\(980\) −23.2666 −0.743225
\(981\) −0.630771 −0.0201390
\(982\) −6.39809 −0.204171
\(983\) 39.5609 1.26180 0.630899 0.775865i \(-0.282686\pi\)
0.630899 + 0.775865i \(0.282686\pi\)
\(984\) −11.2161 −0.357556
\(985\) −25.2762 −0.805366
\(986\) −69.9831 −2.22872
\(987\) −2.36939 −0.0754186
\(988\) 10.8977 0.346702
\(989\) −29.6173 −0.941777
\(990\) 0 0
\(991\) −13.6096 −0.432322 −0.216161 0.976358i \(-0.569354\pi\)
−0.216161 + 0.976358i \(0.569354\pi\)
\(992\) −65.1417 −2.06825
\(993\) −0.847283 −0.0268877
\(994\) −136.482 −4.32895
\(995\) 2.01654 0.0639285
\(996\) −6.12843 −0.194187
\(997\) −41.1821 −1.30425 −0.652125 0.758111i \(-0.726122\pi\)
−0.652125 + 0.758111i \(0.726122\pi\)
\(998\) −10.8144 −0.342323
\(999\) −1.65904 −0.0524897
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2299.2.a.n.1.1 5
11.10 odd 2 209.2.a.c.1.5 5
33.32 even 2 1881.2.a.k.1.1 5
44.43 even 2 3344.2.a.t.1.3 5
55.54 odd 2 5225.2.a.h.1.1 5
209.208 even 2 3971.2.a.h.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
209.2.a.c.1.5 5 11.10 odd 2
1881.2.a.k.1.1 5 33.32 even 2
2299.2.a.n.1.1 5 1.1 even 1 trivial
3344.2.a.t.1.3 5 44.43 even 2
3971.2.a.h.1.1 5 209.208 even 2
5225.2.a.h.1.1 5 55.54 odd 2