Properties

Label 2299.1.m.b
Level $2299$
Weight $1$
Character orbit 2299.m
Analytic conductor $1.147$
Analytic rank $0$
Dimension $4$
Projective image $D_{5}$
CM discriminant -19
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2299,1,Mod(493,2299)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2299, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([6, 5])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2299.493"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2299 = 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2299.m (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-1,3,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.14735046404\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 209)
Projective image: \(D_{5}\)
Projective field: Galois closure of 5.1.5285401.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{10}^{4} q^{4} + ( - \zeta_{10} + 1) q^{5} + (\zeta_{10}^{2} - \zeta_{10}) q^{7} + \zeta_{10}^{2} q^{9} - \zeta_{10}^{3} q^{16} + (\zeta_{10}^{4} + \zeta_{10}^{2}) q^{17} - \zeta_{10} q^{19} + \cdots + (\zeta_{10}^{2} - \zeta_{10}) q^{95} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{4} + 3 q^{5} - 2 q^{7} - q^{9} - q^{16} - 2 q^{17} - q^{19} + 3 q^{20} - 2 q^{23} + 2 q^{25} + 3 q^{28} - 4 q^{35} - q^{36} - 2 q^{43} - 2 q^{45} + 3 q^{47} - 3 q^{49} - 2 q^{61} - 2 q^{63}+ \cdots - 2 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2299\mathbb{Z}\right)^\times\).

\(n\) \(970\) \(1332\)
\(\chi(n)\) \(\zeta_{10}^{4}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
493.1
0.809017 0.587785i
−0.309017 + 0.951057i
−0.309017 0.951057i
0.809017 + 0.587785i
0 0 −0.809017 0.587785i 0.190983 + 0.587785i 0 −0.500000 0.363271i 0 0.309017 0.951057i 0
1291.1 0 0 0.309017 + 0.951057i 1.30902 0.951057i 0 −0.500000 1.53884i 0 −0.809017 0.587785i 0
1576.1 0 0 0.309017 0.951057i 1.30902 + 0.951057i 0 −0.500000 + 1.53884i 0 −0.809017 + 0.587785i 0
1842.1 0 0 −0.809017 + 0.587785i 0.190983 0.587785i 0 −0.500000 + 0.363271i 0 0.309017 + 0.951057i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by \(\Q(\sqrt{-19}) \)
11.c even 5 1 inner
209.m odd 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2299.1.m.b 4
11.b odd 2 1 2299.1.m.c 4
11.c even 5 2 209.1.m.a 4
11.c even 5 1 2299.1.b.a 2
11.c even 5 1 inner 2299.1.m.b 4
11.d odd 10 1 2299.1.b.b 2
11.d odd 10 2 2299.1.m.a 4
11.d odd 10 1 2299.1.m.c 4
19.b odd 2 1 CM 2299.1.m.b 4
33.h odd 10 2 1881.1.bv.a 4
44.h odd 10 2 3344.1.bx.a 4
209.d even 2 1 2299.1.m.c 4
209.k even 10 1 2299.1.b.b 2
209.k even 10 2 2299.1.m.a 4
209.k even 10 1 2299.1.m.c 4
209.m odd 10 2 209.1.m.a 4
209.m odd 10 1 2299.1.b.a 2
209.m odd 10 1 inner 2299.1.m.b 4
209.n even 15 4 3971.1.s.a 8
209.r odd 30 4 3971.1.s.a 8
209.u even 45 12 3971.1.bc.a 24
209.x odd 90 12 3971.1.bc.a 24
627.t even 10 2 1881.1.bv.a 4
836.t even 10 2 3344.1.bx.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
209.1.m.a 4 11.c even 5 2
209.1.m.a 4 209.m odd 10 2
1881.1.bv.a 4 33.h odd 10 2
1881.1.bv.a 4 627.t even 10 2
2299.1.b.a 2 11.c even 5 1
2299.1.b.a 2 209.m odd 10 1
2299.1.b.b 2 11.d odd 10 1
2299.1.b.b 2 209.k even 10 1
2299.1.m.a 4 11.d odd 10 2
2299.1.m.a 4 209.k even 10 2
2299.1.m.b 4 1.a even 1 1 trivial
2299.1.m.b 4 11.c even 5 1 inner
2299.1.m.b 4 19.b odd 2 1 CM
2299.1.m.b 4 209.m odd 10 1 inner
2299.1.m.c 4 11.b odd 2 1
2299.1.m.c 4 11.d odd 10 1
2299.1.m.c 4 209.d even 2 1
2299.1.m.c 4 209.k even 10 1
3344.1.bx.a 4 44.h odd 10 2
3344.1.bx.a 4 836.t even 10 2
3971.1.s.a 8 209.n even 15 4
3971.1.s.a 8 209.r odd 30 4
3971.1.bc.a 24 209.u even 45 12
3971.1.bc.a 24 209.x odd 90 12

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(2299, [\chi])\):

\( T_{5}^{4} - 3T_{5}^{3} + 4T_{5}^{2} - 2T_{5} + 1 \) Copy content Toggle raw display
\( T_{7}^{4} + 2T_{7}^{3} + 4T_{7}^{2} + 3T_{7} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{4} + 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$23$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} - 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} + 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} + 2 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} - 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less